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Chapter 1

Photoionised Regions

1.1 Indroduction

Starting with the paper of Huggins ([10], “On the spectrum of the great
nebula in Orion...”), photoionised regions have been one of the dominant
topics in research on the ISM. Photoionised regions in our galaxy fall into
two main categories :

1. H II regions : these are regions of the ISM in which massive stars have
formed, and the far-UV radiation from these stars photoionises the
surrounding gas. The brightest and best studied region is the Orion
Nebula (see Fig. 1.1).

2. Planetary nebulae : these are evolved stars which have ejected most of
their material in the form of winds. The remaining, hot core of the star
emits far-UV radiation which photoionises the still outflowing material
which was previously ejected from the star. An example of this kind of
object is the Helix Nebula (see Fig. 1.2).

1.2 The ionising photon rate produced by the

central star

1.2.1 General considerations

The fundamental process giving rise to the “photoionised region” phenomenon
is the production of far-UV photons by the “central source” of the nebula.
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Figure 1.1: Example of an H II region: the Orion Nebula



Figure 1.2: Example of a planetary nebula: the Helix
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Figure 1.3: Schematic diagram showing the process of H photoionisation. a.
in the initial state we have a photon of energy hν hitting an H atom in the
n = 1 state. b. after the interaction, we have an H nucleus (i. e., an HII
ion) and a free electron with a kinetic energy hν − χH .

This “central source” could in principle be one or several stars which produce
the photoionisation.

In the ISM, the gas is mostly composed of hydrogen (H), and most of the
H atoms are in the ground, n = 1 state. The energy difference between an
electron in this state, and the lowest possible energy of a free electron is the
“ionisation potential” for the n = 1 level of H : χH = 13.6 eV. In order to
photoionise an electron from this level, it is necessary to have photons with
energies hν ≥ χH .

The photoionisation process is shown schematically in Fig. 1.3. A photon
of energy hν ≥ χH (where h is the Planck constant and ν the frequency of
the photon) hits an H atom in the n = 1 state. The photon is absorbed,
and the electron has a transition to a free state with a kinetic energy Ek =
meve

2/2 = hν − χH (where me is the mass and ve the velocity of the free
electron).

Let us call Lν the luminosity per unit frequency emitted by the central
source of the nebula (the total luminosity of the star being L =

∫∞

0
Lνdν).

The total number of ionising photons (i. e., of photons with frequencies



larger than νH = χH/h) emitted per unit time is then given by :

S∗ =

∫ ∞

νH

Lν

hν
dν . (1.1)

1.2.2 Sources emitting a black body spectrum

Let us consider that we have a star that emits a black body spectrum in
the Wien limit (hν/kT∗ ≫ 1, where T∗ is the black body temperature of the
source). The luminosity per unit frequency emitted by the star then is :

Lν = 4πR∗
2(πBν) ≈ 4πR∗

22πhν3

c2
e−hν/kT∗ , (1.2)

where c is the speed of light and Bν is the Planck distribution. Using this
form for the frequency-dependent luminosity Lν , eq. 1.1 can be integrated
analytically to obtain :

S∗,bb =
8π2R∗

2

c2

(

kT∗
h

)3
(

x0
2 + 2x0 + 2

)

e−x0 , (1.3)

where x0 ≡ hνH/kT∗. This equation gives a simple prescription for calculat-
ing the ionising photon rate S∗ as a function of the radius R∗ and the black
body temperature T∗ of the source.

1.2.3 Sources with more realistic photon distributions

In principle, the emission from a stellar atmosphere can have quite strong de-
viations from a black body spectrum. It is possible to integrate eq. 1.1 using
the results obtained from model atmospheres. Table 1.1 gives the effective
temperatures and radii for massive main sequence stars (as a function of the
spectral class), and the ionising photon rates S∗ computed from appropriate
atmosphere models.

Table 1.1 gives the results obtained from such a computation of S∗ (in-
cluding also the radius R∗, the luminosity L, the mass M , the terminal wind
velocity vw and the mass loss rate Ṁ) for massive stars with different effective
temperatures Teff , taken from [23].

In Fig. 1.4, we see the values of S∗ from Table 1.1 as a function of Teff ,
as well as the S∗,bb obtained from eq. 1.1 for the same values of T∗ = Teff and
R∗. It is clear that for Teff > 4 × 104 K, the two values agree well, though



Table 1.1: Ionising photon rate and other parameters for main sequence
(luminosity class V) stars (from [23])

Spectral Teff R∗ log10 L M vw Ṁ log10 S
Type [K] [R⊙] [L⊙] [M⊙] [km s−1] [M⊙yr−1] [s−1]
O3 51230 13.2 6.04 87.6 3552 2.7E-6 49.87
O4 48670 12.3 5.88 68.9 3266 1.8E-6 49.68
O4.5 47400 11.8 5.81 62.3 3138 1.4E-6 49.59
O5 46120 11.4 5.73 56.6 3026 1.1E-6 49.49
O5.5 44840 11.0 5.65 50.4 2903 8.9E-7 49.39
O6 43560 10.7 5.57 45.2 2784 7.2E-7 49.29
O6.5 42280 10.3 5.49 41.0 2666 5.6E-7 49.18
O7 41010 10.0 5.40 37.7 2543 4.5E-7 49.06
O7.5 39730 9.6 5.32 34.1 2428 3.5E-7 48.92
O8 38450 9.3 5.24 30.8 2313 2.7E-7 48.75
O8.5 37170 9.0 5.15 28.0 2194 2.1E-7 48.61
O9 35900 8.8 5.06 25.4 2083 1.7E-7 48.47
O9.5 34620 8.5 4.97 23.3 1972 1.3E-7 48.26
B0 33340 8.3 4.88 21.2 1853 1.0E-7 48.02
B0.5 32060 8.0 4.79 19.3 1747 7.8E-8 47.71



Figure 1.4: Ionising photon rate S∗ as a function of Teff for massive main
sequence stars. Top: the crosses are the values taken from Table 1.1, and
the solid line gives the S∗,bb computed for a black-body source. Bottom: the
ratio S∗/S∗,bb as a function of Teff (crosses) and the fit described in the text.



not so for lower temperatures. This can be seen in the lower frame of Fig.
1.4, which plots the S∗/S∗,bb ratio as a function of Teff . This ratio can be
fitted with a quadratic polinomial of the form :

S∗

S∗,bb
(Teff) = 2.375 t(1 − t/10) − 4.938 ; t = Teff/104K , (1.4)

which is shown as a solid curve in Fig. 1.4. This fit has been made for
temperatures in the range 30000 < Teff < 50000 K. It is then possible to use
Eq. 1.4 to calculate a correction factor by which one can multiply Eq. 1.1
in order to obtain an ionisation photon rate closer to the one predicted from
stellar atmosphere models.

In order to give a complete prescription of how to compute the ionising
photon rate for luminous stars along the main sequence, we note that the
values of R∗ as a function of Teff can be fitted by :

R∗

R⊙

(Teff) = 8.225 − 1.773 t+ 0.535 t2 ; t = Teff/104K . (1.5)

Therefore, in order to obtain values of S∗ that basically represent an
interpolation in between the ones of Table 1.1, for a given Teff one can first
compute R∗ from Eq. 1.5, then insert the values of Teff and R∗ into Eq. 1.1
to obtain S∗,bb, and finally multiply by the correction factor given by Eq. 1.4
in order to obtain the ionising photon rate S∗.

1.3 Strömgren sphere

The simplest possible model for an H II region can be constructed as follows.
We consider a star with an ionising photon rate S∗ which is immersed in
a homogeneous medium of temperature T and H number denisty nH . We
assume that the star photoionises the gas within a sphere of radius RS, and
that the transition between ionised interior and neutral exterior occurs over
a distance ∆R ≪ RS. The balance equation which determines the size of
the “Strömgren sphere” is

S∗ = Ṅrec , (1.6)

where Ṅrec is the total number of recombinations per unit time within the
sphere. The number of recombinations per unit volume ṅrec is given by

ṅrec = ne nHIIαH(T ) , (1.7)
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Figure 1.5: Schematic diagram showing the configuration of a spherical
“Strömgren sphere” produced by a star with an ionising photon rate S∗ which
is immersed in a homogeneous medium of temperature T and H atom+ion
number density nH . Within the ionised sphere (R < RS), the gas is almost
fully ionised, so that ne ≈ nHII ≈ nH . For R > RS, ne ≈ nHII ≈ 0 and
nHI ≈ nH .



where the recombination coefficient αH(T ) is described in detail below.
Within the ionised sphere, most of the electrons come from the ionised H,
so that we can set ne ≈ nHII ≈ nH . Then, the integral of the Eq. 1.7 over
the volume of the sphere (obtained just by multiplying by 4πRS

3/3, as the
medium is assumed to be homogeneous), and substituting into Eq. 1.6 one
obtains

S∗ =
4π

3
RS

3nH
2α(T ) → RS =

[

3S∗

4πnH
2α(T )

]1/3

, (1.8)

where the latter equation gives the “Strömgren radius” RS of the ionised
sphere.

The recombination coefficient α(T ) is calculated as a sum over the re-
combination coefficients to all of the energy states of H :

αA(T ) =
∞
∑

n=1

αn(T ) , (1.9)

and the recombination coefficient to state n is given by

αn(T ) =

∫ ∞

0

σn(v) vf(v, T )dv , (1.10)

where the integral of the product of the Maxwell-Boltzmann distribution
f(v, T ), the effective cross section for the radiative recombination process
σn(v) and the velocity v is carried out over all of the possible values for the
velocity of the electrons.

Actually, the electrons which recombine directly to the ground, n = 1
state emit a Lyman continuum photon with energy greater than 13.6 eV.
Therefore, these photons contribute to the photoionisation rate, ionising H
atoms in other regions of the Strömgren sphere. Because of this, a better
approximation is to not consider the recombinations to n = 1 in the recombi-
nation coefficient, as these are “inefficient recombinations” leading to a new
photoionisation within the sphere. It is therefore better to put α(T ) = αB(T )
in Eq. 1.8, where

αB(T ) =

∞
∑

n=2

αn(T ) , (1.11)

is called the “case B” recombination coefficient of H (the “case A” recombi-
nation coefficient being given by Eq. 1.9).



Tabulations of the recombination coefficients as a function of gas temper-
ature T are given by Osterbrock (1989). It is possible to carry out simple
power law fits to these tabulations, from which one obtains :

αA(T ) = 4.15 × 10−13cm3s−1

(

104K

T

)0.72

, (1.12)

αB(T ) = 2.56 × 10−13cm3s−1

(

104K

T

)0.83

. (1.13)

For the calculation of a Strömgren radius, one then sets αH(T ) ≈ αB(104K)
in Eq. 1.8. As we shall see below, this is a reasonable value to take for the
recombination coefficient because temperatures of H II regions always have
values T ∼ 104 K.

1.4 Strömgren regions

1.4.1 Generalization of the Strömgren sphere analysis

The simple argument of balancing the ionising photon rate S∗ with the total
recombination rate can be applied to more general cases than the one of a
photoionised region in a homogeneous medium. In the following, three exam-
ples are presented showing how to carry out a “Strömgren region” analysis
of a stratified H II region, of an H II region in which the star moves su-
personically with respect to the surrounding medium, and of an expanding,
constant density H II region.

1.4.2 The photoionisation of a constant velocity wind

Let us consider a stationary wind with a constant velocity vw, independent
of the spherical radius R. The mass Ṁ going through a spherical surface of
radius R is

Ṁ = 4πR2ρwvw , (1.14)

where ρw is the density of the wind at a radius R. For a stationary wind Ṁ
is independent of R, and is equal to the rate of mass loss from the star. Eq.
1.14 then gives the atom+ion number density

nw(R) =
ρw(R)

m
=

Ṁ

4πmvwR2
, (1.15)



where m is the mass per atom or ion (= mH for a pure H wind, and = 1.3mH

for a wind of 90% H and 10% He).
The balance between ionising and recombination rates (see Eq. 1.8 for

the case of a homogeneous medium) can be written as

S∗ =

∫ RS

R∗

n2
w(R)αH(T ) 4πR2dR , (1.16)

where nw(R) is given by Eq. 1.15, R∗ is the stellar radius and RS is the
outer radius of the photoionised region. We now assume that the wind is
isothermal, and take αH(T ) ≈ αB(104K) out of the integral.

Eq. 1.16 can be integrated and then inverted to obtain

RS

R∗

=

(

1 − S∗

S0

)−1

; S0 ≡
Ṁ2αB

4πR∗vw
2m2

, (1.17)

which is plotted in Fig. 1.6. It is clear that RS → ∞ for S∗ → S0. For
S∗ > S0, the recombination rate in the full volume of the wind (out to
R→ ∞) is smaller than the ionising photon rate S∗.

From Table 1.1, one can check numerically that S∗/S0 ≫ 1 for all massive
main sequence stars. Therefore, these stars only use a very small fraction
of their ionising photon production in order to fully photoionise their own
winds.

1.4.3 Cometary H II region

Let us consider a star with an ionising photon rate S∗ moving at a velocity v∗
through a homogeneous medium of density nH . We will assume that the star
has no wind, and that the formation of the H II region does not lead to any
modification of the initially homogeneous density of the surrounding medium.
This latter assumption is valid provided that v∗ is highly supersonic.

If we stand in a reference system travelling with the star, the problem
corresponds to a stationary star and an environment that travels at a velocity
v∗ towards it. This configuration is shown in Fig. 1.7.

We place an axis directed towards the impinging flow (see Fig. 1.7) and
consider the spherical radius R and cylindrical radius r of the edge of the
H II region, both dependent on the angle θ between the point on the edge of
the H II region and the axis (the spherical and cylindrical radii are related
through r = R sin θ). The angle θ subtends a solid angle ∆Ω = 2π(1−cos θ).



Figure 1.6: Solution for the Strömgren radius of a region with an R−2 density
stratification. The Strömgren radius goes to infinity for S∗/S0 → 1 (see the
text).

Let us now consider the ionising photons S∗∆Ω/(4π) emitted per unit
time by the source into the solid angle ∆Ω. These photons have to balance
the recombinations Ṅrec(θ) in the ionised volume V (θ) subtended by the
angle θ and also have to ionise the neutrals that enter from the upstream
direction into the ionised region Ṅin(θ) per unit time into this volume. In
other words :

S∗

4π
∆Ω = Ṅrec(θ) + Ṅin(θ) , (1.18)

where ∆Ω = 2π(1 − cos θ) is the solid angle subtended by the angle θ.
The total number of recombinations per unit time can be written as

Ṅrec(θ) = nH
2αHV (θ) ; V (θ) =

2π

3

∫ θ

0

R3 sin θ dθ , (1.19)

where V (θ) is the ionised volume limited by θ. The number of neutral atoms
that enter through the boundary of the H II region per unit time is Ṅin(θ) =
πr2nHv∗.

Equation 1.18 does not have a general analytic solution. However, for
larger values of v∗, Ṅin grows linearly with v∗. Instead, Ṅrec actually decreases
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Figure 1.7: Schematic diagram showing a cometary H II region formed
around a star which travels at a velocity v∗ through a homogeneous ISM
of density nH .



with increasing values of v∗. Therefore for a high enough v∗ we have Ṅin ≫
Ṅrec, and equation 1.18 becomes

S∗

4π
∆Ω ≈ Ṅin(θ) . (1.20)

If we substitute the appropriate expressions for the solid angle and for the
rate of neutrals entering the H II region, we then obtain the solution

r(θ) =

√

S∗

2πnHv∗
(1 − cos θ) . (1.21)

For θ = 0, this solution has an on-axis separation

R0 = lim
θ→0

r(θ)

sin θ
=

√

S∗

4πnHv∗
, (1.22)

between the star and the “head” of the cometary H II region (see Fig. 1.7).
For θ → π, the edge of the H II region reaches a maximum separation

rm =

√

S∗

πnHv∗
(1.23)

with respect to the symmetry axis.
One can show that the approximation of neglecting the recombinations

within the H II region in the balance equation (Eqs. 1.18 and 1.20) is cor-
rect provided that the on-axis standoff distance R0 (Eq. 1.22) satisfies the
condition R0 ≪ RS, where RS is the “standard” Strömgren radius, defined
by Eq. 1.8. Through some simple algebra, this condition can be rewritten as

v∗ ≫ vS ≡
(αB

3

)2/3
(

nHS∗

4π

)1/3

. (1.24)

For example, for an O5 star moving into a medium with nH = 1 cm−3, we
have vS ≈ 260 km s−1 (where we have used the value for S∗ from Table 1.1
and for αB at 104 K from Eq. 1.13).

By differentiating with respect to θ (see [14]), the full balance equation
(Eqs. 1.18-1.19) can be written as

(

R

RS

)3

+ ξ

(

R

RS

)

[(

Ṙ

RS

)

sin θ +

(

R

RS

)

cos θ

]

= 1 , (1.25)



where RS is given by Eq. 1.8, Ṙ = dR/dθ and ξ ≡ v∗/vS (see Eq. 1.24).
One can show that for ξ ≫ 1 one obtains the solution described above (Eq.
1.21). Also, this equation has an analytic solution for the ξ ≪ 1 limit :

R(θ) = RS (1 − ξ cos θ)1/3 . (1.26)

No general analytic solution to Eq. 1.26 has been found, so that in order to
obtain the shape of the H II region for ξ ∼ 1 it is necessary to carry out a
numerical integration of the equation.

1.4.4 The initial expansion of an H II region

Let us now consider the problem of a homogeneous H II region in which
the star “turns on” at t = 0, emitting a constant S∗ ionising photon rate
for t > 0. The outer radius R of the H II region is initially zero (actually,
equal to R∗ and not strictly 0), and grows monotonically with time until it
reaches the value of the Strömgren radius RS (see Eq. 1.8). If we neglect the
light-crossing time in which the ionising photons travel from the star to the
outer radius of the nebula, we can write the balance equation

S∗ =
4π

3
R3nH

2αB + 4πR2F , (1.27)

where R is the (time-dependent) outer radius of the H II region and F is
the ionising photon flux (number of ionising photons per unit area and time)
reaching the outer boundary of the nebula. Each of these photons ionises a
new H atom, so that

F = nH
dR

dt
. (1.28)

Combining Eqs. 1.27-1.28, one obtains

dR

dt
=

S∗

4πR2nH
− nHαBR

3
, (1.29)

which can be integrated to obtain

R(t) = RS

(

1 − e−t/tR
)1/3

, (1.30)

with

tR ≡ 3

nHαB
; RS ≡

(

3S∗

4πnH
2αB

)1/3

. (1.31)



Figure 1.8: Solution for the time-dependent radius of an expanding, constant
density H II region (see the text). It is clear that for t > 3tR, the radius
approaches RS.

Using the value of αB(104K) (see Eq. 1.13) and nH = 1 cm−3, we obtain
tR = 1.24×105 yr. The solution for the expansion of the H II region is shown
in Fig. 1.8.

1.5 The structure of the ionisation front

The outer boundary of an H II region is called an “ionisation front” (with
H in the form of H II inside the boundary, and H as H I outside). In the
treatment above we have assumed that this transition region between H II
and H I has a negligible thickness ∆R ≪ RS. In this section we will present
an approximate model describing this transition region, from which we can
obtain an evaluation of the value of ∆R.

Let us first consider the ionisation equilibrium for H, which is dominated
by the processes of photoionisation and radiative recombination :

nHIφH = nenHIIαH , (1.32)



where φH is the photoionisation rate per neutral H atom :

φH =

∫ ∞

νH

4πJν

hν
σν dν , (1.33)

with σν the photoionisation cross section of H and

Jν =
1

4π

∮

IνdΩ (1.34)

the zero-order moment of the specific intensity Iν . If the ionising photons only
come from the star (in other words, neglecting, e. g., the Lyman continuum
photons emitted by the nebula), we have

4πJν =
Lν

4πR2
e−τν ; τν =

∫ R

0

nHIσν dR . (1.35)

As we will see below, the photoionisation cross section of H has a frequency
dependence σν ∝ ν−3, which is very slow compared with the fast drop of
the distribution Lν/(hν) of the far-UV stellar photons. Therefore, the terms
involving σν can be taken out of the frequency integral in Eq. 1.33, so that
we obtain

φH =

∫ ∞

νH

Lν

4πR2hν
e−τνσνdν ≈ σνH

F , (1.36)

with

F ≡ S∗

4πR2
e−τνH . (1.37)

Now, provided that the thickness of the ionisation front is indeed small com-
pared to RS (this will be shown to be indeed the case with the model that
we are developing), in Eq. 1.37 we can put R = RS (i. e., a constant geo-
metrical dilution throughout the radial structure of the ionisation front). We
then have

dF

dl
= −FnHIσνH

, (1.38)

where l = R − RS is a radial coordinate measured with respect to the
Strömgren radius.

We now introduce the ionisation fraction of H : x = nHII/nH . It is clear
that nHII = xnH and nHI = (1− x)nH . The ionisation equilibrium equation
(Eq. 1.32) then takes the form

x2

1 − x
=

φH

nHαH
=

σνH

nHαH
F , (1.39)



Figure 1.9: Solution for the structure of the ionisation fraction x as a function
of the dimensionless distance l/λ from the Strömgren radius (see the text).

where for the second equality we have used Eq. 1.36. From Eq. 1.39 we can
find F in terms of x, and differentiate with respect to l = R− RS to obtain

dF

dl
=
nHαH

σνH

d

dl

(

x2

1 − x

)

=
nHαH

σνH

x(2 − x)

(1 − x)2

dx

dl
. (1.40)

We now combine equations 1.38 and 1.40 to obtain

dx

dl
= −nHσνH

x(1 − x)2

2 − x
, (1.41)

which can be integrated to obtain

2 ln

(

x

1 − x

)

+
1

1 − x
= 2 − l

λ
, (1.42)

where λ = (nHσνH
)−1 is the photon mean free path in a neutral medium

of density nH . In order to derive this equation we have used the boundary
condition x(l = 0) = 1/2 (i. e., x = 1/2 at the Strömgren radius).

