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Preface

High-energy astrophysics is a very poorly defined field. The energy of the photons
emitted by a system is neither a necessary nor a sufficient consideration to determine
whether the study of the system should be part of high-energy astrophysics or not.
Indeed many topics studied with radio astronomy techniques traditionally belong
to high-energy astrophysics, while the interior of stars, where the temperatures are
very high, is excluded. The domain is essentially defined by tradition, a slightly
awkward concept for a field that is only a few decades old.

High-energy astrophysics is a very lively part of astrophysics. This is due to
the fact that the subject only really started after the beginning of the space age,
in the 1960s. It is only then that astrophysicists could place their instruments
outside the atmosphere that blocks nearly all radiation except for some windows
in the visible, infrared and radio parts of the electromagnetic spectrum. The very
unexpected discoveries of the first X-ray sources (outside the Sun) from space led to
the very active development of a succession of ever more sophisticated instruments,
firstly on rockets, and then satellites, that were to cover the electromagnetic
spectrum from the very far infrared (with the Herschel mission) to high-energy
gamma rays (with the Fermi telescope). The most powerful instruments in the X-ray
and gamma ray domains include XMM-Newton, Chandra, INTEGRAL and Fermi.
The first two are large X-ray telescopes, one specialised in imaging (Chandra)
the other in spectroscopy (XMM-Newton). INTEGRAL is sensitive above a few
keV and up to some MeV. However, other observational tools in all domains
of the electromagnetic spectrum are used in high-energy astrophysics, including
optical, infrared and radio telescopes. Since 2005 or so very high-energy gamma
ray astrophysics, in the GeV–TeV parts of the photon spectrum, has seen some
remarkable successes with the discovery of many tens of sources.

High-energy astrophysics has unveiled a Universe very different from that only
known from optical observations. Objects emitting most of their radiation in the
optical domain are dominated by thermal emission with temperatures of a few to
several thousand degrees. These are stars, and collections of stars, mainly in the
form of galaxies. The evolution of these objects happens on timescales given by
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E/L, where E is the energy available in the form of nuclear fuel and L is their
luminosities. The typical time scales resulting from this consideration are measured
in millions to billions of years. In contrast, high-energy astrophysics has revealed
many types of objects in which typical variability timescales are as short as years,
months, days, and hours (in quasars, X-ray binaries, etc.), and even down to milli-
seconds (in gamma ray bursts). The sources of energy that are encountered are
only very seldom nuclear fusion, and most of the time gravitation, a paradox when
one thinks that gravitation is, by many orders of magnitude, the weakest of the
fundamental interactions.

The understanding of the objects revealed by high-energy astrophysical obser-
vations in the last decades, of the physical conditions met in these objects, and of
the physical processes at work in these conditions are nowadays part of the culture
of astrophysicists. High-energy astrophysics is not only specialised knowledge for
those active in the field, but it is also relevant for those active in other domains of
astronomy. This book aims at presenting this scientific culture for astronomers of all
domains and at providing those intending to be active in high-energy astrophysics a
broad basis on which they should be able to build the more specific knowledge they
will need. It is also hoped that the book will help students in recognising physical
processes when they are revealed by observational signatures in contexts that may
differ widely from those presented here.

Since the general subject is ill defined, the author enjoys a large freedom in the
selection of topics discussed. The choice of subjects treated here is therefore rather
subjective, and others would certainly have made different choices. Mine are the
result of my own curiosity over the years.

This book evolved from lectures given to masters and Ph.D. students at the
University of Geneva since the early 1990s. The book has two main parts. In the
first part we start from the physical process, e.g. an emission process, discuss it,
try to lay down the physics involved, and then proceed to present one example in
which the process is at work in nature. In the second part, we take an opposite view
and start from a type of object (e.g. X-ray binaries) and proceed to understand their
nature as far as possible. While there are no dedicated instrumentation sections,
some observational techniques and instruments will be introduced as we proceed.