This solution is plotted in Fig. 1.9, from which we see that the thickness of
the ionisation front is ∆R ≈ 10λ. Using the fact that σνH

≈ 6.3×10−18 cm2,
we obtain ∆R ≈ 1.6 × 1017cm (1 cm−3/nH), which can be compared with the
Strömgren radii predicted for different O/B stars (see Table 1.1 and Eq. 1.8)
to see that we indeed have ∆R ≪ RS.



1.6 The ionisation of a nebula with many el-

ements

1.6.1 The rate equations

For the sake of simplicity, in this section we consider the case of a constant
density gas, for which the equations for an atomic/ionic network are :

dna,z

dt
= Sc

a,z + Sph
a,z , (1.43)

with the collisional (Sc) and photoionisation (Sph) source terms being given
by

Sc
a,z = ne [na,z−1ca,z−1 + na,z+1αa,z+1 − na,z (ca,z + αa,z)] , (1.44)

Sph
a,z = na,z−1φa,z−1 − na,zφa,z . (1.45)

If the na,z are known, the electron density can be computed as

ne =
∑

a

∑

z

z na,z . (1.46)

1.6.2 Ionisation equilibrium

The time-evolution of the ionisation rate equations leads to a final equilibrium
for which dna,z/dt = 0 for all a and z. From Eq. 1.43 it can be shown that
this condition results in the system of equations :

na,z (neca,z + φa,z) = na,z+1neαa,z+1 . (1.47)

1.6.3 The collisional rate coefficients

The collisional ionisation (c) and radiative+dielectronic recombination (α)
coefficients are functions of temperature T given by integrals of the form

α(T ), c(T ) =

∫ ∞

0

f(v, T )σv v dv , (1.48)

where f(v, T ) is the Maxwell-Boltzmann distribution for the electrons, and σv

is the velocity-dependent collision cross section for the appropriate process.



It is common to give analytic fits to these coefficients in the “Arrhenius
interpolation” form :

r(T ) = b1 T
b2 eb3/T . (1.49)

As an example of other formulae, Aldrovandi & Péquignot ([2], [3]) have used
an interpolation

r(T ) = b1

(

T

104

)−b2

+ b3T
−3/2 exp (−b4/T ) [1 + b5 exp (−b6/T )] , (1.50)

for recombination coefficients.
Then, the b1, b2, ... coefficients are tabulated for all of the ionisation and

recombination processes that have to be considered. An example of such a
tabulation is given in Table 1.2.

Finally, we should note that for some atoms and ions, in the collision
source term Sc

a,z (see eq. 1.44) one also has to include “charge exchange”
reactions with H. An example of important charge exchange reactions are
the processes HII + OI → HI + OII and HI + OII → HII + OI (see Table
1.2). These processes have rates of the form nHIInOIq(T ) and nHInOIIq

′(T ),
respectively, with the rate coefficients q(T ) and q′(T ) also given by Arrhenius
interpolations (see Table 1.2).

1.6.4 The photoionisation rates

The photoionisation rates are calculated as a function of the average intensity
Jν of the radiative field through the frequency integrals

φa,z =

∫ ∞

νa,z

4πJν

hν
σa,z(ν) dν , (1.51)

where ν is the frequency, νa,z = χa,z/h is the frequency of the ionisation edge
and σa,z(ν) is the photoionisation cross section. Here again, one can find
tabulations of coefficients of power law interpolations for the σa,z(ν) (see,
e. g., any of the versions of the book of Osterbrock 1989).

The problem of course is that one has to solve a system of radiative
transfer equations of the form

dIν
dl

= jν − κνIν (1.52)



Table 1.2: Ionisation, recombination and charge exchange coefficients

reaction coefficientsa

e + HI → 2e + HII 1: 5.83 × 10−11, 0.5, -157800
e + HII → HI 1: 3.69 × 10−10, -0.79, 0
e + HeI → 2e + HeII 1: 2.707 × 10−11, 0.5, -285400
e + HeII → HeI 2: 4.3 × 10−13, 0.672, 0.0019,

4.7 × 105, 0.3, 94000
e + HeII → 2e + HeIII 1: 5.711 × 10−12, 0.5, -631000
e + HeIII → HeII 1: 2.21 × 10−9, -0.79, 0
e + CII → 2e + CIII 1: 3.93 × 10−11, 0.5. -283000
e + CIII → CII 2: 3.2 × 10−12, 0.770, 0.038,

9.1 × 104, 2.0, 3.7 × 105

e + CIII → 2e + CIV 1: 2.04 × 10−11, 0.5, -555600
e + CIV → CIII 2: 2.3 × 10−12, 0.645,

7.03 × 10−3, 1.5 × 105,
0.5, 2.3 × 105

e + NI → 2e + NII 1: 6.18 × 10−11, 0.5 -168200
e + NII → NI 2: 1.5 × 10−12, 0.693, 0.0031

2.9 × 105, 0.6, 1.7 × 105

e + NII → 2e + NIII 1: 4.21 × 10−11, 0.5, -343360
e + NIII → NII 2: 4.4 × 10−12, 0.675, 0.0075

2.6 × 105, 0.7, 4.5 × 105

e + OI → 2e + OII 1: 1.054 × 10−10, 0.5, -157800
e + OII → OI 2: 2.0 × 10−12, 0.646, 0.0014

1.7 × 105, 3.3, 5.8 × 104

e + OII → 2e + OIII 1: 3.53 × 10−11, 0.5, -407200
e + OIII → OII 2: 3.1 × 10−13, 0.678, 0.0014

1.7 × 105, 2.5, 1.3 × 105

e + OIII → 2e + OIV 1: 1.656 × 10−11, 0.5, -636900
e + OIV → OIII 2: 5.1 × 10−12, 0.666, 0.0028

1.8 × 105, 6.0, 91000
e + SII → 2e + SIII 1: 7.12 × 10−11, 0.5, -271440
e + SIII → SII 2: 1.8 × 10−12, 0.686, 0.0049

1.2 × 105, 2.5, 88000
HI + NII → HII + NI 1: 1.1 × 10−12, 0, 0
HII + NI → HI + NII 1: 4.95 × 10−12, 0. -10440
HI + OII → HII + OI 1: 2.0 × 10−9, 0, 0
HII + OI → HI + OII 1: 1.778 × 10−9, 0, -220

aThe interpolation formulae are of the form “1:” Arrhenius, or “2:” Aldrovandi &
Péquignot (1973), see equations (1.49) and (1.50)



for the specific intensity Iν (jν and κν being the emission and absorption
coefficients, respectively). This is a system of equations, since one has to
solve this for many propagation directions (l being the distance element along
a given direction) and frequencies. Clearly, only rays passing through the
position of the central star have to be considered if one does not consider
the diffuse ionising photon field (i. e., the far UV radiation produced by the
nebular gas itself).

After integrating these radiative transfer equations, one can then carry
out the appropiate angular average

Jν =
1

4π

∮

IνdΩ (1.53)

in order to obtain the average intensity of the radiative field.

1.6.5 Coronal ionisation equilibrium

If the collisional ionisation rates dominate over the photoionisation rates, Eq.
1.47 takes the form :

na,zca,z = na,z+1αa,z+1 . (1.54)

As can be seen, this system gives ionisation fractions ya,z = na,z/na (where
na =

∑

z na,z) which are exclusively a function of T . This result holds if
charge exchange reactions are included. The resulting ionisation fractions
yc

a,z(T ) are called the “coronal ionisation equilibrium” ionisation state.
Clearly, if we have an ionisation fraction ya,z > yc

a,z(T ), ya,z will evolve
to a lower value with time, and the reverse is true for ya,z < yc

a,z(T ).
As an example, let us consider the coronal ionisation equilibrium for H.

Eq. 1.54 then gives
nHIc(T ) = nHIIα(T ) . (1.55)

We can combine this equation with nH = nHI + nHII to obtain

yHII =
nHII

nH
=

1

1 + α(T )/c(T )
, (1.56)

where the Arrhenius interpolations for the coefficients are α(T ) = 3.69 ×
10−10T−0.79 and c(T ) = 5.83 × 10−11T 0.5 e−157800/T (see equation 1.49 and
the first two lines of Table 1.2). The hydrogen ionisation fraction yHII as a
function of temperature T obtained from Eq. 1.56 is shown in Fig. 1.10.



Figure 1.10: Coronal ionisation fraction of H as a function of temperature

1.6.6 Photoionisation equilibrium

If the photoionisation rates dominate over the collisional ionisation rates, Eq.
1.47 takes the form :

na,zφa,z = nena,z+1αa,z+1 . (1.57)

This is the system of equations which describe the ionisation state of a sta-
tionary H II region. An example of a simplified solution for a pure H region
is given in §1.5.

1.7 The energy balance and the heating rate

In order to obtain the thermal structure of a photoionized region it is neces-
sary to integrate a differential equation of the form

3

2

d

dt
(n+ ne)kT = Γ − L , (1.58)

where n is the atom+ion number density, ne the electron density, k Boltz-
mann’s constant, and Γ and L the energy gain and loss (respectively) per



unit volume and time of the gas. This equation is valid for a nebula in which
the mass density is time-independent.

For a steady-state nebula, the time derivative in Eq. 1.58 is equal to zero,
and the energy balance equation is simply

Γ = L . (1.59)

In photoionized regions, the energy gain is due to the process of photoion-
ization, which introduces “hot” electrons into the gas. The heating therefore
is a sum of terms due to the photoionization of the different ions present in
the gas, though in practice the dominant heating process is the photoioniza-
tion of HI, with smaller contributions due to the photoionization of HeI and
HeII.

The heating per unit time and volume due to the photoionization of ion
a, z is given by Γa,z = na,zψa,z, with

ψa,z =

∫ ∞

νa,z

4πJν

hν
h (ν − νa,z) σa,z(ν) dν . (1.60)

The integrals in the heating rate terms generally are done numerically. For
the case in which the frequency dependence of the incident spectrum is given
by a Planck function in the Wien limit at a temperature T∗, the integral
in Eq. 1.60 can be carried out analytically, if one also assumes that the
σa,z(ν) is a slow enough function so that it can be taken out of the integral
as σa,z(νa,z). In this case, the integral can be done analytically, obtaining

ψa,z = φa,zkT∗

(

x0
2 + 4x0 + 6

x0
2 + 2x0 + 2

)

, (1.61)

where φa,z is the photoionization rate and x0 = hνa,z/(kT∗).

1.8 The cooling function

1.8.1 Introduction

In this section, we describe in some detail how to include the more important
contributions to the cooling due to different processes. Actually, the cooling
is dominated by collisional excitation of emission lines. We describe the
radiative recombination and free-free losses only because it is very simple to
include them, though they do not make an important contribution to the
cooling function (at least for a gas with solar abundances).



1.8.2 Recombination and free-free cooling

When an electron passes by an ion and recombines, the kinetic energy of
the electron is lost from the thermal energy reservoir. Analogously, when
an electron looses kinetic energy in an inelastic collision (with the resulting
emission of a photon), the thermal energy of the gas is reduced.

The free-free energy loss (per unit time and volume) due to the interaction
of H ions and free electrons is given by :

Lff (HII) = nenHIIβff (T ) , (1.62)

where the interpolation formula

βff(z, T ) = 1.846 × 10−27z2T 1/2 , (1.63)

can be used (see the book of Osterbrock). In this interpolation function, one
has to set a charge z = 1 for HII. One can use the same function (i. e., with
z = 1) for calculating the free-free losses due to He II ions (this of course
being only an approximation because He I is not a hydrogenic ion) and the
function with z = 2 for He III ions.

The radiative losses due to recombination of HII are given by :

Lrec(HII) = nenHIIβrec(T ) , (1.64)

where the interpolation formula

βrec(t) = 1.133 × 10−24t−1/2
(

−0.0713 + 0.5 ln t+ 0.640t−1/3
)

(1.65)

with t = 157890/T (see Seaton 1959). The contribution of the recombination
of He ions can be computed with the scaling

βrec(z, T ) = zβrec(1, T/z
2) , (1.66)

with z = 1 for HeII and z = 2 for HeIII.

1.8.3 Collisional ionisation

The energy loss due to collisional ionisation of the ion a, z can be written as

Lion
a,z = nena,zca,z(T )χa,z , (1.67)



where ca,z(T ) is the collisional ionisation coefficient and χa,z the ionisation
potential of the ion a, z.

The terms that dominate the collisional ionisation cooling are the ioni-
sation of HI, HeI and HeII. These terms dominate the cooling function for
a neutral gas that is suddenly shocked to a temperature above a few times
104 K.

1.8.4 Collisionally excited lines

For each atom or ion that contributes substantially to the cooling function,
one has to solve a system of equations giving the populations of the excited
levels nl (l = 1, 2, ...., N numbering in order of increasing energy all of the
relevant levels) of the ion a, z. Of course, we have the relation

na,z =

N
∑

l=1

nl . (1.68)

Once we have computed the nl populations, we can compute the energy loss
due to the collisional excitation of all of the relevant levels of the ion a, z as

Lcol
a,z =

N
∑

l=2

nl

∑

m<l

Al,mhνl,m , (1.69)

where Al,m is the Einstein A coefficient for the spontaneous transition l → m
and hνl,m is the energy associated with this transition.

The non-trivial problem of finding the populations nl of the excited levels
of course still remains. Because the relaxation time for the excitation/de-
excitation of the levels is generally much shorter than the cooling and/or
dynamical timescales of the flow, the calculation of the nl is usually done
under a statistical equilibrium assumption. The equilibrium condition results
in the set of equations :

∑

m>l

nmAm,l + ne

∑

m6=l

nmqm,l(T ) = nl

[

∑

m<l

Al,m + ne

∑

m6=l

ql,m(T )

]

, (1.70)

where we have introduced the qm,l(T ) which are the radiative excitation (m <
l) or de-excitation (m > l) coefficients. For m > l, these coefficients are given
by the expression

qm,l(T ) =
8.629 × 10−6

T 1/2

Ωml(T )

gm
, (1.71)



where gm is the statistical weight of the level at which the transition begins.
The collisional excitation coefficients (i. e., l → m with m > l) are given by
the relation

ql,m(T ) =
gm

gl

e−hνm,l/kT qm,l(T ) . (1.72)

The function Ωml(T ) has a value of order 1, and is only slowly dependent
on T . In many calculations, these “collision strengths” are considered to
be constant, and taken from tabulations such as the classical one of Men-
doza (1983). However, in our modern electronic world there is the database
of the Arcetri/Cambridge/NRL “CHIANTI” atomic data base collaboration
(http://www.arcetri.astro.it/science/chianti/database/) which has temperature-
dependent interpolations of the collision strengths and the Einstein A coef-
ficients of all of the transitions I have ever known.

We now proceed as follows. We assume that the A and q coefficients
are known, as well as the temperature T (obtained, e. g., from a dynamical
simulation) the electron density ne and the ionic number density na,z (both
obtained from a solution of the non-equilibrium ionisation rate equations).
We can then invert the system of linear Eqs. 1.68 and 1.70 in order to find
the populations nl (l = 1 → N) of the excited levels of the ion a, z.

Let us show how the equations look for a 3-level atom (N = 3). Eq. 1.68
takes the form

n1 + n2 + n3 = na,z . (1.73)

Now, for l = 1, from Eq. 1.70 we obtain

n1 [−ne(q12 + q13)] + n2(A21 + neq21) + n3(A31 + neq31) = 0 , (1.74)

and for l = 2, we obtain :

n1(neq12) + n2 [−A21 − ne(q23 + q21)] + n3(A32 + neq32) = 0 . (1.75)

For l = 3, we obtain an equation that is a linear combination of Eqs. 1.74-
1.75.

Now, the system of 3 linear equations 1.73-1.75 can be inverted in order
to find n1, n2 and n3 as a function of na,z, ne and T .

1.8.5 The 2-level atom

Let us now consider a 2-level atom (N = 2). Eq. 1.68 takes the form

na,z = n1 + n2 , (1.76)



and Eq. 1.70 takes the form

n1neq12 = n2(neq21 + A21) . (1.77)

These two equations can be combined with Eq. 1.72 to obtain :

n2 =
na,z

(g1/g2)eE21/kT + 1 + nc/ne
, (1.78)

where the critical density is defined as nc ≡ A21/q12. Then, for ne ≪ nc (the
“low density regime”), we have

n2 =
na,zneq12
A21

, (1.79)

and for ne ≫ nc (the “high density regime”), we have

n2 =
na,zg2e

−E21/kT

g1 + g2e−E21/kT
, (1.80)

which is the Boltzmann distribution (LTE) population of level n2.
The energy loss associated with the transition between levels 2 and 1 is :

L21 = n2A21hν21 , (1.81)

which for the low density regime then takes the form

L21 = na,zneq12hν21 , (1.82)

and for the high density regime becomes

L21 = n2(LTE)A21hν21 , (1.83)

These equations illustrate the well known fact that the collisionally excited
line cooling function depends quadratically on the density for the “low density
regime” and linearly for the “high density regime”.

1.9 The temperature of an HII region

In order to obtain an estimate of the temperature of a photoionised region,
we consider the balance between the heating due to H photoionisation :

Γ ≈ nHIφHIkT∗ , (1.84)



where T∗ is the black-body temperature of the star (see equations 1.60-1.61),
and the cooling due to the collisional excitation of a single line of OII :

L = nenOIIq12(T )hν12 , (1.85)

in the low density regime (see equation 1.82). This is of course an under-
estimate of the real cooling function, which has contributions from many
collisionally excited lines.

We first use the H photoionisation equilibrium condition (see equation
1.32)

nHIφH = nenHIIαH(T ) (1.86)

and consider that inside the HII region we have ne ≈ nHII ≈ nH to obtain
an estimate of the neutral H density :

nHI ≈ n2
HαH(T )

φH
. (1.87)

Substituting this estimate of nHI in the heating term (equation 1.84), we
then obtain :

Γ ≈ n2
HαH(T )kT∗ , (1.88)

where from Table 1.2 we have αH(T ) = 3.69 × 10−10T−0.79 (in c.g.s.).
For the cooling function, we assume that inside the HII region nOII ≈

nO ≈ 10−4nH , and that the transition has an energy hν21 ∼ 1 eV (so that
hν12/k ≈ 104 K). Using the temperature dependence of the collisional exci-
tation coefficient (see equations 1.71-1.72) we then obtain

L ≈ 10−4n2
H

8.6 × 10−6Ω21

T 1/2g1
e−104/T , (1.89)

where we can set Ω21 ∼ g1 ∼ 1.
Finally, using equations (1.88-1.89), the energy gain/loss balance condi-

tion (equation 1.59) Γ = L gives :

T =
104K

0.29 lnT − 0.542
, (1.90)

for a T∗ = 4 × 104K stellar temperature.
Through a few iterations, it can be shown that the solution to this trascen-

dental equation is T ≈ 5200 K. More detailed solutions to the energy balance
equation (including cooling through many lines, with the correct atomic pa-
rameters) typically give temperatures in the 5000 → 10000 K range.

Two interesting points should be noted:



• the temperature resulting from the energy balance is independent of
the density of the gas. This result is preserved if one includes a more
detailed cooling function, provided that the collisionally excited lines
(which dominate the radiative cooling) are in the low density regime,

• very similar temperatures for the nebula are obtained no matter what is
the value of the stellar temperature T∗. This is a result of the fact that
the collisional excitation coefficients have a very strong temperature
dependence at temperatures T ∼ hνij/k, and that the fine structure
lines of many ions have energies ∼ 1eV (corresponding to ∼ 104 K).
This high temperature dependence of the cooling function fixes the
nebular temperature at ∼ 104 K for a wide range of possible values for
the energy gain term.





Chapter 2

The emitted spectrum

2.1 Emission lines

In the previous chapter, we have discussed how to calculate the populations
of the excited levels of an atom or ion, with the objective of the calculation
of the cooling due to collisionally excited lines. We now present the general
statistical equilibrium equations for the populations of the excited levels of
atoms/ions in the ISM :

∑

m>l

nmAm,l+ne

∑

m6=l

nmqm,l(T )+ne na,z+1αz+1,l(T ) = nl

[

∑

m<l

Al,m + ne

∑

m6=l

ql,m(T )

]

,

(2.1)
which coincides with Eq. 1.70 with the exception of the second term on the
left hand side of the equation, which represents the recombinations of the
higher ionization state a, z + 1 to the excited level l of the ion a, z. The
radiative+dielectronic recombination coefficient for this process is αz+1,l(T ).

This system of equations giving the populations of the excited levels nl

(l = 1, 2, ...., N numbering in order of increasing energy all of the relevant
levels) of the ion a, z. These equations have to be supplemented with the
relation

na,z =

N
∑

l=1

nl . (2.2)
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2.2 Recombination lines

In HII regions, the populations of the excited levels of HI, HeI and HeII are
determined mostly by the processes of recombination (of HII, HeII and HeIII,
respectively) to excited levels and spontaneous, radiative transitions to lower
levels. These processes are represented by the first and third terms on the
left and the first term on the right of Eq. 2.1. The lines of H and He in HII
regions are therefore called “recombination lines”.

The lines of H (resulting from transitions from energy level N to N ′) are
named according to the end state (N ′) and to the jump in energy quantum
number (∆N = N −N ′). For N ′ = 1, 2, 3, . . . we have:

1. N ′ = 1: Lyman series lines,

2. N ′ = 2: Balmer series lines,

3. N ′ = 3: Paschen series lines,

4. N ′ = 4: Brackett series lines,

5. N ′ = 5: Pfund series lines,

6. N ′ = 6: Humphreys series lines.

For ∆N = 1, 2, 3, . . ., the lines are denominated α, β, γ, . . ., respectively.
The Lyman series lines are denoted as Lyα (2 → 1 transition), Lyβ

(3 → 1 transition), Lyγ, . . .. The Balmer series are denoted as Hα (3 → 2
transition), Hβ (4 → 2 transition), Hγ, . . . (these are the stronger H lines
observed at optical wavelengths). Prefixes “Pa”, “Br” and “Pf” are used for
the Paschen, Brackett and Pfund series lines, respectively.

2.2.1 The recombination cascade

Let us consider the excited levels of H. These levels are specified with two
quantum numbers: N, L, with N ≥ 1 (the energy quantum number) and
1 ≤ L ≤ N (the angular momentum quantum number). The spontaneous
radiative transition rates are given by the Einstein coefficients ANL,N ′L′ which
have non-zero values (for Hamiltonians in the dipole approximation) only for
L′ = L± 1.



The energies of the excited levels of H only depend on the energy quantum
number N , and are given by

EN = −χH

N2
, (2.3)

where χH = 13.6 eV is the ionization potential from the ground state of H.
The system of equations of statistical equilibrium for the populations nNL

of the excited levels of HI (see eq. 2.1) then is:

nenHIIαNL(T ) +

∞
∑

N ′=N

∑

L′=L±1

nN ′L′AN ′L′,NL = nNL

N−1
∑

N ′=1

∑

L′=L±1

ANL,N ′L′ .

(2.4)
If the ANL,N ′L′ and αNL(T ) coefficients are known, this system of equations
can be inverted to find the level populations nNL.

The most simple way of doing this inversion is as follows. One first defines
the “branching ratio” :

PNL,N ′L′ =
ANL,N ′L′

∑N−1
N ′′=1

∑

L′′=L±1ANL,N ′′L′′

, (2.5)

which gives the probability that a radiative transition out of level NL is a
direct transition to N ′L′. Clearly, PNL,N ′L′ 6= 0 only if L′ = L± 1.

We now calculate the “cascade matrix” CNL,N ′L′ as the probability that
a transition down from NL reaches N ′L′ either through a direct transition
or via one or more transitions through intermediate levels. For N ′ = N − 1
it is clear that we have:

CNL,N−1 L′ = PNL,N−1 L′ . (2.6)

For N ′ = N − 2:

CNL,N−2L′ = PNL,N−2L′ +
∑

L′′=L′±1

CNL,N−1L′′PN−1 L′′,N−2 L′ . (2.7)

If we now define
CNL,NL′ = δLL′ , (2.8)

we can write the general expression (for arbitrary N ′ < N) as:

CNL,N ′L′ =
N
∑

N ′′=N ′+1

∑

L′′=L′±1

CNL,N ′′L′′PN ′′L′′,N ′L′ . (2.9)



Once the cascade matrix has been computed, the solutions to the equi-
librium equations (2.4) can be obtained from the relation

nenHII

∞
∑

N ′=N

N ′−1
∑

L′=0

αN ′L′(T )CN ′L′,NL = nNL

N−1
∑

N ′′=1

∑

L′′=L±1

ANL,N ′′L′′ . (2.10)

This system of equations give the level populations nNL as a function of ne,
nHII and the temperature T . Once the level populations have been com-
puted, we can compute the emission coefficients for the N → N ′ transitions
as :

jNN ′ =
hνNN ′

4π

N−1
∑

L=0

∑

L′=L±1

nNLANL,N ′L′ ≡ nenHIIα
eff
NN ′(T )

hνNN ′

4π
. (2.11)

The second equality is the definition of the “effective recombination coeffi-
cient” (for the N → N ′ transition).

The recombination cascade is usually calculated under two possible as-
sumptions :

• case A: that all of the lines are optically thin,

• case B: that the Lyman lines (i. e., the transitions to the 1s level) are
optically thick.

The recombination cascade as derived in this section corresponds to “case
A”. For “case B”, the same equations apply if one sets to zero the Einstein A
coefficients for all Lyman lines (i. e., ANL,1s = 0). It is also possible (in the
context of a numerical model) to solve the radiative transfer in the Lyman
lines, obtaining a gradual transition between cases A and B as the successive
Lyman lines become optically thick.

2.2.2 Including collisions

For higher values of the energy quantum number N , collisions between pro-
tons and HI atoms producing transitions with ∆L = 1 and ∆N = 0 become
progressively more important. Also, for temperature > 12000 K, collisions
with electrons become important for producing transitions with ∆N 6= 0.



Including these processes, the statistical equilibrium condition for level NL
becomes:

nenHIIαNL(T ) +
∞
∑

N ′=N

∑

L′=L±1

nN ′L′AN ′L′,NL+

∑

L′=L±1

nHIInNL′qNL′,NL(T ) +
∑

N ′ 6=N

∑

L′=L±1

nenN ′L′qN ′L′,NL(T ) =

nNL

[

N−1
∑

N ′=1

∑

L′=L±1

ANL,N ′L′ +
∑

L′=L±1

nHIIqNL,NL′(T ) +
∑

N ′ 6=N

∑

L′=L±1

neqNL,N ′L′(T )

]

.

(2.12)

The collisional rates can be calculated as a function of the collision
strengths as:

qNL,N ′L′(T ) =
8.629 × 10−6

T 1/2

ΩNL,N ′L′(T )

2(2L+ 1)
, (2.13)

which can be obtained from eq. (1.71) by setting gNL = 2(2L+ 1).

The Einstein A coefficients, and interpolations for the recombination co-
efficients and the collision strengths for the N = 1 → 5 levels of H are
given in tables 2.1-2.5. The recombination coefficient fits were carried out
with the data in the rrc98## h1.dat file of the Open-ADAS database. The
electron collision strengths are fits to data in the copha#h hal96h.dat and
hlike aek89h.dat files of this database. The proton collision strengths are fits
to the results of Seaton (1955) for the 2s-2p transition and Pengelly & Seaton
(1964) and Brocklehurst (1971) for all of the other transitions.

Actually, though He II/H I collisions are not important for the angu-
lar momentum redistribution in H I, the He III/H I collisions are indeed
important. Therefore, if He III has a substantial ionisation fraction, it is
necessary to include terms ∝ nHeIIInnL in eq. (2.12). The rate coefficient
can be calculated from eq. (2.13) using a value for the collision strength of
ΩHeIII = Z2

√
CHeΩHII(T/Z

2CHe) where ΩHII is the strength of the pro-
ton/HI collisions (see Table 2.5), Z = 2 is the charge of the He III ion,
and

CHe ≡
µ(He−p)

µ(p−p)

=
8

5
, (2.14)

where µ(He−p) is the reduced mass of the He/H system, and µ(p−p) is the
reduced mass of the H/H system.



Table 2.1: Energies and α’s for the N = 1 → 5 levels of H

level EN [cm−1] log10(α) = b0 + b1t+ b2t
2 + b3t

3 ; t = log10(T )
1 : 1s 0 -9.9506 -1.2751 0.2385 -0.0244
2 : 2s 82259 -10.938 -1.1858 0.2235 -0.0238
3 : 2p 82259 -12.712 0.3821 -0.1176 -0.0032
4 : 3s 97492 -11.622 -1.0353 0.1896 -0.0215
5 : 3p 97492 -13.256 0.4629 -0.1347 -0.0020
6 : 3d 97492 -14.931 1.8421 -0.4766 0.0223
7 : 4s 102824 -12.087 -0.9310 0.1639 -0.0197
8 : 4p 102824 -13.651 0.5184 -0.1481 -0.0011
9 : 4d 102824 -15.173 1.8650 -0.4814 0.0226
10 : 4f 102824 -15.659 2.3114 -0.6300 0.0348
11 : 5s 105292 -12.442 -0.8533 0.1442 -0.0183
12 : 5p 105292 -13.939 0.5469 -0.1560 -0.0005
13 : 5d 105292 -15.398 1.8720 -0.4835 0.0227
14 : 5f 105292 -15.724 2.3138 -0.6301 0.0348
15 : 5g 105292 -15.455 2.1117 -0.6324 0.0369

2.3 Collisionally excited lines

2.3.1 General formalism

The lines of most of the atoms or ions observed in the ISM (except for the
lines of H and He) are populated by collisional excitations up from the ground
electronic state. This is because multi-electron atoms/ions do not have the
large energy gap between the ground state and the first excited state char-
acteristic of HI and HeI/II. Because of this, collisions with free electrons in a
∼ 104 K (∼ 1 eV) gas can easily excite the first few levels in these atoms/ions.
The contribution from the recombination cascade then becomes only a small
perturbation on the level populations, which are mainly determined only by
(upwards and downwards) collisional transitions and by (downwards) radia-
tive transitions. The transitions among the low lying levels of multi-electron
atoms/ions are normally “magnetic dipole” or “electric quadrupole” transi-
tions (having non-zero A coefficients only when higher order perturbation
Hamiltonians are considered), and are usually called “forbidden lines” (and
are denoted as, e. g., [O II] lines, in between square brackets). Some of the
collisionally excited lines in multi-electron atoms/ions (particularly, the UV



Table 2.2: Aij and Ωij for the N = 1 → 5 levels of H

transitiona,b Aij [s−1] Ωij(T ) = b0 + b1T + b2T
2

2s→1sa 2 1 8.23 0.230701989 1.98505873E-06 -1.17145274E-11
2p→1sa 3 1 627000000. 0.370130298 9.41438027E-06 1.51916572E-11
3s→1sa 4 1 . . . 0.0555455253 1.09205141E-06 -7.22330208E-12
3p→1sa 5 1 167000000. 0.098599152 2.85713646E-06 -9.07527461E-12
3d→1sa 6 1 . . . 0.0471315582 1.49942413E-06 -6.83592715E-12
4s→1sa 7 1 . . . 0.0235801449 9.82577622E-07 -6.29846528E-12
4p→1sa 8 1 68200000. 0.0459912361 1.91578268E-06 -6.68320426E-12
4d→1sa 9 1 . . . 0.0247052783 4.82612921E-07 -1.93361593E-12
4f→1sa 10 1 . . . 0.0090413543 2.0730546E-08 -2.3834257E-13
5s→1sa 11 1 . . . 0.0118558411 5.12325143E-07 -3.26312452E-12
5p→1sa 12 1 34400000. 0.023435627 9.81865036E-07 -3.5210708E-12
5d→1sa 13 1 . . . 0.0127150878 2.43235821E-07 -9.73250094E-13
5f→1sa 14 1 . . . 0.00470449272 1.10018321E-08 -1.29156399E-13
5g→1sa 15 1 . . . 0.00062369044 -7.61068457E-09 3.66057556E-14
2p→2sb 3 2 . . . 378.724659 -0.000613531164 1.75879255E-09
3s→2sa 4 2 . . . 1.17686218 3.96001554E-05 -7.52731563E-11
3p→2sa 5 2 22500000. 1.81152248 9.2099616E-05 1.5241836E-10
3d→2sa 6 2 . . . 1.10043841 0.000191744768 -5.29052966E-10
4s→2sa 7 2 . . . 0.341652766 1.58109749E-05 -4.06526299E-11
4p→2sa 8 2 9670000. 0.647024189 5.23380315E-05 -1.70490774E-10
4d→2sa 9 2 . . . 0.552293565 5.52457995E-05 -2.56306745E-10
4f→2sa 10 2 . . . 0.399588795 4.43059453E-05 -2.09877084E-10
5s→2sa 11 2 . . . 0.520122966 8.2949122E-06 -3.48249174E-11
5p→2sa 12 2 4950000. 0.867017494 4.03942982E-05 -2.03482662E-10
5d→2sa 13 2 . . . 0.7094405 3.14156261E-05 -2.0075731E-10
5f→2sa 14 2 . . . 0.585537946 2.42882913E-05 -1.42870771E-10
5g→2sa 15 2 . . . 0.235978314 3.61284928E-06 -2.77494818E-11
3s→2pa 4 3 6310000. 1.94752427 1.92358023E-05 -7.79667781E-11
3p→2pa 5 3 . . . 6.51940845 0.000167401531 -6.12473933E-10
3d→2pa 6 3 64700000. 9.38290597 0.000714844201 5.37590056E-11
4s→2pa 7 3 2580000. 0.681844753 1.63355835E-05 -1.05496624E-10
4p→2pa 8 3 . . . 1.99947241 9.24779953E-05 -4.1253316E-10
4d→2pa 9 3 20600000. 2.58156827 0.000352482476 -1.28581419E-09
4f→2pa 10 3 . . . 2.39511694 0.000125033557 -5.78553883E-10
5s→2pa 11 3 1290000. 0.776657809 1.74219443E-05 -1.32396161E-10

acoll. strengths from the copha#h hal96h.dat file, data produced by H. Anderson
bcoll. strengths from the hlike aek89h.dat file, with apparently as yet unpublished

calculations by Berrington et al. (1988)



Table 2.3: Aij and Ωij for the N = 1 → 5 levels of H, continued

transition Aij [s−1] Ωij(T ) = b0 + b1T + b2T
2

5p→2pa 12 3 . . . 2.43249038 6.02215821E-05 -3.78765622E-10
5d→2pa 13 3 9430000. 3.62224098 0.000196222456 -9.9819329E-10
5f→2pa 14 3 . . . 3.26614961 6.91791533E-05 -4.25243164E-10
5g→2pa 15 3 . . . 0.99771057 3.75655605E-06 -4.17823612E-11
3p→3sb 5 4 . . . 1450.93085 -0.00325160827 1.40768513E-08
3d→3sb 6 4 . . . 159.126917 -0.000840487719 3.48162807E-09
4s→3sa 7 4 . . . 1.08111582 0.000380437576 -1.15295628E-09
4p→3sa 8 4 3070000. 2.54886314 0.00040309013 5.56322488E-10
4d→3sa 9 4 . . . 3.14373004 0.000745642053 -2.42690635E-09
4f→3sa 10 4 . . . 3.7462125 0.000781879325 -3.57428797E-09
5s→3sa 11 4 . . . 1.54637257 0.000149080149 -6.63657887E-10
5p→3sa 12 4 1640000. 4.08813628 0.000169921842 -5.02562755E-10
5d→3sa 13 4 . . . 5.01383832 0.000247476134 -1.33289923E-09
5f→3sa 14 4 . . . 4.10691834 0.000127133679 -8.58848203E-10
5g→3sa 15 4 . . . 4.88714716 0.000244329779 -1.47617099E-09
3d→3pb 6 5 . . . 2146.0592 -0.00593632728 2.11624071E-08
4s→3pa 7 5 1840000. 3.40339559 0.000203061141 -6.75501874E-10
4p→3pa 8 5 . . . 8.60902539 0.00151186995 -4.7539148E-09
4d→3pa 9 5 7040000. 8.27640654 0.0025566506 -1.11232159E-09
4f→3pa 10 5 . . . 11.9669457 0.00323828319 -1.23422432E-08
5s→3pa 11 5 905000. 3.74173931 8.69809273E-05 -5.06385819E-10
5p→3pa 12 5 . . . 13.2467032 0.000539548421 -2.6260229E-09
5d→3pa 13 5 3390000. 15.2917815 0.00109804005 -4.70346691E-09
5f→3pa 14 5 . . . 16.2298902 0.000576218201 -3.63526886E-09
5g→3pa 15 5 . . . 18.1883828 0.000832453286 -4.85370914E-09
4s→3da 7 6 . . . 4.21900483 4.84256639E-05 -2.15917333E-10
4p→3da 8 6 348000. 13.4777083 0.000441890063 -2.29071345E-09
4d→3da 9 6 . . . 24.9062683 0.00272229022 -1.01404508E-08
4f→3da 10 6 13800000. 9.82447156 0.0119510675 -3.02823382E-08
5s→3da 11 6 . . . 3.97162814 3.51386987E-05 -3.27759745E-10
5p→3da 12 6 150000. 16.1334958 0.000110362663 -9.71870659E-10
5d→3da 13 6 . . . 28.3632617 0.000957519873 -5.33191712E-09
5f→3da 14 6 4540000. 49.7607587 0.00325075814 -1.53230468E-08
5g→3da 15 6 . . . 38.330885 0.0015114171 -7.86878077E-09
4p→4sb 8 7 . . . 2964.29958 -0.00909288594 4.12297852E-08
4d→4sb 9 7 . . . 619.32623 -0.00430283349 2.8734997E-08



Table 2.4: Aij and Ωij for the N = 1 → 5 levels of H, continued

transition Aij [s−1] Ωij(T ) = b0 + b1T + b2T
2

4f→4sb 10 7 . . . 124.174361 -0.00123347544 8.48440058E-09
5s→4sa 11 7 . . . 1.53806207 0.00173503526 -6.68625477E-09
5p→4sa 12 7 737000. 6.98282747 0.00152554702 -4.1843167E-09
5d→4sa 13 7 . . . 8.73782844 0.00225377148 -8.18431429E-09
5f→4sa 14 7 . . . 25.3224504 0.00222572566 -1.23041554E-08
5g→4sa 15 7 . . . 32.4265974 0.00129765509 -8.23655146E-09
4d→4pb 9 8 . . . 5549.92453 -0.0223901556 1.16294866E-07
4f→4pb 10 8 . . . 813.908792 -0.00744222541 4.90894342E-08
5s→4pa 11 8 645000. 13.3059416 0.00114087942 -6.17355099E-09
5p→4pa 12 8 . . . 22.7873231 0.00728109837 -2.4723519E-08
5d→4pa 13 8 1490000. 18.8738115 0.00699294439 -1.36005205E-08
5f→4pa 14 8 . . . 62.7008007 0.00875749509 -4.05388707E-08
5g→4pa 15 8 . . . 106.846064 0.00572769064 -3.40406121E-08
4f→4db 10 9 . . . 6073.98362 -0.0339745489 1.90841831E-07
5s→4da 11 9 . . . 15.6264397 0.000478850892 -2.67628835E-09
5p→4da 12 9 188000. 53.7360076 0.00270059254 -1.56288932E-08
5d→4da 13 9 . . . 84.0809099 0.0136172636 -5.41143791E-08
5f→4da 14 9 2580000. 19.6994986 0.0223537455 -5.43237367E-08
5g→4da 15 9 . . . 203.182691 0.0186641991 -9.35579156E-08
5s→4fa 11 10 . . . 12.3197499 2.74000635E-05 -3.51956415E-10
5p→4fa 12 10 . . . 47.7768773 0.000422602729 -3.52908665E-09
5d→4fa 13 10 50500. 105.135303 0.00307257987 -2.04380745E-08
5g→4fa 14 10 . . . 214.905676 0.018876845 -8.97469485E-08
5g→4fa 15 10 4250000. 144.086649 0.0760463582 -2.17769691E-07
5p→5sb 12 11 . . . 3924.60946 -0.00580398959 1.26210156E-08
5d→5sb 13 11 . . . 1442.42044 -0.00109774214 -3.32855828E-09
5f→5sb 14 11 . . . 447.109793 -0.00126487521 7.13987753E-09
5g→5sb 15 11 . . . 177.821648 -0.00169342267 1.00377598E-08
5d→5pb 13 12 . . . 8334.24411 -0.0118233038 2.21988618E-08
5f→5pb 14 12 . . . 2535.51791 -0.00757608021 3.9359465E-08
5g→5pb 15 12 . . . 652.74903 -0.00368088927 1.87021691E-08
5f→5db 14 13 . . . 11531.0448 -0.023057997 8.77424046E-08
5g→5db 15 13 . . . 2608.36252 -0.0157262948 8.37538465E-08
5g→5fb 15 14 . . . 12351.5748 -0.0429626285 1.81619962E-07



Table 2.5: Ωij for the proton collision, ∆N = 0, ∆l = ±1 transitions of H

transition Ωij(T ) = b0 + b1 log10(T )
2p→2s 3 2 -29010.0 9999.0
3p→3s 5 4 -19765.4 20134.4
3d→3s 6 4 -66225.3 45302.3
4p→4s 8 7 -41439.6 67114.5
4d→4p 9 8 -294061.2 193289.8
4f→4d 10 9 80263.0 201343.6
5p→5s 12 11 -145593.4 167786.3
5d→5p 13 12 -650479.8 528526.8
5f→5d 14 13 -18963.3 719084.1
5g→5f 15 14 -247476.4 587252.1

lines) are “permitted” lines (i. e., “electric dipole” transitions).
For these atoms/ions, the statistical equilibrium equation (2.1) reduces

to the more simple form given in the previous chapter (see eq. 1.70), which
we repeat here:

∑

m>l

nmAm,l + ne

∑

m6=l

nmqm,l(T ) = nl

[

∑

m<l

Al,m + ne

∑

m6=l

ql,m(T )

]

, (2.15)

where qm,l(T ) are the radiative excitation (m < l) or de-excitation (m > l)
coefficients. For m > l, these coefficients are given by the expression

qm,l(T ) =
8.629 × 10−6

T 1/2

Ωml(T )

gm
, (2.16)

where gm is the statistical weight of the level at which the transition begins.
The collisional excitation coefficients (i. e., l → m with m > l) are given by
the relation

ql,m(T ) =
gm

gl

e−hνm,l/kT qm,l(T ) . (2.17)

In eq. (2.15), the indeces m and l refer to a numbering system in which
increasing values correspond to higher energy levels. The low lying levels
in multi-electron atoms or ions generally correspond to the ground state
configuration of the energy quantum number. Therefore, the energy quantum
number is not given, and the levels are denoted by their angular momentum
configuration in the form

2s+1Lj (2.18)



where s is the spin, L the orbital angular momentum (denoted S, P , D, . . .
for L = 1, 2, 3, . . ., respectively) and j the total angular momentum quantum
numbers. Two things should be noted:

• the statistical weight of the level is g = 2j + 1,

• the levels with the same s and L but different j form groups of 2s+ 1
levels with closely lying energies. These are called “singlet”, “doublet”
or “triplet” levels for 2s+ 1 = 1, 2 and 3, respectively.