As far as possible we aim at being self-contained. This involves following rather
closely some parts of classical textbooks, which is an option preferred to trying to
re-invent the derivation of classical results, almost certainly less well than available
already. This is acknowledged in the bibliography section of the corresponding
chapters. The text is intended for readers close to the end of a master’s course or
early in a Ph.D. programme in physics or astronomy.

Versoix, Switzerland Thierry J.-L. Courvoisier
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Part I
Physical Processes

The understanding of the nature of cosmic sources implies the knowledge of a
number of physical processes. Prime amongst them are the processes that give rise
to the radiation that we observe. Accretion, pair processes and particle acceleration
also belong to the phenomena that must be understood when studying high-energy
sources. The first part of this book describes these physical processes. Although
the emphasis in this part is on the processes, we give examples in which the
phenomenon described is most clearly in evidence. We thus describe, for example,
clusters of galaxies after having discussed bremsstrahlung.



Chapter 1
The Framework

While physics laws are the same in the laboratory as in the cosmos, the physical
conditions are most often very different. We meet in astrophysics conditions that
cannot be reproduced in the laboratory. This is for example true of density, where
we find in the cores of neutron stars densities as high as 1015 g cm−3, ten times the
density of nuclei, while the density of extragalactic space is less than 10−29 g cm−3.
Both extremes cannot be generated in the laboratory. It is therefore worth setting the
scene by listing those objects that will form the core of our interest and by looking
at the parameter space in which most of our study will focus.

1.1 Sources

There are a number of types of objects that are traditionally part of high-energy
astrophysics. They are:

Neutron stars: They come in many different guises. Some emit bursts of X-rays
(they are then called bursters), others emit regular pulsations in the radio domain
(radio pulsars) or in the X-rays (X-ray pulsars). Some only emit dimly and
thermally from their surface, as in the case of isolated neutron stars.

Black holes: In this case one actually observes matter in the surroundings of the
black hole rather than the black hole itself. They come either with masses typical
of stars (stellar mass black holes) or with masses of millions of solar masses. In
the latter case they live in the centre of galaxies, they can be very bright, and are
called Active Galactic Nuclei (AGN), or very quiet as in the centre of our Galaxy.

X-ray binaries: These contain one compact object (a neutron star or a black hole)
and a companion that may be any sort of star. They are bright X-ray sources in
which the energy source is the matter falling into the deep gravitational field of
the compact object.

Clusters of galaxies: These host very large quantities of hot gas that emit in
X-rays.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 1, © Springer-Verlag Berlin Heidelberg 2013
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4 1 The Framework

Supernova remnants: The residue of stellar explosions that form shocks in which
gas is heated to high temperature, and that are most likely the source of the non-
thermal distributions of particles observed in the Earth’s vicinity as cosmic rays.

1.2 The Parameter Space of High-Energy Astrophysics

Temperatures. The temperatures of gases emitting in the keV domain are of the
order of 107 K. It is useful to remember that to zeroth order 1 MeV corresponds
to 1010 K. In the following, temperatures will be stated either in K or in energy-
equivalent units.

Clearly, photons are sometimes emitted at energies much higher than those
corresponding to the temperatures met in the sources themselves. These photons
are themselves often distributed in energy like power laws rather than thermally.
This implies that many of the processes we will study are inherently “non thermal”.

Deep gravitational fields and temperature. The temperature that corresponds to a
random velocity is

T = 4 ·10−5v2
[m

s ]
K (1.1)

for a gas of hydrogen. The gravitational field around the Earth is such that the escape
velocity is approximately 11 km s−1. When one isotropises this velocity, one obtains
temperatures of the order of 5,000 K. Indeed were the atmospheric temperature of
that order, it would evaporate. Around a neutron star (see Chap. 13), the typical
velocities associated with the gravitational field is of the order of 1/3 × c. The
corresponding temperatures are some 1011 K or 10 MeV. The emission of gas in such
regions is therefore expected to be in the X-rays (keV) up to gamma ray regions of
the spectrum.