Examples of the possible energy configurations are given in the “Grotrian
diagrams” shown in Figures 2.1-2.5. A good source for obtaining the A
coefficients and the collision strengths Ω is the material in Anil Pradhan’s
homepage (in particular, the table found in : http://www.astronomy.ohio-
state.edu/ pradhan/table2.ps).

In using the parameters from such tabulations, one has to sometimes
divide collision strengths given for a term with several levels into colli-
sion strengths for the inividual levels. For example, if a collision strength
ω(SLJ, S ′L′) is tabulated (for a transition originating in level SLJ and end-
ing in a multiplet S ′L′), the collision strengths for the transitions between
levels SLJ and the indiviual levels S ′L′J ′ of the S ′L′ multiplet are given by :

Ω(SLJ, S ′L′J ′) =
2J ′ + 1

(2S ′ + 1)(2L′ + 1)
Ω(SLJ, S ′L′) , (2.19)

where 2J ′+1 is the statistical weight of the S ′L′J ′ level and (2S ′+1)(2L′+1)
is the statistical weight of the S ′L′ term.

2.3.2 The 3-level atom

For an atom/ion with three levels, the equilibrium equations are :

n3 [A31 + A32 + ne(q31 + q32)] = ne(n1q13 + n2q23) , (2.20)

n2 [A21 + ne(q21 + q23)] = n3A32 + ne(n1q12 + n2q32) , (2.21)

nen1(q12 + q13) = n3A31 + n2A21 + ne(n2q21 + n3q31) . (2.22)

Actually, only two out of these three equations are linearly independent,
so that one has to choose two of them, and solve them together with the
conservation equation :

n1 + n2 + n3 = n , (2.23)



Figure 2.1: Energy level diagram showing the optical and IR forbidden tran-
sitions of S II. The wavelengths of the transitions are given in Å. For historical
reasons, the 2D −4 S transitions are called the “nebular”, the 2P −4 S the
“auroral” and the 2P −2 D the “transauroral” lines.



Figure 2.2: Energy level diagram showing the UV, optical and IR forbidden
transitions of O I. The wavelengths of the transitions are given in Å.

where n is the total number density of the atom/ion that is being considered.
The resulting system of 3 equations (with n1, n2 and n3 as unknowns, and
ne, n and T as given parameters) can be solved.

Let us consider the case in which A32 = 0 and also q23 = q32 = 0.
Equations (2.20-2.21) then take the form :

n3(A31 + neq31) = nen1q13 , (2.24)

n2(A21 + neq21) = nen1q12 . (2.25)

Dividing these two equations, we have

n3

n2

=

[

A21g2T
1/2/(neCΩ12) + 1

A31g3T 1/2/(neCΩ13) + 1

]

g3

g2

e−E23/kT , (2.26)

where we have also used eq. (2.16) and the fact that E13 = E12 + E23. In
this equation, C = 8.629 × 10−6 (in c.g.s.).

We now consider the emission from an optically thin, homogeneous slab.
The ratio of the intensities of the lines corresponding to the transitions 3 → 1



Figure 2.3: Energy level diagram showing the UV, optical and IR forbidden
transitions of O II. The wavelengths of the transitions are given in Å.

and 2 → 1 is then given by :

I3
I2

=
n3A31E31

n2A21E21
=

[

A21g2T
1/2/(neCΩ12) + 1

A31g3T 1/2/(neCΩ13) + 1

]

g3

g2
e−E23/kT A31E31

A21E21
, (2.27)

where for the second equality we have used eq. (2.26).
In the low electron density regime, this ratio takes the form :

I3
I2

=
Ω13

Ω12
e−E23/kT E31

E21
, (2.28)

In the high electron regime, the line ratio takes the form :

I3
I2

=
g3

g2
e−E23/kT A31E31

A21E21
. (2.29)

coinciding with the line ratio predicted from levels populated with a thermo-
dynamic equilibrium, Boltzmann distribution.

Therefore, both in the high and in the low density regime the line ratio
is only a function of the temperature T of the gas. From a line ratio in



Figure 2.4: Energy level diagram showing the UV, optical and IR forbidden
transitions of O III. The wavelengths of the transitions are given in Å.

one of these regimes, we can take an observed value for I3/I2 and use eqs.
(2.28) or (2.29) to obtain a direct determination of the temperature of the
emitting region. If the line ratio is not in the high or low density regime, the
observed line ratio can be used to derive a relation between ne and T (from
eq. 2.27) that has to be obeyed by the electron density and temperature of
the emitting region.

An interesting case is provided by ions (such as S II, see fig. 2.1) which
have two close-spaced levels 2 and 3 (i. e., with E23 ≪ kT ). For such levels,
eq. (2.27 simplyfies to

I3
I2

≈
[

A21g2T
1/2/(neCΩ12) + 1

A31g3T 1/2/(neCΩ13) + 1

]

Ω13

Ω12

A31E31

A21E21

. (2.30)

Therefore, the line ratio only has the T 1/2 temperature dependence explicitly
shown in eq. (2.30) and the slow dependence on T of the collision strengths.
Because of this slow dependence on T , one can use “density indicators”
(i. e., line ratios with E23 ≪ kT ) to directly obtain the electron density of
the emitting gas as a function of the observed line ratio. This can be done



Figure 2.5: Energy level diagram showing the UV permitted/forbidden tran-
sitions of O IV. The wavelengths of the transitions are given in Å.

by, e. g., setting T ≈ 104 K in eq. (2.30) and inverting it to find ne as a
function of I3/I2.

2.3.3 Diagnostic diagrams

In general, one can determine the fraction of atoms (or ions) in each of the
excited levels by inverting the statistical equilibrium conditions given by eq.
(2.15). These populations can be used to calculate the line ratios that would
be produced by a homogeneous, optically thin slab :

Ikl

Imn

=
nkAklEkl

nmAmnEkm

. (2.31)

Line ratios involving sums of lines (in the numerator and/or the denominator)
are sometimes also used.

As the nk/nm ratio only depends on ne and T , each of the observed line
ratios determines an allowed locus in the (ne, T ) plane. Therefore, if one
observes several line ratios, each of them should give an allowed locus in the



Table 2.6: Aij and Ωij for the 5-level O I ion

transition λ [Å] Ai,j [s−1] Ω = b0 + b1t ; t = log10(T/104K)
3P1 −3 P2 2 1 6.32E5 8.92E-5 -0.00675 0.1067
3P0 −3 P2 3 1 4.41E5 1.0E-10 0.0026 0.0257
3P0 −3 P2 3 2 1.46E6 1.74E-5 -0.0102 0.0393
1D2 −3 P2 4 1 6300.3 0.0634 0.00365 0.1383
1D2 −3 P1 4 2 6363.8 0.0211 0.00215 0.0820
1D2 −3 P0 4 3 6393.5 7.23E-6 0.00075 0.0277
1S0 −3 P2 5 1 2959.2 2.88E-4 0.00065 0.0166
1S0 −3 P1 5 2 2972.3 0.0732 0.00035 0.0100
1S0 −3 P2 5 3 2979.2 0.0 0.00015 0.0033
1S0 −1 D2 5 4 5577.4 1.22 0.0517 0.0489

(ne, T ) plane, all of which intersect at the ne and T values of the gas that is
emitting the observed lines.

In practice, the allowed locci for three or more line ratios do not intersect
exactly at the same point. This can be due to the errors in the observed line
ratios and/or to the fact that the emitting region is not homogeneous.

Tables 2.7 and 2.10 give the A coefficients and polynomial fits to the
collision strengths Ω from the tabulation found in Anil Pradhan’s homepage
(http://www.astronomy.ohio-state.edu/ pradhan/table2.ps).

2.3.4 Example: plasma diagnostics with the [S II] lines

With the coefficients given in Table 2.10 one can solve a 5-level atom problem
(for the levels shown in fig. 2.1), and obtain predictions for all of the ratios
between the [S II] emission lines.

Fig. (2.6) gives a few selected line ratios as a function of electron density,
for three chosen temperatures (T = 5000, 10000 and 15000 K). It is clear
that the line ratios between lines arising from close-lying upper levels (i. e.,
the 6730/16 and the 4076/68 ratios, see fig. 2.1) are good “electron density
indicators” (i. e., they have a large ne dependence and shallow T depen-
dence). The (6030 + 16) / (4076 + 68) line ratio (calculated with lines from
well separated upper levels, see fig. 2.1) show strong ne and T dependences
(see fig. 2.6).

Now, let us assume that observationally we determine the ratios : I(6730)
/ I(6716) = 1.63± 0.03, I(4076) / I(4068) = 0.305± 0.015 and I(6730+ 16)



Table 2.7: Aij and Ωij for the 5-level O II ion

transition λ [Å] Ai,j [s−1] Ω = b0 + b1t+ b2t
2 ; t = log10(T/104K)

2D0
5/2 −4 S0

3/2 2 1 3728.8 3.50E-5 0.7890 0.0106 0.0020
2D0

3/2 −4 S0
3/2 3 1 3726.0 1.79E-4 0.5245 0.0104 0.0000

2D0
3/2 −4 D0

5/2 3 2 4.97E6 1.30E-7 1.2750 -0.122 0.020
2P 0

3/2 −4 S0
3/2 4 1 2470.3 0.0057 0.2600 0.010 0.000

2P 0
3/2 −4 D0

5/2 4 2 7319.9 0.107 0.7080 0.0194 0.002
2P 0

3/2 −4 D0
3/2 4 3 7330.7 0.0578 0.3953 0.0113 0.001

2P 0
1/2 −4 S0

3/2 5 1 2470.2 0.0234 0.1318 0.0021 0.001
2P 0

1/2 −4 D0
5/2 5 2 7321.8 0.0615 0.2850 0.010 0.000

2P 0
1/2 −4 D0

3/2 5 3 7329.6 0.102 0.2630 0.0146 -0.002
2P 0

3/2 −4 P 0
1/2 5 4 5.00E7 2.08E-11 0.2735 0.0132 0.000

Table 2.8: Aij and Ωij for the 6-level O III ion

transition λ [Å] Ai,j [s−1] Ω = b0 + b1t+ b2t
2 ; t = log10(T/104K)

3P1 −3 P0 2 1 883562. 2.62E-05 0.5462 0.0666 -0.0266
3P2 −3 P0 3 1 326611. 3.02E-11 0.2718 0.0527 0.0209
3P2 −3 P1 3 2 518145. 9.76E-05 1.2959 0.2080 -0.0481
1D2 −3 P0 4 1 4932.6 2.74E-06 0.2555 0.0737 0.0371
1D2 −3 P1 4 2 4958.9 0.00674 0.7677 0.2229 0.0941
1D2 −3 P2 4 3 5006.7 0.0196 1.2795 0.3715 0.1543
1S0 −3 P0 5 1 2314.9 . . . 0.0328 0.0109 0.0074
1S0 −3 P1 5 2 2321.0 0.223 0.0983 0.0325 0.0225
1S0 −3 P2 5 3 2332.1 7.85E-4 0.1639 0.0545 0.0368
1S0 −1 D2 5 4 4363.2 1.78 0.5837 0.1952 -0.3451
5S0

2 −3 P0 6 1 1657.7 . . . 0.1342 0.0351 -0.0509
5S0

2 −3 P1 6 2 1660.8 212. 0.4032 0.1050 -0.1617
5S0

2 −3 P2 6 3 1666.1 522. 0.6718 0.1758 -0.2744



Table 2.9: Aij and Ωij for the 5-level O IV ion

transition λ [Å] Ai,j [s−1] Ω = b0 + b1t+ b2t
2 ; t = log10(T/104K)

2P 0
3/2 −2 P 0

1/2 2 1 2.587E5 5.18E-4 2.4020 0.9164 -1.1751
4P1/2 −2 P 0

1/2 3 1 1426.46 1.81E3 0.1332 0.0452 0.0146
4P1/2 −2 P 0

3/2 3 2 1434.07 1.77E3 0.1024 0.0625 0.0339
4P3/2 −2 P 0

1/2 4 1 1423.84 2.28E1 0.2002 0.0801 0.0422
4P3/2 −2 P 0

3/2 4 2 1431.42 3.28E2 0.2692 0.1379 0.0898
4P3/2 −4 P1/2 4 3 1.680E6 . . . 1.0906 0.2002 0.1056
4P5/2 −2 P 0

1/2 5 1 1420.19 . . . 0.1365 0.0904 0.0625
4P5/2 −2 P 0

3/2 5 2 1427.78 1.04E3 0.5683 0.2345 0.1108
4P5/2 −4 P1/2 5 3 3.260E5 . . . 0.6876 0.0359 0.4118
4P5/2 −4 P3/2 5 4 5.620E5 1.02E-4 2.0497 0.2653 0.7749

Table 2.10: Aij and Ωij for the 5-level S II ion

transition λ [Å] Ai,j [s−1] Ω = b0 + b1t+ b2t
2 ; t = log10(T/104K)

2D0
3/2 −4 S0

3/2 2 1 6730.8 0.000882 3.112 -0.712 -0.622
2D0

5/2 −4 S0
3/2 3 1 6716.5 0.00026 4.658 -1.066 -0.865

2D0
5/2 −4 D0

3/2 3 2 3145000. 3.35E-07 7.124 0.750 11.734
2P 0

1/2 −4 S0
3/2 4 1 4076.4 0.0906 0.905 0.342 0.304

2P 0
1/2 −4 D0

3/2 4 2 10336.3 0.163 1.787 -0.741 2.045
2P 0

1/2 −4 D0
5/2 4 3 10373.3 0.0779 2.017 -0.791 2.320

2P 0
3/2 −4 S0

3/2 5 1 4068.6 0.225 2.015 0.583 -1.759
2P 0

3/2 −4 D0
3/2 5 2 10286.7 0.133 2.778 -1.107 3.224

2P 0
3/2 −4 D0

5/2 5 3 10320.4 0.179 4.834 -1.981 5.379
2P 0

3/2 −4 P 0
1/2 5 4 2140000. 1.03E-06 2.411 0.142 -3.585



Figure 2.6: Selected [S II] line ratios given as a function of the electron
density. Curves calculated for three temperatures are shown : T = 5000 K
(solid lines), T = 10000 K (dotted lines) and T = 15000 K (dashed lines).



Figure 2.7: [S II] diagnostic diagram showing the regions allowed by an
I(6730)/I(6716) = 1.63 ± 0.03 line ratio (solid lines), an I(4076)/I(4068) =
0.305± 0.015 ratio (dotted lines) and an I(6730 + 16)/I(4076 + 68) = 3.4 ±
0.1 ratio (dashed lines). These ratios determine an electron density ne =
3720 cm−3 and a temperature T = 16000 K (this point is shown with a
cross).



/ I(4076 + 68) = 3.4 ± 0.1. For each of these line ratios, the solution to the
5-level atom can be used to constrain a possible locus in the (ne, T )-plane.

The result of this exercise is shown in fig. 2.7. Actually, for each observed
line ratio we show two curves : one for the upper boundary and one for
the lower boundary of the line ratio range permitted by the observational
errors. An analysis of fig. 2.7 shows that a point with ne = 3720 cm−3 and
T = 16000 K is consistent with all of the observed line ratios.

It is also clear that the 4076/4068 line ratio does not provied a lot of
information. This is a direct result of the fact that the observed 4076/4068
ratio lies in the “low density regime” (see fig. 2.6).

2.4 Continuum emission

2.4.1 General considerations

The continuum of photoionized regions has three main contributions: the
recombination, free-free and two-photon continua of H. In regions in which
He is in the form of He II, the He III/II recombination continuum can also
have an important contribution.

2.4.2 The recombination continua

Recombinations of free electrons to an excited level N of a hydrogenic ion of
charge Z (with energy χN = Z2χH/N

2, where χH is the ionization potential
from the ground state of H) produce photons with energies

hν =
1

2
mev

2 + χN , (2.32)

where me is the mass and v the velocity of the free electron.
The recombination continuum can then be calculated as a sum of the

continua due to recombinations to all excited levels, which are given by

j(N)
ν =

nionne

4π
vσN(ν)f(v, T )hν

dv

dν
, (2.33)

where σN(ν) is the cross section for recombination to level N and

f(v, T ) =
4√
π

( me

2kT

)3/2

v2e−mev2/(2kT ) , (2.34)



is the Maxwell-Boltzmann distribution of the electrons, and dv/dν = h/(mev)
[obtained from the relation d(mev

2/2) = d(hν), see eq. 2.32].
From the principle of detailed balancing, it is possible to derive a Milne

relation of the form:

σN (v) =
wHI

wHII

h2ν2

m2
ec

2v2
aN (ν) , (2.35)

where aN (ν) is the photoionization cross section from level N and wHI ≈ 2
and wHII = 1 are the HI and HII partition functions, respectively. This
relation is derived in Appendix 1 of the book of Osterbrock (1989).

Combining eqs. (2.32-2.35), we obtain:

j(N)
ν =

nHIIne

4π
γN(ν) , (2.36)

with

γN(ν) =

(

2

π

)1/2
2N2h4ν3

c2(mekT )3/2
aN(ν) e(χN−hν)/kT . (2.37)

Given the photoionization cross section aN(ν), eqs. (2.36-2.37) then give
us the continua to all levels N of a hydrogenic ion.

For a hydrogenic ion of charge Z, the photoionization cross section aN (ν)
is given by

aN(Z, ǫ) = 7.907 × 10−18cm2 N

Z2

(

1 +N2ǫ
)−3

gbf(N, ǫ) , (2.38)

for ǫ ≥ 0 and aN (Z, ǫ) = 0 for ǫ < 0. The photon energy is

hν = Z2χH

(

1

N2
+ ǫ

)

, (2.39)

with χH = 13.6 eV, and the gII Gaunt factor is approximately given by

gbf(N, ǫ) = 1+0.1728N−2/3(u+1)−2/3(u−1)−0.0496N−4/3(u+1)−4/3(u2+4u/3+1) ,
(2.40)

with u = N2ǫ (see Seaton 1960). The precision of this expansion for the
Gaunt factor has been evaluated by Brown & Mathews (1970).

Finally, the total bound-free emission of the hydrogenic ion can be written
as :

jν =
nZne

4π
γ(ν) , (2.41)



Figure 2.8: Recombination continuum of H. Curves calculated for three tem-
peratures are shown : T = 5000 K (solid line), T = 10000 K (dotted line)
and T = 20000 K (dashed line).



with
γ(ν) =

∑

N≥1

γN(ν) . (2.42)

The γ(ν) coefficient obtained for H (i. e., setting Z = 1) is plotted in Fig.
2.8 for three chosen values of the temperature T . It is clear that the slopes
of the continua as well as the “jumps” at the frequencies corresponding to
the ionization energies of the levels of H depend quite strongly on the tem-
perature. Therefore, observed values for these parameters can be used as a
temperature diagnostic of the emitting plasma.

The formalism used above can be of course be used to derive the HeII
recombination continuum (by setting Z = 2 in all of the expressions). The
intensity of this continuum can be comparable to the H recombination con-
tinuum in regions where He is twice ionized. The recombination continuum
of HeI has γ values (see eq. 2.41, setting nZ = nHeII) which are similar to
the ones of HI (see Brown & Mathews 1970). The HeI recombination emis-
sion coefficient is therefore of order 10% of the HI emission coefficient (for
an He/H∼ 0.1 abundance).

2.4.3 The free-free continua

The free-free continuum emission coefficient due to electron transitions in the
electric field of an ion of charge Z is given by:

jν =
nenZ

4π

32Z2e4h

3m2
ec

3

(πχZ−1

3kT

)1/2

e−hν/kT gff(T, Z, ν) , (2.43)

where χZ−1 is the ionization potential of the ion with charge Z − 1. For a
hydrogenic ion χZ−1 = Z2χH , and the Gaunt factor gff is given by :

gff(T, Z, ν) = 1+0.1728

(

hν

Z2χH

)1/3

(1 + 2µ)−0.0496

(

hν

Z2χH

)2/3
(

1 + 2µ/3 + 4µ2/3
)

(2.44)
with µ = kT/hν (see Seaton 1960). This expression leads to gff ≈ 1 for the
optical region of the spectrum.

The free-free continuum dominates the radio spectrum. For radio fre-
quencies, an appropriariate expression for the Gaunt factor is:

gff(T, Z, ν) =

√
3

π

[

ln

(

8k3T 3

π2Z2e4meν2

)1/2

− 1.4425

]

. (2.45)



With eqs. (2.43-2.45) we can compute the free-free continua of HII and
HeIII (setting nZ = nHII , Z = 1 and nZ = nHeIII , Z = 2, respectively).
It is usual practice to include the HeII free-free continuum as well as the
HeI recombination continuum in an approximate way by assuming that they
have the same temperature and frequency dependence as the corresponding H
emission coefficients. As the HeI recombination and HeII free-free continua
are down by an order of magnitude with respect to the H continua, this
assumption does not introduce a large error in the computed continuum
spectrum.

2.4.4 The two-photon continuum

Electrons in the 2s state of H decay to the 1s level through a 2-photon
transition with Einstein coefficient A2s,1s = 8.23 s−1 (see table 2.2).

The emission coefficient is given by :

j(2q)
ν =

n2sA2s,1s

4π
g(ν) , (2.46)

where g(y) is given in table 2.11 (tha values are taken from Brown & Mathews
1970). An analytic fit to these values is :

ga(y) = 9.23 exp
{

− [η/0.3](1.3+1.6η)
}

− 0.61 , (2.47)

in units of 10−27 erg Hz−1, with η = 0.5 − y and y = ν/ν21 (ν21 = 3χH/4h
being the frequency of the 2 → 1 transition of H). The analytic fit in eq.
(2.47) is valid for y ≤ 0.5. For y > 0.5, the relation

g(1 − y) =
(1 − y) g(y)

y
, (2.48)

should be used in order to compute the g(y) function from the analytic fit (eq.
2.47). This equation represents the fact that the photon distribution (i. e.,
of the number of emitted photons) is symmetric with respect to ν21/2. The
errors of the analytic fit obtained from eqs. (2.47-2.48) can be appreciated
in fig. 2.9. We should note that the function ga(y) (eq. 2.47) becomes
negative for 0 ≤ y < 0.015 and should therefore be set to zero. Because of
this feature, the cutoff at high energies of the 2-photon continuum computed
with eq. (2.47) is shifted by 1.5 % with respect to ν21.



Table 2.11: Frequency dependence of the H 2-photon emission

y = ν/ν21 g(y) y = ν/ν21 g(y)
[10−27erg Hz−1] [10−27erg Hz−1]

0.00 0.0 0.55 9.46
0.05 0.303 0.60 10.17
0.10 0.978 0.65 10.77
0.15 1.836 0.70 11.12
0.20 2.78 0.75 11.34
0.25 3.78 0.80 11.12
0.30 4.80 0.85 10.40
0.35 5.80 0.90 8.80
0.40 6.78 0.95 5.76
0.45 7.74 1.00 0.0
0.50 8.62

Figure 2.9: Frequency dependence of the 2-photon continuum of H : g(y)
(in 10−27erg Hz−1) as a function of y = ν/ν21. The crosses are the values of
Brown & Mathews (1970) and the solid line the analytic fit described in the
text.



The simplest possible way of calculating the population of n2s of the 2s
level is to assume a balance of the form :

n2s

(

A2s,1s + neq
(e)
1s,2s + nHIIq

(p)
1s,2s

)

= nenHIIα2s(T ) , (2.49)

where the collisional rates q(e) and q(p) can be calculated with the correspond-
ing collision strengths given in tables 2.2 and 2.5. The effective recombination
coefficient to the 2s level α2s(T ) has been tabulated by Brown & Mathews
(1970), and can be obtained from the interpolation formula:

log10 [α2s(T )] = −13.077 − 0.696t− 0.0987t2 ; t = log10(T/104K) , (2.50)

in erg cm3 s−1. Eq. (2.49) represents the balance between the recombination
cascade electrons that end in level 2s (right hand term) and the electrons that
leave 2s through 2-photon transitions to 1s or through collisional transitions
to the 2p level. At high enough optical depths of the Lyα line, the population
of level 2p can be high enough for 2p → 1s collisional transitions to become
important. This effect is discussed by Brown & Mathews (1970). Another
possibly important effect is found in a partially neutral gas of temperatures
T ≥ 12000 K, in which 1s→ 2s collisional transitions can be important. This
effect can lead to a hugely increased intensity of the 2-photon continuum.

Combining eqs. (2.46) and (2.49) we then obtain :

j(2q)
ν =

nenHIIα2s(T )g(ν)

4π
[

1 +
(

neq
(e)
1s,2s + nHIIq

(p)
1s,2s

)

/A2s,1s

] . (2.51)

A more detailed model for the intensity of the 2-photon continuum would
involve a solution of the recombination cascade with collisions in order to
obtain a better estimate of n2s.
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Dynamics of the ISM
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Chapter 3

The equations of gasdynamics

3.1 General considerations

It is in principle possible to derive the gasdynamic equations as velocity mo-
ments of Vlasov’s equation (for a single particle distribution function). In
its turn, Vlasov’s equation can be derived from Liouville’s theorem (i. e.,
the fundamental equation of statistical mechanics) through methods such
as the “BBGKY” heirarchy. These derivations can be found in most stan-
dard plasma physics or particle kinetics books. In this chapter, we will
describe the mathematically simple and physically more inspiring “macro-
scopic derivation” of the gasdynamic equations (described in different forms
in most books on gasdynamics or hydrodynamics).

In order to be able to describe a gas (a system of many, possibly inter-
acting particles) to be described as a fluid, the following conditions must be
satisfied :

• the mean free path λ of the particles must be much smaller than the
characteristic distance L of the spatial variations of the macroscopic
variables of the gas (such as the density),

• the mean time between collisions tcoll must be much smaller than the
characteristic timescale tflow of changes in the flow,

• the mean distance l ∼ n−1/3 (where n is the number density) between
neighbouring particles.

The λ ≪ L condition implies that the gas particles effectively see an
infinite, homogeneous environment, and therefore (provided that the tcoll ≪
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tflow condition is also satisfied) attain a local thermodynamic equilibrium.
This means that in a reference system moving with the flow the parti-
cles have a TE, Maxwell-Boltzmann velocity distribution (with a well de-
fined local temperature T ). Therefore, the thermal energy and the pres-
sure/density/temperature law are given by the relations obtained for a (real
or ideal) gas in TE.

The n−1/3 ≪ L condition implies that one can have small volumes in
which the flow variables are approximately constant, but which still have
very large numbers of particles within them, so that a fluid description is
still meaningful within these volumes. As we will see in the following sec-
tions, this is a fundamental assumption necessary for deriving the gasdynamic
equations.

3.2 Macroscopic derivation

Let us consider a control volume element V , surrounded by a surface S, which
has a fixed position and shape as a function of time. Such a fixed volume
element (surrounded by an immaterial surface) is called an “Eulerian” control
volume. The gas freely flows through this control volume (see Fig. 3.1).

3.3 Fluxes

Let us consider a fixed surface element ∆S, through which flows the gas at
a velocity u. From the diagram shown in figure 3.2, it is clear that all of the
material within the volume

∆V = un ∆t∆S (3.1)

(where un is the flow velocity normal to the surface element) goes through
∆S in a time ∆t.

Therefore, if we have any volumetric quantity A of the flow (for example,
we could have A = ρ, the mass density of the gas), the flux of this quantity
through a unit surface is :

FA =
A∆V

∆t∆S
= Aun . (3.2)

For example, for the A = ρ case, FA corresponds to the mass per unit area
and time going through a surface oriented such that un is the normal velocity.



V

S

ρ, P, u

n
Figure 3.1: An imaginary, fixed (“Eulerian”) control volume through which
flows a continuous medium of density ρ, pressure P and flow velocity u.
The volume V is surrounded by the surface S. The surface has an outward
pointing normal unit vector n̂.



u ∆

un∆

t

t

nu

Figure 3.2: The gas (with velocity u) flows through a fixed surface element
(in blue) ∆S, with normal vector n̂.



One can then define a vector flux

FA = Au , (3.3)

and the mass going through a surface with normal unit vector n̂ (per unit
area and time) is then given by

FA = FA · n̂ . (3.4)

3.4 The continuity equation

Let us now consider the mass

M =
y

V

ρ d3x (3.5)

within the control volume V shown in figure 3.1. In the absence of mass
sources or sinks, M will change only as the result of the net mass going
in/out through the surface S :

∂M

∂t
= −

{

S

ρu · n̂ dS , (3.6)

where ρu is the mass flux (see §3.3), the “−” sign accounts for the fact that
n̂ points outwards. Combining equations (3.5-3.6), using Gauss’s theorem
for converting the surface integral into a volume integral and commuting the
time derivative with the volume integral, we then obtain :

y

V

[

∂ρ

∂t
+ ∇ · (ρu)

]

d3x = 0 . (3.7)

The final step is obtained by noting that for a volume V ≪ L3 (where L
is the characteristic length of variations along the flow), the integral in eq.
(3.7) will have a value = [ ]V , where the integrand “[ ]” is evalued in any
point within the volume V . We should note that for a fluid approximation
to be valid, a volume satisfying the V ≪ L3 condition can still have a very
large number of particles within it (see §3.1). Therefore, eq. (3.7) implies
that

∂ρ

∂t
+ ∇ · (ρu) = 0 , (3.8)

for all times and positions. This differential equation is called the “continuity
equation” of gasdynamics.



3.5 The momentum equation

Let us now consider the momentum along the i-th direction

Πi =
y

V

ρui d
3x (3.9)

within the control volume V shown in figure 3.1, where ui (i = 1, 2, 3) is the
i-th component of the flow velocity.

The momentum conservation equation can then be written as :

∂Πi

∂t
= −

{

S

ρuiu · n̂ dS −
{

S

P êi · n̂ dS ,+
y

V

fi d
3x (3.10)

where the first term on the right represents the net amount of i-th momentum
going in or out through the surface of the volume element (see fig. 3.1), the
second term is the i-th component of the force of the gas pressure on the
volume element, and the third term represents the force on the volume due
to an external force (per unit volume) fi acting on the flow along the i-th
direction (this could be, e. g., the force due to gravity). The êi are the unit
vectors along the coordinate axes.

Following the method of §3.4, from eq. (3.10) we derive :

∂ρui

∂t
+ ∇ · (ρuiu) +

∂P

∂xi
= fi . (3.11)

For the case of a gravitational force, we would have fi = ρgi (with gi the i-th
component of the gravitational acceleration).

3.6 The energy equation

We now consider the equation for the kinetic+thermal energy per unit volume

E =
1

2
ρu2 +

P

γ − 1
, (3.12)

where u is the modulus of the flow velocity and γ = Cp/Cv is the specific
heat ratio (= 5/3 for a monoatomic gas, and = 7/5 for diatomic molecules
with thermalized rotation states).



For deriving the equation we consider the energy flux Eu, the work Pu
of the pressure force on the surface of the control volume, the work f · u of
possible external forces f (per unit volume), and the net energy gain/loss
per unit volume G − L due to emission/absorption of radiation. Following
the method of §3.4, one obtains the energy equation :

∂E

∂t
+ ∇ · [u (E + P )] = G− L+ f · u . (3.13)

The “gasdynamic” or “Euler” equations (eqs. 3.8, 3.11 and 3.13) are a
closed set of differential equations from which one can in principle derive
ρ, u and P as a function of position and time, for any given set of initial
and boundary conditions. In the following sections, we present the Euler
equations in different notations and for different coordinate systems.

3.7 Different forms of the Euler equations

3.7.1 Using Einstein’s notation

Continuity equation :

∂ρ

∂t
+

∂

∂xi

(ρui) = 0 , (3.14)

Momentum equation :

∂ρuj

∂t
+

∂

∂xi
(ρuiuj + Pδij) = fi , (3.15)

Energy equation :

∂E

∂t
+

∂

∂xi
[ui (E + P )] = G− L+ fiui , (3.16)

where E = uiui/2 + P/(γ − 1).
In these equations, i, j =1, 2, 3 represent the three coordinates of a

Cartesian reference system. If one of these indeces appears twice in one
term, a sum from 1 to 3 is implied. For example,

uiui =

3
∑

i=1

uiui , (3.17)



∂

∂xi
(ρuiuj) =

3
∑

i=1

∂

∂xi
(ρuiuj) . (3.18)

3.7.2 In vector/tensor notation

Continuity equation :

∂ρ

∂t
+ ∇ · (ρu) = 0 , (3.19)

Momentum equation :

∂ρu

∂t
+ ∇ ·

(

ρuu+ PI
)

= f , (3.20)

Energy equation :

∂E

∂t
+ ∇ · [u (E + P )] = G− L+ f · u . (3.21)

In the momentum equation, I = δij is the unit second rank tensor. A Carte-
sian coordinate system is assumed.

3.7.3 Cartesian equations, all terms written explicitly

Following the normal notation used in gasdynamics, we name (u, v, w) the
three components of the flow velocity u, along the axes of an (x, y, z), Carte-
sian reference system.
Continuity equation :

∂ρ

∂t
+

∂

∂x
ρu+

∂

∂y
ρv +

∂

∂z
ρw = 0 , (3.22)

Momentum equation(s) :

∂

∂t
ρu+

∂

∂x
ρu2 +

∂

∂y
ρuv +

∂

∂z
ρuw +

∂P

∂x
= fx , (3.23)

∂

∂t
ρv +

∂

∂x
ρuv +

∂

∂y
ρv2 +

∂

∂z
ρvw +

∂P

∂y
= fy , (3.24)

∂

∂t
ρw +

∂

∂x
ρuw +

∂

∂y
ρvw +

∂

∂z
ρw2 +

∂P

∂z
= fz , (3.25)



Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

∂

∂y
v(E + P ) +

∂

∂z
w(E + P )

= G− L+ ufx + vfy + wfz , (3.26)

where E = ρ(u2 + v2 + w2)/2 + P/(γ − 1).

3.7.4 2D Cartesian equations, all terms written explic-
itly

We name (u, v) the two components of the flow velocity u, along the axes of
an (x, y), Cartesian reference system.
Continuity equation :

∂ρ

∂t
+

∂

∂x
ρu+

∂

∂y
ρv = 0 , (3.27)

Momentum equation(s) :

∂

∂t
ρu+

∂

∂x
ρu2 +

∂

∂y
ρuv +

∂P

∂x
= fx , (3.28)

∂

∂t
ρv +

∂

∂x
ρuv +

∂

∂y
ρv2 +

∂P

∂y
= fy , (3.29)

Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

∂

∂y
v(E + P ) = G− L+ ufx + vfy , (3.30)

where E = ρ(u2 + v2)/2 + P/(γ − 1).

3.7.5 2D cylindrical equations, all terms written ex-

plicitly

We name (u, v) the two components of the flow velocity u, along the axes of
an (z, r), cylindrical reference system.
Continuity equation :



∂ρ

∂t
+

∂

∂z
ρu+

∂

∂r
ρv +

ρv

r
= 0 , (3.31)

Momentum equation(s) :

∂

∂t
ρu+

∂

∂z
ρu2 +

∂

∂r
ρuv +

∂P

∂z
+
ρuv

r
= fz , (3.32)

∂

∂t
ρv +

∂

∂z
ρuv +

∂

∂r
ρv2 +

∂P

∂r
+
ρv2

r
= fr , (3.33)

Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

∂

∂y
v(E + P ) +

vE

r
= G− L+ ufz + vfr , (3.34)

where E = ρ(u2 + v2)/2 + P/(γ − 1).

3.7.6 1D equations

Continuity equation :

∂ρ

∂t
+

∂

∂x
ρu+

ηρu

x
= 0 , (3.35)

Momentum equation :

∂

∂t
ρu+

∂

∂x
(ρu2 + P ) +

ηρu2

x
= f , (3.36)

Energy equation :

∂E

∂t
+

∂

∂x
u(E + P ) +

ηuE

x
= G− L+ uf , (3.37)

where E = ρu2/2+P/(γ−1). For η = 0, 1 and 2, we have the 1D Cartesian,
cylindrical (with x = r, the cylindrical radius) and spherical (with x = R,
the spherical radius) Euler equations, respectively.



3.8 Gasdynamic equations in Lagrangean form

The “Lagrangean” description of a flow is based on considering a “Lagrangean”
fluid parcel, which moves and changes shape following the motion and dis-
tortion of the fluid. The free variables in such a description are the initial
coordinates x0 of all fluid parcels, and the time t. The position of the parcels
x is obtained as a function of x0 and t through the solution to the gasdynamic
equations.

Using the chain rule, it is evident that

d

dt
[ ] =

∂

∂t
[ ] + u · ∇[ ] , (3.38)

where the total time-derivative is the Lagrangean derivative (i. e., following
a fluid parcel) and the partial time-derivative is the Eulerian one (i. e., at a
fixed spatial position).

One can then take the Euler equations (in the form given by Eqs. 3.19-
3.21) and combine them with Eq. (3.38) to obtain the Lagrangean gasdy-
namic equations :
Continuity equation :

dρ

dt
+ ρ∇ · u = 0 , (3.39)

Momentum equation (in the form of Newton’s second law) :

ρ
du

dt
+ ∇P = f , (3.40)

Energy equation :

dǫ

dt
+ P

d

dt

(

1

ρ

)

=
G− L

ρ
, (3.41)

where ǫ = P/(γ − 1)ρ is the thermal energy per unit mass of the gas.
It is also possible to combine the terms of Eq. (3.41) to derive the “entropy

equation” :
d

dt

(

Pρ−γ
)

=
(γ − 1)

ργ
(G− L) , (3.42)

with S = ln (Pρ−γ) being the specific entropy of the gas.





Chapter 4

Sound waves and linear
stability analysis

4.1 General considerations

In this chapter we discuss a few solutions to the gasdynamic equations which
are fundamental for applications to astrophysical flows.

4.2 Sound waves

Let us consider the propagation of a 1D (plane) sound wave. A sound wave
is defined as a small perturbation (in density, velocity and pressure) which
travels through a gas. We will consider the most simple case of a medium
which is initially homogeneous (with constant density ρ0 and pressure P0)
and at rest (zero velocity). We then write the perturbed density, pressure
and velocity as

P + P0 , ρ+ ρ0 , u , (4.1)

with P ≪ P0, ρ ≪ ρ0 and u “with small values” (we will discuss later what
this actually means).

If we insert these variables into the 1D, plane gasdynamic equations (Eqs.
3.35-3.37), we obtain

∂

∂t
[ρ+ ρ0] +

∂

∂x
[(ρ+ ρ0) u] = 0 , (4.2)
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∂

∂t
[(ρ+ ρ0)u] +

∂

∂x

[

(ρ+ ρ0)u
2 + P + P0

]

= 0 , (4.3)

∂

∂t
[E] +

∂

∂x
[u (E + P + P0)] = 0 , (4.4)

with E = (ρ+ ρ0)u
2/2 + (P + P0)/(γ − 1).

We now consider that ρ0 and P0 are constant, and we neglect all terms
with quadratic or cubic dependence on the perturbations (and their spatial or
time derivatives). In practive we elliminate all terms involving the terms ρu,
u2 or uP . In this way, we obtain the linearized, plane gasdynamic equations :

∂ρ

∂t
+ ρ0

∂u

∂x
= 0 , (4.5)

ρ0
∂u

∂t
+
∂P

∂x
= 0 , (4.6)

∂P

∂t
+ γP0

∂u

∂x
= 0 . (4.7)

We now play at combining these equations to obtain differential equations
for each of the perturbed variables (ρ, P and u). For example, if we take the
time derivative of Eq. (4.6), and subtract from this the spatial derivative of
Eq. (4.7), we obtain

∂2u

∂t2
− γP0

ρ0

∂2u

∂x2
= 0 . (4.8)

Through combinations of Eqs. (4.5-4.7) we find that the other two perturbed
quantities (ρ and P ) follow the same differential equation. Therefore, all three
variables f satisfy the differential equation

∂2f

∂t2
− c2s

∂2f

∂x2
= 0 , (4.9)

with

cs ≡
√

γP0

ρ0

. (4.10)

Eq. (4.9) allows any solution of the form f(x − cst) or f(x+ cst) (or linear
combinations of these two forms), corresponding to waves travelling in the
−x or +x directions (respectively). These waves travel at the sound speed
cs, defined by Eq. (4.10).



4.3 Isothermal sound waves

In ISM flows, it is common to assume that the flow is approximately isother-
mal. This is a reasonable approximation, e. g., for flows within H II regions
in which the rapid heating/cooling processes tend to fix the temperature at
a value T0 ≈ 104 K. In order to model sound waves in such an environment,
one uses the linearized continuity and momentum equations (Eqs. 4.5-4.6),
and replaces the energy equation with the condition

P = ρ
RT0

µ
, (4.11)

where R is the gas constant and µ the molecular weight.
The solution of this system of equations corresponds to waves that travel

at a velocity

cis =

√

RT0

µ
=

√

P0

ρ0
. (4.12)

This is called the “isotheral sound speed”, which coincides with the “adia-
batic” sound speed (see Eq. 4.10) evaluated for a γ = 1 specific heat ratio.





Chapter 5

Shock waves

5.1 General considerations

As in general astrophysical flows range from transonic to hypersonic condi-
tions, an understanding of shock waves is essential. Shock waves are generally
produced in supersonic flows.

For example, in Fig. 5.1 we show a numerical simulation of the steady
flow pressure stratification produced by a blunt bullet moving at a M = 30
Mach number within a uniform, γ = 7/5 medium. It is clear that the pressure
shows two surfaces with discontinuous pressure increases. These two shock
waves are called the “bow shock” and the “tail shock”.

Many astrophysical flows produce directly observable shock waves. No-
table examples are jets (from stars or from massive compact objects) and
supernovae.