It follows from these considerations that matter in a deep gravitational field
emits predominantly in the high-energy domain. Conversely, X- and gamma-ray
astrophysics is the predominant tool to study compact objects. Figure 1.1 illustrates
this by showing the very broad emission line that is seen from a fluorescence line
of Fe at 6.4 keV in the central regions of an active galaxy, i.e. in matter surrounding
a massive black hole in the nucleus of the galaxy. This illustrates the very large
velocities (width of the line) and large gravitational effects (asymmetry in the
profile) that are directly observable from gas that emits in the X-ray domain.

Extreme magnetic fields. Magnetically-induced electron transitions (cyclotron lines,
see Chap. 4) occur at the gyro frequency. The line energy is given by

EkeV = 12 ·B12, (1.2)

where B12 is the magnetic field in units of 1012 G and the energy is given in keV.
Figure 1.2 shows the spectrum of an X-ray binary obtained by the INTEGRAL
satellite. The absorption lines in this spectrum directly show the existence of a
magnetic field of a few 1012 G in the binary system.
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Fig. 1.1 The line profile of iron Kα from MCG-6-30-15 observed by the ASCA satellite. The
emission line is extremely broad, with a width indicating velocities of order 1/3× c. The marked
asymmetry towards energies lower than the rest-energy of the emission line (6.4 keV) is most
likely caused by gravitational and relativistic Doppler shifts near the black hole at the centre of
the active galaxy. The solid line shows the model profile expected from a disk of matter orbiting
the hole, extending between 3 and 10 Schwarzschild radii. (Tanaka et al. 1995, reprinted with kind
permission of Nature Publishing Group)

It is also now apparent that decaying magnetic fields up to 1015 G are at the origin
of the emission of so-called magnetars (this class of object includes soft gamma
repeaters (SGRs) and anomalous X-ray pulsars (AXPs). These objects are discussed
in Mereghetti (2008)).

We will use the gauss unit for magnetic fields (1 tesla = 104 G). This choice,
together with the use of cgs units, gives a particularly simple relation between the
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Fig. 1.2 Spectrum of the high-mass X-ray binary V0332 + 53 during an outburst observed by
INTEGRAL on 2005 Jan 7–10. (a): the raw spectra taken with the JEM-X (red) and IBIS
(blue) instruments where two (or perhaps three) cyclotron absorption lines are clearly visible.
(b): residuals for the model on the upper panel without, (c): with one cyclotron line at 24.9 keV,
(d): with a second cyclotron line at 50.5 keV and (e): with a third cyclotron line at 71.7 keV
(Kreykenbohm et al. 2005)
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magnetic field energy density uB and the magnetic field, an important relation in
several of our considerations:

uB =
B2

Gauss

8π
[
ergs
cm3 ] (1.3)

Energies. Photon energies are not a defining criterion to consider when wondering
whether a subject is to be included in high-energy astrophysics or not. We will,
for example, discuss jets observed in the radio domain, as well as dust heated to
some 1,000 K. The electrons radiating in the jets have, however, gamma factors of
the order of 1,000, and the radiation field heating the dust peaks in the UV part
of the spectrum. X-ray energies are observable from 100 eV upwards, with the
upper end of the observed photon energy scale reaching up to TeV energies, now
that ground based gamma ray telescopes have reached sensitivities that allow us
to detect hundreds of sources at these energies. Note that while atomic lines are
most numerous in the soft X-ray domain, up to one or a few keV, they are virtually
absent above 7 keV, the highest ionisation energy of the most common of the heavy
elements Fe (i.e. H-like Fe).

Densities. While we will not encounter densities as low as that of the Universe
as a whole, we will deal with densities as low as those met in clusters of galaxies
(�10−27 g cm−3) extending up to those of neutron stars (�1014 g cm−3).