5.2 Plane-parallel shock waves

Let us now consider the simplest possible shock wave problem : a plane
shock wave moving along the direction normal to the plane wave front. If we
consider a coordinate system moving with the shock wave, with the x-axis
pointing towards the post-shock direction, we have the situation shown in
Fig. 5.2.

The transition from the pre-shock flow variables (ρ0, u0 and P0, see Fig.
5.2) to the post-shock variables (ρ1, u1 and P1) occurs over distances com-
parable to the mean free path λ of the particles in the gas. Therefore, the
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Figure 5.1: Pressure stratification in a blunt bullet flow moving at M = 30
in a γ = 7/5 gas, well into the hypersonic regime.



Figure 5.2: Schematic diagram of a plane-parallel shock.



transition is generally not appropriately described by the gasdynamic equa-
tions, and a kinetic approach has to be used.

Because shock waves correspond to discontinuous solutions of the gas-
dynamic equations, the mass, momentum and energy gasdynamic equations
(Eqs. 3.35-3.37) do give the appropriate relations between the pre- and post-
shock variables. However, a description of the details of the transition lie
beyond a gasdynamic description.

In the reference system moving with the shock wave (see Fig. 5.2) the
problem has no time-dependence. Hence, the 1D gasdynamic equations
simplify to : ρu = const., ρu2 + P = const., u(E + P ) = const. (with
E = ρu2/2 + P/(γ − 1)), where we have assumed that the energy loss/gain
within the shock transition is negligible. Therefore, the pre- and post-shock
variables follow the relations :

ρ0u0 = ρ1u1 , (5.1)

ρ0u
2
0 + P0 = ρ1u

1
1 + P1 , (5.2)

u0

(

ρ0u
2
0

2
+

γP0

γ − 1

)

= u1

(

ρ1u
2
1

2
+

γP1

γ − 1

)

. (5.3)

From these equations, we can find the postshock variables (ρ1, u1 and P1) as
a function of the preshock variables (ρ0, u0 and P0)

In order to do this, we first combine Eqs. (5.1-5.2) to obtain :

P1 = P0 + ρ0u
2
0

(

1 − ρ0

ρ1

)

. (5.4)

Substituting u1 (from Eq. 5.1) and P1 (from Eq. 5.4) into Eq. (5.3), we
obtain a quadratic equation for ρ1/ρ0 :

(

ρ1

ρ0

)2 [
(γ − 1)M2

0

2
+ 1

]

−
(

ρ1

ρ0

)

(

γM2
0 + 1

)

+
(γ + 1)M2

0

2
= 0 , (5.5)

where M0 = u0/c0, with c0
√

γP0/ρ0. This equation has solutions

ρ1

ρ0

=
γM2

0 + 1 ±
√

(M0 − 1)2

(γ − 1)M2
0 + 2

, (5.6)

giving ρ1/ρ0 = 1 for the “−” sign, and giving the compression at a shock
wave for the “+” sign :

ρ1

ρ0
=

(γ + 1)M2
0

(γ − 1)M2
0 + 2

. (5.7)



Combining Eqs. (5.7) and (5.1) we then obtain

u1

u0
=

(γ − 1)M2
0 + 2

(γ + 1)M2
0

(

=
ρ0

ρ1

)

, (5.8)

and using Eq. (5.4) we finally obtain :

P1 = P0 +
2(M2

0 − 1)

(γ + 1)M2
0

ρ0u
2
0 . (5.9)

Eqs. (5.7-5.9) are called the “shock jump relations” (alternatively, the “Rankine-
Hugoniot” or just “Hugoniot” relations).

For M0 = u0/c0 ≫ 1, we obtain the so-called “strong shock” jump rela-
tions :

ρ1

ρ0
=
u0

u1
=
γ + 1

γ − 1
, (5.10)

P1 =
2

γ + 1
ρ0u

2
0 . (5.11)

As in most cases ISM shocks are indeed hypersonic (i. e., with M0 ≫ 1),
these strong shock relations are applicable in most of the problems that will
be covered in this book.

5.3 Shock with radiative cooling

From the strong shock jump conditions (Eqs. 5.10-5.11), we see that the
post-shock temperatre T1 is given by :

T1 =
P1µmH

kρ1
=

2(γ − 1)

(γ + 1)2

µmHu
2
0

k
= 1.13 × 105 K

( u0

100 km s−1

)2

, (5.12)

where k is Boltzmann’s constant, µ is the molecular weight of the gas andmH

is the mass of H. The third term of the equation was calculated assuming
γ = 5/3 and µ = 1/2 (appropriate for a fully ionized, H gas). We have
normalized the relation to a typical u0 = 100 km s−1 velocity for a shock in
a SNR or in a HH object.

This hot gas cools, emitting radiation at IR, optical and UV wavelengths
to a temperature of a few thousand K. So, we assume that the cooling region
ends when the gas has attained a temperature T2 ∼ 103 K. At this point, the



gas has recombined, and has an isothermal sound speed c2 =
√

kT2/µmH ∼
3 km s−1.

We can then use the mass and momentum conservation equations (Eqs.
5.1-5.2) to determine the value of ρ2 after the cooling region. Combining
these two equations, we obtain the quadratic equation

ρ2c
2
2 − ρ2

(

u2
0 + P0

)

+ ρ2
0u

2
0 = 0 , (5.13)

which has the shock solution :

ρ2

ρ0
=

c20
2c22

[

M2
0 + 1 +

√

M4
0 + 2M2

0 (1 − 2α) + 1

]

, (5.14)

where M0 = u0/c0 and α = (c2/c0)
2, with c0 and c2 being the pre-shock and

post-cooling region isothermal sound speeds (respectively).
The strong shock relation (obtained for M0 ≫ 1) then is :

ρ2

ρ0
=

(

u0

c2

)2

. (5.15)

In other words, the compression is equal to the square of the Mach number
M ′

0 = u0/c2 computed with the pre-shock velocity and the post-cooling region
sound speed.

For the case in which c2 = c0, we obtain :

ρ2

ρ0
= M2

0 . (5.16)

This is called the “isothermal shock” jump relation, and is valid for all Mach
numbers.

5.4 Oblique shock jump relations

Let us now consider a plane, oblique shock. In such a shock, the flow enters
the shock at an angle different from π/2, and is refracted at its passage
through the shock. This is shown schematically in Fig. 5.3.

Let us consider a cartesian coordinate system at rest with the shock, with
its x-axis pointing along the normal to the plane shock (towards the post-
shock region) and its y-axis in the plane that contains the normal to the



Figure 5.3: Schematic diagram of a plane, oblique shock.



shock and the pre-shock velocity u0. From simple symmetry arguments it is
clear that the post-shock velocity u1 will also lie on the xy-plane.

We then write the steady, 2D Euler equations (see Eqs. 3.27-3.30) with
no y-dependence :

∂

∂x
(ρun) = 0 , (5.17)

∂

∂x

(

ρu2
n + P

)

= 0 , (5.18)

∂

∂x
(ρunut) = 0 , (5.19)

∂

∂x

{

un

[

ρ

2

(

u2
n + u2

t

)

+
γP

γ − 1

]}

= 0 , (5.20)

where un and ut are the components of the flow velocity parallel to the x-
and y-axes, respectively (see Fig. 5.3).

From these equations, we can obtain the relations that have to be satisfied
between the pre-shock variables (ρ0, un,0, ut,0 and P0), and the post-shock
variables (ρ1, un,1, ut,1 and P1) :

ρ0un,0 = ρ1un,1 , (5.21)

ρ0u
2
n,0 + P0 = ρ1u

2
n,1 + P1 , (5.22)

ρ0un,0ut,0 = ρ1un,1ut,1 , (5.23)

un,0

[

ρ0

2

(

u2
n,0 + u2

t,0

)

+
γP0

γ − 1

]

= un,1

[

ρ1

2

(

u2
1,0 + u2

t,1

)

+
γP1

γ − 1

]

. (5.24)

Eqs. (5.21) and (5.23) can be combined to give the jump condition for the
tangential velocity :

ut,1 = ut,0 , (5.25)

in other words, the component of the velocity parallel to the shock wave is
preserved when going through the shock.

Now, combining Eqs. (5.21), (5.24) and (5.25), we obtain an energy
equation involving only the normal component of the flow velocity :

u2
n,0

2
+

γ

γ − 1

P0

ρ0
=
u2

n,1

2
+

γ

γ − 1

P1

ρ1
. (5.26)

It is clear that Eqs. (5.21), (5.22) and (5.23) are the same equation system
as the one for a plane-parallel shock (Eqs. 5.1-5.3, with Eq. 5.26 actually



being the ratio between Eqs. 5.1 and 5.3). Therefore, the compression and
the post-shock pressure are given by Eqs. (5.7) and (5.9) :

ρ1

ρ0
=
un,0

un,1
=

(γ + 1)M2
n,0

(γ − 1)M2
n,0 + 2

, (5.27)

P1 = P0 +
2(M2

n,0 − 1)

(γ + 1)M2
n,0

ρ0u
2
n,0 , (5.28)

but with un,0 instead of u0, and the pre-shock Mach number being replaced
with the Mach number Mn,0 = un,0/c0 associated with the normal component
of the pre-shock velocity.

In the case of a radiative shock, Eqs. (5.27-5.28) would have to be replaced
with the appropriate jump conditions, obtained by replacing the pre-shock
flow velocity u0 by un,0.

5.5 Examples of flows with plane shock fronts

5.5.1 Flow colliding normally with a rigid wall

Let us consider the problem of a plane, supersonic wind (of density ρw,
pressure Pw and velocty vw) hitting a rigid wall (oriented perpendicular to
the direction of the wind velocity). The physical situation is shown in Fig.
5.4.

A shock is formed initially against the wall, and this shock then travels
(at a velocity vs, see Fig. 5.4) in the upstream direction, forming a post-shock
region in which the gas is at rest with respect to the wall. In a reference frame
moving with the shock, we have a medium with pre-shock flow parameters
ρ0 = ρw, P0 = Pw and u0 = vw + vs. The fact that the post-shock flow is at
rest with respect to the wall implies that u1 = vs.

Using Eq. (5.8), we have that

vw + vs

vs

=
γ + 1

γ − 1 +
2c2

0

(vw+vs)2

, (5.29)

where c0 =
√

γP0/ρ0 is the pre-shock sound speed. From this equation, we
can derive a quadratic equation for vs :

2v2
s + vsvw(3 − γ) − 2c20 − (γ − 1)v2

w = 0 , (5.30)



Figure 5.4: Schematic diagram of a flow constituted by a supersonic wind
which collides with a solid wall (perpendicular to the direction of the flow).



which has the solution

vs

vw
=

1

4

[

γ − 3 +
√

(γ + 1)2 + 16(c0/vw)2
]

, (5.31)

which in the hypersonic regime (vw ≫ c0) gives

vs

vw
=
γ − 1

2
. (5.32)

5.5.2 Flow hitting a wedge

Let us consider the problem of a supersonic flow which hits the leading edge
of a rigid wedge. If the wedge has a small enough half-opening angle φ, a
“regular shock reflection” occurs. In this configuration, two plane shocks
(which are attached to the leading edge) redirect the incoming flow to direc-
tions parallel to the two plane surfaces of the wedge (see the top frame of
Fig. 5.5). For large enough values of φ, instead of a regular shock reflection,
a detached bow shock is formed (right frame of Fig. 5.5).

The regular reflection regime has a simple analytic solution. For deriving
this solution, we consider one of the two sides of the flow/wedge interaction,
as shown in Fig. 5.6. We have a flow which hits the surface of a plane “shelf”
(at an angle φ to the surface), and an oblique shock (at an angle α to the
surface) redirects the incoming flow to a direction parallel to the shelf.

From Fig. 5.6 it is clear that the pre-shock flow (of velocity u0) has
components un,0 and ut,0 normal and parallel (respectively) to the shock
given by :

un,0 = u0 sin(φ+ α) ; ut,0 = u0 cos(φ+ α) . (5.33)

From the oblique shock jump conditions, the post-shock flow velocity then
has the normal and tangential components :

un,1 =
un,0

ξ
; ut,1 = ut,0 , (5.34)

where ξ is the compression at the shock. If the shock is strong, we have

ξ =
γ + 1

γ − 1
. (5.35)

The post-shock flow is parallel to the surface of the shelf. Therefore, the
component vsurf normal to the shelf of the post-shock flow has to be zero :

vsurf = ut,1 sinα− un,1 cosα = 0 . (5.36)



Figure 5.5: Pressure stratifications resulting from the interaction of a M =
30, γ = 7/5 flow (propagating to the right, along the abscissa) with a rigid
wedge. The three plots are labeled with the half-opening angle of the wedges.
The φ = 30◦ and φ = 40◦ flows are stationary. The flow obtained for the
φ = 50◦ wedge (right frame) is non-stationary, and the displayed stratification
corresponds to a time evolution equal to 3 times the flow crossing time scale
of the abscissa of the displayed domain.



Figure 5.6: Schematic diagram showing the interaction of a flow that hits a
plane, solid shelf (in black) at an angle φ to its surface. A regular reflection
is produced, with an oblique shock (at an angle α) that redirects the flow to
a direction parallel to the surface of the shelf.

Combining Eqs. (5.33), (5.34) and (5.36) we then obtain :

tan (α + φ) = ξ tanα . (5.37)

This is the equation that determines the angle α (between the shock and the
shelf) as a function of the incidence angle φ (see Fig. 5.6) and the compression
ξ at the shock.

Using the identity

tan (α + φ) =
tanα+ tanφ

1 − tanα tanφ
, (5.38)

we can rewrite Eq. (5.37) in the form

ξ tan2 α +
1 − ξ

tanφ
tanα + 1 = 0 . (5.39)

This quadratic equation has solutions

tanα =
ξ − 1

2ξ tanφ

[

1 ±
√

1 − 4ξ tan2 φ

(ξ − 1)2

]

. (5.40)



Figure 5.7: Angle α between the shock and the plane surface (in the reg-
ular shock reflection problem) as a function of the incidence angle φ for a
hypersonic flow with γ = 5/3 (solid line) and γ = 7/5 (dashed line).

The α vs. φ relations obtained (from Eq. 5.40) for strong shocks with γ = 5/3
(→ ξ = 4) and γ = 7/5 (→ ξ = 6) are shown in Fig. 5.7.

In this figure, we see that for a given φ there are two possible values of
α (obtained from the +/− sign of Eq. 5.40). These are called the “strong”
(larger α value) and the “weak” solutions. It is an experimental fact that
regular reflections invariably adopt the weak solution. Numerical solutions
of this problem (see Fig. 5.5) also adopt the weak solution.

From Fig. 5.7 it is clear that there is a maximum possible value φmax

beyond which there are no solutions to the regular shock reflection problem.
The value of φmax is obtained by setting the square root term of Eq. (5.40)



to zero, which gives

tanφmax =
ξ − 1

2
√
ξ
. (5.41)

Combining this equation with the strong shock jump condition (Eq. 5.35),
we obtain φmax = 36◦.87 for γ = 5/3 and φmax = 45◦.58 for γ = 7/5.

For incidence angles of the flow φ > φmax a regular shock reflection is
not possible, and the “flow on wedge” problem then adopts a solution with
a curved bow shock (see the right frame of Fig. 5.5). There is no analytic
solution for this flow configuration.





Chapter 6

1D, stationary, radiative shocks

6.1 General considerations

After the passage of an astrophysical shock wave, the hot, post-shock gas
emits radiation and cools again. Provided that the shock velocity is high
enough, the post-shock gas becomes rapidly ionised, and then emits a rich
emission line spectrum. This radiative energy loss cools the gas, and the ions
recombine to lower ionisation states.

The most simple possible model for this post-shock relaxation region is to
consider a stationary, plane-parallel flow. The plane-parallel approximation
is valid provided that the size of the relaxation region is small compared to
the radius of curvature of the shock wave (a condition not necessarily met
in ISM shock waves). The assumption that the flow is stationary is also
dubious at best, since many objects have evolutionary timescales which are
comparable to the post-shock cooling timescale. Also, it has been found
that the relaxation regions behind shock waves of high enough velocities
(> 100 km s−1) are thermally unstable, so that the stationary solutions are
probably never attained by a real shock.

Regardless of these problems, the plane-parallel, stationary radiative shock
is the most simple possible problem with direct application to ISM shocks
from which a concrete prediction of the emitted spectrum can be made. It
serves as an illustration of the elements that have to be considered when
trying to model more complex flows with shock waves in the ISM.
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6.2 The equations for the recombination re-

gion

From the 1D Euler equations (Eqs. 3.35-3.37), we see that a radiative plane-
parallel, stationary, γ = 5/3 flow (in the absence of external forces) satisfies
the equations

ρu = ρ0u0 , (6.1)

ρu2 + P = ρ0u
2
0 + P0 , (6.2)

dh

dx
=
G− L

ρu
; h =

u2

2
+

5

2

P

ρ
, (6.3)

where ρ0, P0 and u0 are the flow variables at some point in which they are
known (in our case, these would be the pre-shock conditions), and G, L are
the energy gain and loss (respectively) per unit volume and time.

The procedure for calculating the structure of the recombination region
is to integrate numerically Eq. (6.3) over a finite distance step ∆x, going
from h(x) to h(x+ ∆x), and then to use the relations

ρ =
(5/2)(P0 + ρ0u

2
0) +

√

(5/2)2(P0 + ρ0u
2
0)

2 − 8hρ2
0u

2
0

2h
, (6.4)

P = P0 + ρ0u
2
0

(

1 − ρ0

ρ

)

, (6.5)

u =
ρ0u0

ρ
, (6.6)

(which can be deduced from Eqs. 6.1-6.3) to calculate the flow variables ρ, P
and u as a function of the “advanced position” specific enthalpy h(x + ∆x)
and the pre-shock variables ρ0, P0 and u0. From the flow variables one can
then calculate

n =
ρ

m
; T =

P

k(n+ ne)
, (6.7)

where n is the ion+atom number density, ne the electron density, and m is
the average mass per atom or ion (m = mH for a pure H gas, and m = 1.3mH

for a 90% H and 10% He gas).
Before actually being able to integrate Eq. (6.3) it is actually necessary to

calculate what is the ionisation state of the gas. This is necessary in order to
calculate ne (see Eq. 6.7) and to calculate the heating and cooling functions
(G and L, respectively).



6.3 The ionisation state of the gas

If the gas were in coronal ionisation equilibrium, we could compute the ioni-
sation state of the gas as a function of the local temperature. Unfortunately,
in the cooling region behind a shock wave the cooling and recombination
timescales are comparable, so that the gas is actually not in ionisation equi-
librium. Because of this, it is necessary to integrate the rate equations

u
dya,z

dx
= ne {ya,z+1αa,z+1(T ) + ya,z−1ca,z−1(T ) − ya.z [αa,z(T ) + ca,z(T )]}+

ya,z−1φa,z−1 − ya,zφa,z , (6.8)

where ya,z = na,z/na is the fractional ionisation state of the ion of charge
z of the element a, and the α, c and φ coefficients are the recombination,
collisional ionisation and photoionisation rates (respectively). We also have
the auxilliary relations :

∑

z

ya,z = 1 , (6.9)

∑

a

[

na

∑

z

ya,z

]

= n , (6.10)

∑

a

[

na

∑

z

zya,z

]

= ne , (6.11)

1

n

∑

a

nama = m, (6.12)

na = fa n , (6.13)

where ma is the mass and fa the abundance (by number) of element a.

This then represents the main difficulty in computing the structure of the
relaxation region behind an astrophysical shock wave. In order to compute
the ionisation state of the gas (necessary for computing the electron density
ne and the heating and cooling functions) it is necessary to integrate a set of
rate equations (see Eq. 6.8) including all of the relevant ions together with
the equation for the specific enthalpy (Eq. 6.3).



6.4 The photoionisation rates

The main difficulty in computing the ionisation rate equations (Eqs. 6.8) is
naturally related to the photoionisation rates

φa,z =

∫ ∞

νa,z

4πJν

hν
aa,z

ν dν , (6.14)

where νa,z is the frequency associated with the ground state ionisation edge
and aa,z

ν the photionisation cross section of ion a, z.
The intensity Iν is obtained through an integration of the plane-parallel

radiative transfer equation :

µ
dIν
dx

= jν − κνIν , (6.15)

where the emission coefficient jν is dominated by the contribution from the
H Lyman continuum, but also has contributions from the He II and He III
recombination continua, and from resonance lines of a limited set of ions (see,
e. g., the paper of Shull and McKee 1979). In Eq. (6.15), µ = cos θ where θ
is the angle between the propagation direction of the ray and the x-axis.

The radiative transfer equation (Eq. 6.15) has the integral form (for
µ > 0) :

Iν(x, µ) =
1

µ

∫ x

−∞

jν(x
′)e−τν(x′,x)/µdx′ , (6.16)

where

τν(x
′, x) =

∫ x

x′

κν(x
′′)dx′′ . (6.17)

A similar expression (but with integration limits from +∞ to x) is obtained
for directions with µ < 0. The average intensity Jν can then be computed
as :

Jν(x) =
1

4π

∮

Iν dω =
1

2

∫ 1

−1

Iν(x, µ)dµ . (6.18)

Combining Eqs. (6.16-6.18) and commuting the position and angular inte-
grals, we finally obtain :

Jν(x) =
1

2

∫ ∞

0

jν(x
′)E1 [|τν(x′, x)|] dx′ , (6.19)



where the first order exponential integral E1(τ) is defined by

E1(τ) ≡
∫ ∞

τ

e−t

t
dt =

∫ 1

0

e−τ/µ

µ
dµ . (6.20)

Tabulations and rational/exponential approximations to E1(τ) can be found
in the book of Abramowitz & Stegun (1965).

Therefore, in order to calculate the photoionisation rates it is necessary
to compute the average intensity Jν at all positions x along the flow (Eqs.
6.17, 6.19 and 6.20) at least for a limited number of frequency values. For
example, one finds in the literature numerical models that use a set of fre-
quencies coinciding with the ionisation edges of all of the ions considered in
the calculation.

In numerical integrations of the plane-parallel, radiative shock problem it
is found that in general the photoionisation rates do not play a dominant role.
Therefore, approximate solutions of the post-shock region can be obtained
neglecting the photoionisation rates in the ionisation rate equations (Eqs.
6.8). Including the photoionisation rates forces one to do a more complex
numerical solution, involving an iterative procedure.

6.5 The minimal relaxation region model

Let us now consider a very simple model for the post-shock relaxation region.
In our model, we consider Eqs. (6.3-6.7), and write a single equation for the
ionisation fraction y = nHII/nH of Hydrogen :

dy

dx
=
ny

u
[(1 − y)c(T ) − yα(T )] , (6.21)

with the interpolation functions given after Eq. (1.56) for the α(T ) and
c(T ) coefficients. In this equation we have set ne = yn, nHII = yn and
nHI = (1 − y)n, with n = ρ/m (with m ≈ mH).

We now set G = 0 (we neglect the energy gain due to photoionisation,
consistently with the fact that we have neglected the photoionistion rates in
Eq. 6.21) and compute L as :

L = n2y(1 − y)c(T )χH + n2y
(

6.1 × 10−19
)

[

1 − e−(T/105)1.63
]

, (6.22)

where the first term on the right is the cooling due to collisional ionisation
of H (with χH = 13.6 eV) and the second term is an analytic approximation



Figure 6.1: Structures of the relaxation region behind a shock wave computed
from the “minimal model” described in the text.



to the temperature behaviour of the coronal ionisation cooling function (all
variables are in cgs units).

We now choose a set of pre-shock parameters : u0, T0, n0 and y0, and
numerically integrate Eqs. (6.3) and (6.21) until the gas recombines and
reaches low temperatures. Results of this exercise obtained for T0 = 100 K,
n0 = 100 cm−3, y0 = 10−4 and u0 = 50, 100 km s−1 are shown in Fig. 6.1.

These solutions show the typical stratification of the post-shock relaxation
region : a region close to the shock wave in which the gas gets collisionally
ionised, followed by a more extended, cooler region in which H eventually re-
combines again. This latter region is called the “recombination” or “cooling”
region. There is an abundant literature on solutions of this type, of which
Hartigan et al. (1987) is a standard reference.

6.6 The cooling distance

From models of the relaxation region behind a plane-parallel shock it is pos-
sible to calculate a “cooling distance” dc. We define dc as the distance from
the shock to the point where the temperature has dropped to a value of
104 K. It is also possible to choose another value for this temperature (e. g.,
103 K), but it is clear from Fig. 6.1 that similar values for dc are obtained
regardless of the precise temperature value that has been chosen.

Fig. 6.2 shows the cooling distance (to 104 K) as a function of shock
velocity u0, for a pre-shock number density n0 = 100 km s−1, obtained from
the shock model tabulation of Hartigan et al. (1987). In order to obtain
the scaling of the cooling distance with pre-shock density, we consider the
following scaling argument. The cooling distance dc can be estimated as :

dc ∼
ET,1

L1

u1 ∝
n1kT1u1

n2
1Λ(T1)

∝ f(u0)

n0

. (6.23)

In other words, the cooling distance is given by the ratio between the post-
shock thermal energy (ET,1) and cooling function (L1 = n2

1Λ(T1), assuming
low density regime cooling) multiplyed by the post-shock velocity u1. Given
the fact that for a strong shock, the post-shock velocity is u1 = u0/4, the post-
shock density is n1 = 4n0 (Eqs. 5.6 and 5.8), and the post-shock temperature
T1 is a function of the pre-shock velocity u0 (Eq. 5.12).

Therefore, provided that the cooling function is in the low density regime
(i. e., L = n2Λ(T )), the cooling distance is proportional to the ratio of a



Figure 6.2: Cooling distance (to 104 K) as a function of shock velocity u0

for shocks with a pre-shock number density n0 = 100 cm−3 (values from
Hartigan et al. 1987).



function of the shock velocity (f(u0), see Eq. 6.23) and the pre-shock density
n0. If one looks at the predictions of the radiative shock models of Hartigan
et al. (1987), it is clear that the dc ∝ n−1

0 scaling is indeed satisfied. The
dependence of dc on the shock velocity u0 is shown in Fig. 6.2.

Different analytic fits to this dc vs. u0 dependence have been suggested
in the literature. A possible fit (incorporating both the n0 and the u0 depen-
dencies) is :

dc =

(

100 cm−3

n0

)

×
{

[

3 × 1011cm
]

( u0

100 km s−1

)−6.4

+
[

8 × 1013cm
]

( u0

100 km s−1

)5.5
}

. (6.24)

This fit is shown (together with the dc values of Hartigan et al. 1987) in Fig.
6.2.

6.7 Preionisation

Shocks of velocity higher than ∼ 100 km s−1 have a “radiative precursor”.
This is a region ahead of the shock wave in which ionising photons pro-
duced by the post-shock region photoionise the gas, producing a leading
photoionised region (see Fig. 6.3). This region can be computed by solving
the gasdynamic (6.1-6.3) and rate (6.8) equations, including the photoioni-
sation rate and heating terms.

In this section, we present a simple, analytic model for this region (follow-
ing Shull and McKee 1979). We first take the results from the shock models
of Raymond et al. (1988), who give predictions of the flux F of ionising
photons emitted into the pre-shock region as a function of the shock velocity
u0 and the pre-shock density n0. The resulting F/(n0u0) ratio (which is only
a function of u0) predicted from these models is plotted in Fig. 6.4. This
function can be fitted with the interpolation :

F

n0u0

= v2.8−0.6v0

0 ; v0 =
u0

110 km s−1
< 2.458 ,

= 3.293 ; v0 ≥ 2.458 . (6.25)

A simple, Strömgren region argument gives the relation :

F = n0u0 + n2
0αHdp , (6.26)
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d
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p
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Figure 6.3: Schematic diagram showing the photoionisation region ahead of
a shock wave. This region is preceded by an ionisation front (IF).



Figure 6.4: Flux F of ionising photons emitted by shock waves of different
shock velocity u0. Actually, the F/(n0u0) ratio is shown.



where dp is the x-extent of the preionisation region (see Fig. 6.3), αH ≈
2.56 × 10−13 cm3s−1 (see Eq. 1.13) is the H recombination coefficient, and
n0u0 is the flux of incoming neutrals. From this equation, we obtain :

dp =
[

4.30 × 1017cm
]

(

100 cm−3

n0

)

v0

(

v2.8−0.6v0

0 − 1
)

; v0 =
u0

110 km s−1
.

(6.27)
The resulting dp vs. u0 relation is shown in Fig. 6.5. It is clear that dp = 0
for u0 ≤ 100 km s−1. In this shock velocity regime, the material entering the
shock wave is only partially ionised, with the pre-shock H ionisation fraction
given in an approximate way by

y0 =
F

n0u0
, (6.28)

where the right hand side is given as a function of u0 by Eq. (6.25). This
ionisation fraction is shown (as a function of u0) in Fig. 6.5.

6.8 The emission line spectra of shocks com-

pared to photoionised regions

The optical emission line spectra of evolved supernovae remnants and of
Herbig-Haro objects (both of which arise in shock waves with velocities of
∼ 100 km s−1) show lines of a wide range of ionisation energies. For example,
collisionally excited lines of [O III], [O II] and [O I], lines of [C III], [C II]
and [C I], and lines of [S III] and [S II]. Recombination lines of H and He are
also seen. All of the collisionally excited lines cited above are strong (i. e.,
of intensities comparable to the ones of the H recombination lines).

Photoionised regions have qualitatively different spectra, with recombi-
nation lines of H and He and collisionally excited lines of ionised species, but
with very faint lines of neutral (e. g., [C I] and [O I]) or low ionisation species
(e. g., [S II]). The explanation for this is that C and O are at least singly
ionised (and S twice ionised) within the Strömgren radius, and that outside
the ionised region (where we do have C I and O I) the electron density is
too small to produce an appreciable excitation of the levels giving rise to the
emission lines. Therefore, in photoionised regions the emission of lines from
neutrals come from the transition region around the Strömgren radius, where
the gas is partially neutral (so that both neutrals and an appreciable electron



Figure 6.5: “Strömgren size” of the preionisation region dp (top) and pre-
shock H ionisation fraction y0 (bottom) as a function of shock velocity u0 for
shocks with n0 = 100 cm−3.



density are present). Because this transition region is very narrow compared
to the size of the photoionized region, the lines that exclusively come from
the transition region are very faint compared to the lines produced within
the bulk of the photoionized region.

On the other hand, the transition region between ionised and neutral gas
is by far the densest part of a post-shock cooling region, so that its emission
dominates the emission spectrum produced by the shock. The spectrum of
a shock therefore corresponds to a transition region in which all ionisation
states present (including neutrals) contribute strongly.



Chapter 7

The hydrodynamic expansion
of an HII region

7.1 The final, pressure equilibrium configu-

ration

Following the expansion to the initial Strömgren radius (see section 1.4.4),
the hot, high pressure ionised region pushes away the cold, neutral surround-
ing gas. This expansion of the HII region stops when the photoionised gas has
lowered its density enough so as to reach pressure equilibrium with the sur-
rounding, undisturbed nuetral gas. This chapter describes the model derived
in [16].

Let us consider a star with an ionising photon rate S∗ in a uniform, neutral
medium of density n0 and isothermal sound speed c0 (c0 ≈ 1 km s−1 for a
100 K environmental temperature). The initial, constant density expansion
phase (section 1.4.4) leads to the formation of an ionised region of radius

RS =

(

3S∗

4πn2
0α

)1/3

, (7.1)

where α = 2.59 × 10−13cm3s−1 is the case B recombination coefficient of H
at 104 K (see equation 1.8). The ionised region has a temperature ∼ 104 K,
so that its isothermal sound speed is ci ≈ 10 km s−1.

The HII region will then expand until its number density (of atoms+ions)
reaches a value nf , determined by the condition of pressure equilibrium with
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the surrounding environment :

nfc
2
i = n0c

2
0 → nf = n0

(

c0
ci

)2

. (7.2)

The Strömgren radius of the pressure equilibrium configuration is then:

Rf =

(

3S∗

4πn2
fα

)1/3

=

(

ci
c0

)2/3

RS . (7.3)

In other words, given that ci/c0 ≈ 10 (see above), the final radius of the HII
region (corresponding to the pressure equilibrium configuration) is ∼ 5 times
the initial Strömgren radius.

The mass of the final HII region then is :

Mf =
4πR3

f

3
nf1.3mH =

(

ci
c0

)2

Mi , (7.4)

where Mi is the mass within the initial Strömgren radius (before the hydro-
dynamic expansion), and 1.3mH is the mass per atom/ion of a gas with a H
fractional abundance (by number) of 0.9 and an He abundance of 0.1 . There-
fore the mass of the HII region grows by a factor of ∼ 100 as it evolves from
the initial Strömgren radius to the final, pressure equilibrium configuration.

Interestingly, the expanding HII region pushes out an environmental mass

Menv ≈
4πR3

f

3
n01.3mH =

(

ci
c0

)2

Mf . (7.5)

Therefore, the expanding HII region pushes out a mass Mf which is ∼ 100
times larger than the mass Mion = Mf −Mi. Mion is the mass that was ini-
tially part of the neutral environment, which was photoionised (and therefore
incorporated into the HII region) during the hydrodynamic expansion phase.

In this way, from the point of view of the neutral environment, the HII
region acts as a piston, pushing out a mass ∼ Menv (see equation 7.5), and
incorporating into the HII region only ∼ 1% of this mass.

7.2 An analytic model for the expansion

We consider the problem of an HII region in its “hydrodynamic expan-
sion phase”, following the initial, constant density expansion to the “initial



Strömgren radius”, given by equation (7.1). Once the ionization front has
reached a radius RS, the high temperature gas (of isothermal sound speed
ci and initial density n0) starts to expand, pushing a shock into the sur-
rounding environment (of sound speed c0 and density n0). If we assume that
this shock is isothermal, and that it has a shock velocity vs, the compression
in the shock is = M2

0 , where M0 = vs/c0. The velocity of the post-shock
material relative to the shock therefore is

v1 = vs/M
2
0 . (7.6)

If the ionization front moves at a velocity dR/dt (where R is the time-
dependent radius of the photoionized region), the velocity vs (with which the
shock travels away from the source) is

vs =
dR

dt
+ v1 =

dR

dt
+ c20/vs , (7.7)

where for the second equality we have used equation (7.6). Let us note that
Dyson & Williams ([8]) assumed that vs = dR/dt. From this equation, it is
possible to find vs as a function of dR/dt:

vs =
1

2





dR

dt
+

√

(

dR

dt

)2

+ 4c20



 (7.8)

and dR/dt as a function of vs:

dR

dt
= vs −

c0
vs
. (7.9)

We now assume that the expanding HII region is approximately homo-
geneous (of density n), and that it is in pressure balance with the shocked,
neutral material:

nc2i = n0v
2
s , (7.10)

and that it is in global photoionization equilibrium:

S∗ =
4π

3
R3n2α →

(

n

n0

)2

=

(

RS

R

)3

, (7.11)

where for deriving the second equality we have used the definition of the
initial Strömgren radius (equation 1.8).



We now combine equations (7.9-7.11) to obtain :

1

ci

dR

dt
=

(

RS

R

)3/4

+ σ

(

R

RS

)3/4

, (7.12)

where σ = c20/c
2
i is equal to 1/2 times the environment-to-ionized medium

temperature ratio. If we set σ = 0 we regain the differential equation derived
by Dyson & Williams ([8]).

With the boundary condition R(t = 0) = RS, this equation can be inte-
grated analytically to obtain :

t′ =
1

3σ7/6
[f(r) − f(1)] , (7.13)

with

f(r) = −12σ1/6r1/4 + 2
√

3 tan−1

( √
3σ1/6r1/4

1 − σ1/3r1/2

)

+ ln

[

(σ1/3r1/2 + σ1/6r1/4 + 1)(σ1/6r1/4 + 1)2

(σ1/3r1/2 − σ1/6r1/4 + 1)(σ1/6r1/4 − 1)2

]

, (7.14)

where r = R/RS and t′ = tci/RS.

It can be shown that for σ = 0 equation (7.13) coincides with the solution
of the book of Dyson & Williams ([8]) :

t′DW =
4

7

(

r7/4 − 1
)

. (7.15)

Figure 7.1 shows a comparison between the solution given (for different values
of σ = c20/c

2
i ) by equation (7.13) and “Dyson’s solution” (equation 7.15).

It is also possible to use the implicit R(t) solution that we have derived
(equation 7.13) to derive an equation of motion for the shock wave driven
into the neutral medium. This is done by substituting the R(t) solution into
equation (7.12), and then inserting the derived dR/dt(t) into equation (7.8).
In this way, we obtain vs as a function of t, and one can in principle integrate
this equation numerically in order to obtain the radius of the shock wave as
a function of time. This is done in the following section in order to compare
the resulting prediction with the results of a gasdynamical simulation.



Figure 7.1: The solution for an expanding HII region into a pressureless,
σ = 0 environment (Dyson’s solution) is shown with a dashed line. The solid
lines correspond to solutions with the σ values given by the corresponding
labels.



7.3 Gasdynamic simulation

Let us now consider the gasdynamic equations for a spherically symmetric,
two-temperature photoionized region:

∂n

∂t
+
∂nu

∂R
+

2nu

R
= 0 , (7.16)

∂nu

∂t
+

∂

∂R

[

n(u2 + c2)
]

+
2nu2

R
= 0 , (7.17)

∂nHI

∂t
+
∂nHIu

∂R
+

2nHIu

R
= (n− nHI)

2α− nHIφ , (7.18)

φ =
S∗σν0

4πR2
e−τν0 ; τν0

= σν0

∫ R

0

nHI dR
′ , (7.19)

where R is the spherical radius, u the (radial) fluid velocity, n is the number
density of the (pure H) gas, nHI is the neutral H number density, n−nHI is the
ionized H density (equal to the electron density), α = 2.59×10−13erg cm3s−1

is the case B recombination coefficient of H at 104 K. The photoionization
rate φ is computed in the standard “grey HII region” approximation (in
which the frequency dependence of the photoionization cross section σν is not
considered), so that it is given (as a function of the ionizing photon rate S∗

and the Lyman limit HI photoionization cross section σν0
= 6.3× 10−18cm2)

by equation 7.19). Finally, the sound speed is computed as a function of the
neutral fraction of the gas as :

c =

(

nHI

nH

)

c0 +

(

1 − nHI

nH

)

ci , (7.20)

with ci = 10 km s−1 (the isothermal sound speed of the ionized gas) and
c0 = 1 km s−1 (the sound speed of the external, neutral gas).

We compute a model with S∗ = 1049 s−1 (the ionizing photon rate of an
O7 main sequence star). We initialize the spherical computational domain
with a uniform, n = 107cm−3 number density. Initially, we set nHI = 0
for R ≤ RS and nHI = n for R > RS, where RS = 4.52 × 1015cm is the
Strömgren radius obtained with the chosen values of S∗ and n.

With these initial conditions, equations (7.16-7.19) are integrated in a
spherical computational grid of 2000, equally spaced grid points extending
from R = 0 to an outer radius Rout = 1018cm. This outer radius is large
enough to contain all perturbations within the computational domain.



Figure 7.2 shows the (R, t)-plane density stratification obtained from this
simulation. The flow develops a low density, ionized region with a decreasing
expansion velocity. The ionized region reaches its maximum outer radius at
t ≈ 5.5 × 104yr, and then its radius decreases slowly with time, and finally
stabilizes at a constant value for t > 1.3 × 105 yr.

Also shown in Figure 7.2 are the analytic solution for the radius of the
ionized region (equation 7.13) and the corresponding radius of the shock
propagating into the neutral gas (obtained by integrating numerically equa-
tion 7.8, see the last paragraph of section 2). It is clear that the analytic
solution (equation 7.13) reproduces well both the initial expansion and the
final radius of the photoionized region. The analytic solution, however, fails
to reproduce the “overshoot” (i.e., the HII region with radius larger than the
final radius) obtained in the numerical simulation for t ∼ 5×104 yr. Finally,
in Figure 7.2 we also show Dyson’s solution (see equation 7.15).

7.4 The timescale for convergence to the pres-

sure equilibrium configuration

The analytic model presented above allows us to make a simple prediction
of the timescale for the expansion to attain the final, pressure equilibrium
configuration. Equation (7.12) can be written in the form :

t =
Rf

c0
I , (7.21)

with

I =

∫ R/Rf

σ2/3

(

1

x3/4
− x3/4

)

dx , (7.22)

where Rf = RS/σ
2/3 is the final, pressure equilibrium radius of the HII region

expansion (with RS given by equation 1.8) and x = R/Rf is the spherical
radius in units of Rf .

In order to obtain a simple prediction of the relaxation timescale of the HII
region expansion, we now assume that σ = (c0/ci)

2 ≪ 1 (which is generally
true for a ∼ 104 K HII region expanding into a ∼ 100 K neutral/molecular
environment), and therefore set the lower limit of the I integral (equation
7.22) to zero. We can then evaluate the time t in which a given fraction
R/Rf of the final radius is attained from equations (7.21-7.22).



Figure 7.2: Density stratification in the (t, R)-plane of the numerical sim-
ulation described in the text. The low density region corresponds to the
photoionised gas which first expands, and then reaches a final radius (deter-
mined by the pressure equilibrium of the ionised and neutral regions). The
solid line is the prediction from the analytic model (equation 7.13) for the
motion of the ionisation front, and the long-dash line the corresponding pre-
diction for the motion of the shock wave. The short-dash line is Dyson’s
solution (equation 7.15). The density stratification is shown with the loga-
rithmic scale given (in cm−3) by the top bar.



For example, if we evaluate the I integral (equation 7.22, which has an
analytic solution similar to the one given in equation 7.13), for R/Rf = 0.8
we obtain I = I8 = 0.7085 and for R/Rf = 0.9 we obtain I = I9 = 1.1353.
Therefore, for obtaining an estimate of the timescale tf in which the HII
region attains ∼ 80-90% of its final radius Rf , we can set I ≈ 1 in equation
(7.21), which gives

tf ≈ 105 yr

(

Rf

0.1 pc

)(

1 km s−1

c0

)

≈ 3 × 104 yr

(

S∗

1049s−1

)(

107cm−3

n0

)2/3(
1 km s−1

c0

)7/3

, (7.23)

where in the second equality we have set ci = 10 km s−1. Therefore, ultra
compact HII regions (with radii of ∼ 0.1 pc) have reached the final, pressure
equilibrium configuration in a tf ∼ 105 yr timescale. Normal HII regions,
with environmental densities n0 ∼ 100 cm−3 would reach the pressure equilib-
rium configuration in ∼ 6.5× 107 yr, which is close to 2 orders of magnitude
larger than the main sequence lifetimes of the central O stars. Therefore,
such regions will still be in the expansion phase when the central stars end
their life in a SN explosion.





Chapter 8

Wind-driven HII regions

8.1 The general problem

HII regions are produced by the photoionization of the ISM due to the ra-
diation of a massive O or B star. These stars also eject a stellar wind (see
table 1.1), which pushes the surrounding ISM into a higher pressure, shell
structure. In order to have a more realistic model for the expansion of an
HII region, it is necessary to consider the effect of this wind (together with
the photoionization process).

This problem has been described in some detail in the review paper of
Capriotti & Kozminski [6], as well as in the book of Dyson & Williams [8].
The more detailed model of [17] is presented in the following sections.

8.2 The flow configuration

We assume that we have the flow configuration shown in Figure 8.1:

1. a star has an isotropic wind (of mass loss rate Ṁ and terminal velocity
vw) which is turned on at t = 0. At a time t > 0 the wind fills the
inner, spherical region labeled “I” in the schematic diagram. The star
also emits S∗ ionizing photons per unit time (starting at t = 0). The
outer boundary of this region is a spherical shock, which has a radius
much smaller than the ones of all of the other regions of the flow,

2. the shocked stellar wind produces a hot bubble of coronal gas (region
II, which is non-radiative for the case of an O/B central star) limited
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Figure 8.1: Schematic diagram of a wind-driven HII region. The asterisk
indicates the position of the ionizing photon+stellar wind source. Region I is
filled with the expanding stellar wind, ending at an outer shock (thick, inner
circle). Region II is filled with the hot, shocked wind, and ends in a contact
discontinuity (at a radius R). Region IIIa is the photoionized region (of outer
radius RS). Region IIIb is the perturbed, neutral environment region, pushed
out by the outer shock (of radius Rn), which travels into the unperturbed
environment (region IV).

on the outside by a contact discontinuity which separates the stellar
wind from disturbed environmental material,

3. the hot bubble pushes out a shock wave (the outer boundary of region
III in the schematic diagram) into the surrounding, neutral environ-
ment (region IV). The shell of displaced environmental material has
an inner region (region IIIa) which is photoionized by the S∗ ionizing
photon rate of the central star, and a neutral outer region (region IIIb).

We first assume that region IIIa (the HII region) is much thinner than
region IIIb (the region filled with shocked, neutral material, see Figure 8.1).
For this “thin HII region” case, one can derive a model resulting in a first
order differential equation with an approximate analytic solution. This model
is described in section 8.3.



We then remove this assumption, and derive a “thick HII region” model,
which results in a differential equation which we integrate numerically. This
model is described in section 8.4.

8.3 Thin HII region model

8.3.1 Derivation of the model equation

As described in section 8.2, we assume that the stellar wind goes through a
shock, and fills in a large bubble of hot, coronal gas. The kinetic energy of
the wind feeds the thermal energy of the bubble and the kinetic energy of
the swept-up material. The resulting energy equation is:

Ṁv2
w

2
t =

3

2
PV +

1

2
Msv

2
s , (8.1)

where Ṁ is the mass loss rate and vw the terminal velocity of the wind, P
and V are the pressure and volume (respectively) of the stellar wind bubble
and Ms and vs are the mass and velocity (respectively) of the swept-up shell.

Following the classical derivation (see [8]), we use the estimates

P ≈ ρ0Ṙ
2 , Ms ≈

4π

3
R3ρ0 , vs ≈ Ṙ , (8.2)

where R is the outer radius of the hot bubble (so that V = 4πR3/3).
Combining equations (8.1-8.2), we obtain an energy conservation equation

of the form:
Ṁv2

w

2
t =

8π

3
R3P → P =

3Ṁv2
wt

16πR3
, (8.3)

for a bubble of uniform pressure P and radius R at an evolutionary time t.
The relations in equation (8.2) are strictly valid for the case in which

the swept-up material (regions IIIa and IIIb in figure 8.1) forms a thin shell.
However, we will apply equation (8.3) for the case in which region IIIb (of
neutral swept-up gas, see figure 8.1) is not thin. This is not likely to result
in large errors because the thermal energy of the shell dominates over the
kinetic energy of the shell by a factor of ≈ 3. Therefore, an incorrect estimate
of the kinetic energy of the (no longer thin) shell does not introduce large
errors in the energy equation.



We now follow the derivation of Chapter 7, and assume that the outer
shock (driven by the swept-up shell into the undisturbed environment) is
isothermal, so that the postshock velocity vps and pressure Pps are given by
the isothermal Rankine-Hugoniot relations:

vps =
c20
vn

, Pps = ρ0v
2
n , (8.4)

where vn is the shock velocity and ρ0 the ambient density. In the following,
we set Pps = P (where Pps is the post-shock pressure, see equation 8.4 and
P the pressure of the hot bubble, see equation 8.3).

Also, from the standard “shock pushed by a piston” problem, we have
the relation

vn = vps + Ṙ , (8.5)

where Ṙ is the velocity of the outer edge of the hot bubble.
Now, combining equations (8.3-8.5), we obtain the differential equation:

dr

dτ
=
( τ

r3

)1/2

−
(

r3

τ

)1/2

, (8.6)

where r = R/R0 (the dimensionless radius of the bubble) and τ = t/t0
(dimensionless time) with:

R0 ≡

√

3Ṁv2
w

16πρ0c30
, t0 ≡

R0

c0
, (8.7)

where c0 is the isothermal sound speed of the undisturbed environment.
Once a solution r(τ) to equation (8.6) has been found, the outer radius

Rn of the perturbed, neutral environment (region IV of figure 8.1) can be
found by combining equations (8.4-8.5) to obtain

drn

dτ
=
( τ

r3

)1/2

, (8.8)

where rn = Rn/R0 and r comes from the previously obtained solution (of
equation 8.6). Equation (8.8) can then be integrated to obtain the (dimen-
sional) radius Rn = R0rn of the spherical shock travelling into the neutral
environment.



For parameters appropriate for a high density, ultracompact HII powered
by a main sequence O7 star we have

R0 = 0.76 pc

(

Ṁ

5 × 10−7M⊙yr−1

)1/2

( vw

2500 km s−1

)

(

107 cm−3

n0

)1/2(
1 km s−1

c0

)3/2

, (8.9)

where n0 is the number density of atomic nuclei. From this value of R0 we
can calculate the characteristic time t0 = R0/c0 ≈ 7 × 105 yr. Therefore,
ultracompact HII regions (with sizes of ∼ 0.1 pc and evolutionary times
∼ 105 yr) are in a regime with a dimensionless radius r = R/R0 ∼ 0.1-1 and
a dimensionless time τ = t/t0 ∼ 0.1-1.

8.3.2 Numerical and analytic solutions

Equation (8.6) can be integrated numerically with the initial condition r(0) =
0 to obtain the radius R of the hot bubble as a function of time, and an
integration of equation (8.8) gives the radius Rn of the outer shock vs. t.
The results of such integrations are shown in Figure 8.2.

It is possible to find a series of approximate analytic solutions to equation
(8.6). For τ ≪ 1 the first term on the right hand side of equation (8.6)
dominates over the second term, and (neglecting the second term) one then
obtains the integral

r(τ) =

(

5

3

)2/5

τ 3/5 , (8.10)

which is the classical solution for an expanding, wind-driven bubble (see [8]).
For τ ≫ 1, the two terms on the right hand side of equation (8.6) become

very large, reaching an approximate balance. Setting these two terms equal
to each other, one obtains the solution

r(τ) = τ 1/3 . (8.11)

It can be straightforwardly shown that this solution corresponds to a bubble
in pressure equilibrium with the surrounding environment, expanding quasi-
statically as more material is progressively injected by the stellar wind.



Figure 8.2: Radius R of the thick shell (thick, solid line) and Rn of the outer
shock (thin, solid line) resulting from a numerical integration of equations
(8.6) and (8.8). The radii are given in units of R0 (see equation 8.9) and the
time in units of R0/c0 (where c0 is the isothermal sound speed of the sur-
rounding, neutral environment). The long-dash line shows the inner analytic
solution (equation 8.10, valid for R≪ R0) and the short-dash line the outer
analytic solution (equation 8.11, valid for R ≫ R0).

In Figure 8.2 we see that (as expected) the numerical integration of equa-
tion (8.6) gives a radius that approaches the low τ (equation 8.10) and high τ
(equation 8.11) solutions in the appropriate limits. It is possible, however, to
obtain approximate analytic solutions that reproduce the numerical solution
for all values of τ .

To find these approximate solutions, we first rewrite equation (8.6) in the
form:

dy

dx
=

3 (x2 − y2)

y2/3
, (8.12)

with x = τ 1/2 and y = r3/2. This equation can be straightforwardly solved



to obtain x as a function of dx/dy and y, and the resulting relation can then
be used to do successive iterations of the form:

xn+1 =

√

y2 +
y2/3

3(dxn/dy)
, (8.13)

to obtain increasingly more accurate approximations to the y(x) solution of
equation (8.12).

Let us call x0(y) the first approximation to the solution of (8.12). One
possibility is to set x0(y) equal to the large τ solution (equation 8.11), which
in terms of the x, y variables takes the form

x0(y) = y . (8.14)

Inserting this relation in equation (8.13), we obtain the first iteration:

x1(y) =

√

y2 +
1

3
y2/3 . (8.15)

Reinserting x1(y) in (8.13) we then obtain the second iteration:

x2(y) =

√

√

√

√

y2 +
3y
√

y2 + 1
3
y2/3

1 + 9y4/3
. (8.16)

It is possible to proceed with further iterations, but the resulting x(y) rela-
tions are very extended.

A second possibility is to use the small τ solution (equation 8.10) as the
first guess. The iterations then proceed as follows:

x0(y) =

(

3

5

)1/3

y5/9 , (8.17)

x1(y) =

√

y2 +

(

3

5

)2/3

y10/9 , (8.18)

x2(y) =

√

√

√

√

√y2 +
y2/3

√

y2 +
(

3
5

)2/3
y10/9

3
[

y + 1
3

(

5
3

)1/3
y1/9

] . (8.19)



The two “second iteration” solutions (equations 8.16 and 8.19) are shown
(together with the results from a numerical integration of equation 8.6) in
the top panel of Figure 8.3.

In order to evaluate the accuracy of our two “second iteration” solutions
(equations 8.16 and 8.19), we first calculate the corresponding τ vs. r rela-
tions, and then calculate the relative error in the radius

ǫ(τ) =

∣

∣

∣

∣

re(τ) − r2(τ)

re(τ)

∣

∣

∣

∣

, (8.20)

where re(τ) is the “exact” solution (obtained from a an accurate numerical
integration of equation 8.6) and r2(τ) is one of the two “second iteration”
approximate solutions (equations 8.16 and 8.19).

The two corresponding relative errors are plotted as a function of time in
the bottom panel of Figure 8.3. From this graph we see that the approximate
solution given by equation (8.16) has a maximum deviation from the exact
solution of ∼ 10%, and that the more complex approximate solution given
by equation (8.19) has a maximum deviation of ∼ 5%.

8.4 Thick HII region model

8.4.1 Derivation of the model equation

We now develop a similar model to the one of section 8.3.1, but relaxing the
condition that the photoionized region (region IIIa in Figure 8.1) is narrow.
If we assume photoionization equilibrium (correct for all HII regions, see
[15]), the outer radius RS of the photoionized region obeys the relation:

S∗ =
4π

3
n2

iαH

(

R3
S − R3

)

, (8.21)

where R is the radius of the hot bubble (region II of Figure 8.1), ni is the
ion number density of region IIIa (assumed to be homogeneous within the
region), S∗ is the rate of photoionizing photons (emitted by the central star),
αH ≈ 2.6 × 10−13cm3s−1 is the case B hydrogen recombination coefficient at
104K.

The conditon of pressure equilibrium between the photoionized region
and the hot bubble is

P = mnic
2
i , (8.22)



where P is the pressure of the stellar wind bubble (see equation 8.3), ci (≈ 10
km s−1) is the isothermal sound speed of the photoionized gas and m is the
average mass per ion (= 1.3mH for a 90% H, 10% He gas, by number).

Also, the condition of pressure equilibrium between regions IIIa (the pho-
toionized region) and IIIb (the shocked, neutral region) implies that

P = ρ0v
2
n , (8.23)

where we have used the isothermal shock jump conditions (equation 8.4). As
described in section 3.1, vn is the velocity of the outer shock driven into the
undisturbed environment.

Finally, the “shock pushed by a piston” relation (equation 8.5) now takes
the form:

vn = vps + ṘS =
c20
vn

+ ṘS , (8.24)

where ṘS is the velocity of the outer edge of the photoionized region, and
for obtaining the second equality we have used equation (8.4).

Combining equations (8.3) and (8.21-8.24), we obtain a differential equa-
tion for RS of the form:

1

c0

dRS

dt
=

√

P

ρ0c20
−
√

ρ0c
2
0

P
, (8.25)

where
P

ρ0c20
= λ

(

Rf

c0
t

)(

Rf

RS

)3

+

√

(

Rf

c0
λt

)2(
Rf

RS

)6

+

(

Rf

RS

)3

. (8.26)

The solutions of equations (8.25-8.26) depend on the value of the dimen-
sionless parameter

λ ≡ 1

2

(

R0

Rf

)2

, (8.27)

where R0 is given by equations (8.7,8.9) and

Rf =

(

3S∗

4πn2
0αH

)1/3(
ci
c0

)4/3

. (8.28)



Rf is the final radius obtained by a “wind-less” HII region which has reached
pressure equilibrium with a surrounding, homogeneous neutral environment
(see, e. g., the book of Dyson & Williams [8]). For parameters appropriate
for an ultracompact HII region powered by an O7 star, we have

λ = 290

(

Ṁ

5 × 10−7M⊙yr−1

)1/2
( vw

2500 km s−1

)2

(

107 cm−3

n0

)1/3(
1049 s−1

S∗

)2/3

(

1 km s−1

c0

)1/3(
10 km s−1

ci

)8/3

. (8.29)

It is straightforward to see that equations (8.25-8.26) have the following
two limits:

1. for λ ≫ 1, these equations become equation (8.6) of section 3.1, i.e.,
the model for a wind-driven shell with a negligibly thin HII region,

2. for λ = 0, these equations are identical to the ones derived in chapter
7 for the expansion of an HII region in the absence of a stellar wind).

Therefore, by spanning all positive values of the dimensionless parameter λ,
we have models ranging from a “wind-less” to a “wind dominated” expanding
HII region.

In the following section we present numerical solutions (of equations 8.25-
8.26) giving the radius RS of the expanding HII region as a function of
time. We also integrate equation (8.8) (setting r = RS/c0 in the right hand
term) to obtain the radius Rn if the outer shock driven into the undisturbed
environment, and combine equations (8.21-8.22) to obtain the radius of the
hot bubble (region II of figure 8.1):

(

R

Rf

)3

=

(

RS

Rf

)3

−
(

ρ0c
2
0

P

)2

, (8.30)

where the second term on the right is given by equation (8.26).



8.4.2 Numerical solutions

In Figure 8.4, we show the numerical results obtained from numerical integra-
tions of the “thick HII region” model (described in section 4.1) for different
values of the dimensionless parameter λ (see equations 8.27, 8.29). The λ = 0
solution (top left panel) is identical to the “wind-less expanding HII region”
model of chapter 7. The λ = 100 solution is most similar to the “thin HII
region” model described in section 3 (i.e., the solution shown in Figure 8.2).

As can be seen in Figure 8.4, for progressively larger values of λ, a larger,
inner hot wind bubble and a narrower HII region are obtained. In order to
evaluate the relative thickness of the HII region, we have computed the value
of

∆R

RS

=
RS − R

RS

, (8.31)

(where RS and R are the outer radii of the HII region and of the hot bubble,
respectively) as a function of t. The results are shown in Figure 8.5, in which
we see that for λ = 10, the HII region has become a shell with a thickness
of ∼ 1% of the radius of the ionized nebula. For the λ ∼ 100 value expected
for ultracompact HII regions driven by a main sequence O star (see equation
8.29), the photoionized gas is confined to an extremely narrow shell (see
figure 8.5).

8.5 Summary

In this chapter, we have applied the “thick shell” formalism of chapter 7 to
the case of a source producing both a photoionizing radiation field and a
stellar wind. For the case in which the HII region is thin (compared to the
width of the swept-up ambient medium shell), the problem can be solved
analytically with an iterative method. This method gives solutions which
approximate the exact solution with accuracies of better than ∼ 5% (see
section 3.2). Our new solution to the wind-driven bubble expansion problem
has a transition from a R ∝ t3/5 law (i.e., the “classical” solution, see [8]) for
R ≪ R0 (see equation 8.9) to a R ∝ t1/3 law for R ≫ R0. Ultracompact HII
regions lie close to the transition between these two regimes.

The problem in which the HII region is not thin leads to a more complex
differential equation, which we have integrated numerically (see sections 4.1
and 4.2). Different solutions are found for different values of the dimension-
less parameter λ ≡ R0/(2Rf) (where R0 is given by equation 8.9 and Rf



is the final, pressure equilibrium radius of an HII region from a wind-less
source). For increasing values of λ, we obtain solutions ranging from the
wind-less case (λ = 0) to solutions in which the HII region becomes a very
thin shell (approaching the “thin HII region” analytic solutions derived in
section 3.2).

The transition to the thin HII region regime (for increasing λ values)
is shown in Figures 8.4 and 8.5. Interestingly, for the nominal parameters
that we have chosen for an ultracompact HII region, we obtain λ ≈ 300 (see
equation 8.29), so that they are clearly in the “thin HII region” regime.

In order to illustrate the effect of a stellar wind on the characteristics of an
HII region, in Figure 8.6 we show the HII region radius RS and the expansion
velocity (dRS/dt) obtained for λ = 0 (i.e., a wind-less HII region), λ = 290
(the value obtained for our chosen ultracompact HII region parameters, see
equation 8.29) and for λ = 10 (an arbitrary, intermediate λ value). From
this figure we see that while for λ = 0 the expansion velocity falls below
≈ 1 km s−1 in ∼ 500 yr, for λ = 10 the expansion velocity remains above
≈ 1 km s−1 for an evolutionary time ∼ 1.5 × 105 yr. For λ = 290, the
expansion velocity remains above ∼ 3 km s−1 for ∼ 2 × 104 yr and above
∼ 2 km s−1 for ∼ 1.5 × 105 yr.

Interferometric observations show that some ultracompact HII regions
have a “thick shell” morphology, with shell widths of ∼ 10-20% of the nebular
radius (see [7]). Comparing this result with our predictions of the thickness
of the HII region, we would conclude that these “thick shell” objects have a
dimensionless parameter λ < 1 (see Figure 8.5).

However, from equation (8.29) and the table of main sequence O/B stellar
parameters of Sternberg et al. [23], we see that HII regions (expanding into
a n0 = 107cm−3, uniform environment) have λ = 150 → 670, the lower limit
corresponding to a B0 star, and the upper limit to an O3 star. If we lower
the environmental density to n0 = 104cm−3, we would obtain a λ = 15 → 70
range (see equation 8.29), still an order of magnitude higher than the λ values
necessary for producing a “thick HII shell” morphology (see above and Figure
8.5).

Interestingly, the more recent paper of Marcolino et al. [11] calculates
mass loss rates for O8 and O9 main sequence which are two orders of mag-
nitude below previously obtained rates (such as the ones of Sternberg et al.
[23], given in Table 1.1, see above). These new mass loss rates would imply
that λ ∼ 1 for late OV stars.



Figure 8.3: Top panel: radius of the hot bubble as a function of time obtained
from the “exact” (i.e., numerical) solution of equation 8.6 (solid line) and
the radii obtained from the two approximate analytic solutions (short dash:
equation 8.16; long dash: equation 8.19). Lower panel: relative deviations
(see equation 8.20) of equation 8.16 (short dash) and equation 8.19 (long
dash) from the “exact” solution.



Figure 8.4: Hot bubble radius (dashed line), outer radius of the HII region
(solid line) and radius of the shock driven into the surrounding environment
(dash-dot line) as a function of time, obtained from numerical solutions of
the “thick HII region model” of section 8.4. The six panels are labeled with
the values of the dimensionless parameter λ (see equations 8.27, 8.29) used
for each solution.



Figure 8.5: Relative width of the HII region (see equation 8.31) as a function
of time obtained for different values of the dimensionless parameter λ (see
equation 8.27).



Figure 8.6: Outer radius of the HII region (top panel) and expansion veloc-
ity (lower panel) for an ultracompact HII region (of isothermal sound speed
ci = 10 km s−1) driven by a source with S∗ = 1049s−1 into a uniform enviro-
nent of density n0 = 107cm−3 (and isothermal sound speed c0 = 1 km s−1).
Three solutions are shown, corresponding to stellar winds such that the di-
mensionless parameter λ (see equations 8.27, 8.29) has values of 290 (short
dash line), 10 (long dash line) and 0 (solid line).
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D., Mellema, G., Lundqvist, P. 1997, RMxAA, 33, 73

139
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[17] Raga, A. C., Cantó, J., Rodŕıguez, L. F. 2012, RMxAA, in press

[18] Raymond, J. C., Hartigan, P., Hartmann, L. W. 1988, ApJ, 326, 323

[19] Seaton, M. J. 1955, PPSA, 68, 457

[20] Seaton, M. J. 1959, MNRAS, 119, 81

[21] Seaton, M. J. 1960, Rept. Prog. Phys., 23, 313

[22] Shull, J. M., McKee, C. F. 1979, ApJ, 227, 131

[23] Sternberg, A., Hoffman, T. L., Pauldrach, A. W. A. 2003, ApJ, 599,
1333