Nucleosynthesis. High-energy astrophysics also deals with nuclear and particle
physics phenomena that occur in full view of the observers rather than hidden in
the interior of stars. Figure 1.3 shows a map of the Galaxy obtained in the light
of a nuclear transition corresponding to the decay of 26Al. This shows a direct
observation of a nuclear reaction. The half-life of Al is about one million years.
The figure therefore shows convincingly that aluminium has been produced in the
Galaxy during the last million years, and therefore provides visual evidence that
the creation of matter in the Universe is an on-going process and not a single act
in the past. The observation of nuclear lines, although clearly in the realm of high-
energy astrophysics, will not be discussed further in this book, as this discussion
would imply a presentation of the late stages of stellar evolution and supernovae
explosions that lie far from our main subject.

Nuclear reactions, fusion this time, are also observed at the surface of some
neutron stars (see Chap. 13).

Matter–anti-matter annihilation. 511 keV radiation is observed from the central
regions of our Galaxy. 511 keV corresponds to the energy equivalent of the mass of
the electron. (In the rest of this book we will simply write 511 keV for the mass of
the electron, and similarly for other masses and energy equivalences.) This radiation
is therefore emitted when electron–positron pairs annihilate in a pair of photons.
This emission was discovered by non-imaging instruments in 1972 (Johnson et al.
1972). Subsequent measurements, also with non-imaging instruments, confirmed
the detection, but obtained different fluxes. It was thus assumed that the source was
variable and, therefore, compact. However images (see the INTEGRAL image in
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Fig. 1.3 COMPTEL, on the CGRO satellite, map of the sky in 1.809 MeV gamma-ray line
emission attributed to radioactive 26Al. Line profile from the spectrometer on board INTEGRAL
(Figure courtesy of R. Diehl, MPE). With its mean half-life of about one million years, 26Al directly
traces recent nucleosynthesis in the Galaxy

Fig. 1.4 INTEGRAL map of the 511 keV emission from the central region of our Galaxy (Figure
Credit J. Knoedelseder, CESR)

Fig. 1.4) showed later that the source is widely extended and that the “observed
variations” were in fact the result of different collimation angles in the different
instrument designs. The smaller the acceptance angle for gamma rays, the smaller
the flux measured. While the origin of this emission is clearly due to electron–
positron pairs, the source of the positrons that annihilate with electrons has not yet
been identified.

Looking at the processes at play in the objects we will consider, from neu-
tron stars to clusters of galaxies, it becomes clear that high–energy astrophysics
investigates a realm of physics that is very different from that found in more
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classical astronomical research where the source of energy that dominates the
scene is a large set of fusion reactions hidden deep in the interior of stars. Here,
and as will become amply evident in the following pages, fusion plays no role
or at most a very marginal one. Instead the main energy source is gravitation,
paradoxically the weakest of the four fundamental forces. Magnetic fields also
play a major role, also sometimes as the energy source. Radioactive decay and
matter–anti-matter annihilation both play some role in the centre of the Milky
Way. Energy is radiated mostly by electro–magnetic processes, although neutrino
cooling does play an important role in the first phases of the life of neutron
stars. We will meet and discuss thermal cooling, both optically thin (Chap. 3)
and optically thick (black body radiation, not discussed further here) and non-
thermal emission processes based on synchrotron radiation (Chap. 5) and Compton
processes (Chap. 6).

1.3 High-Energy Space Instrumentation
and Their Limitations

1.3.1 Basic Principles of X-Ray Detectors

In X-ray detectors the most widely used technique is to count charges knocked away
from their “normal” carriers by impinging photons. In practice the detector can be
made of gas or a solid state material. The incoming photon then sets free a number
of charges, given approximately by

Ncharges � Ephoton

Ebinding
, (1.4)

where Ncharges is the number of charges, Ephoton is the incoming X-ray photon
energy, and Ebinding is the binding energy of the charges. The � indicates that the
relationship can be complex. The object of calibration measurements is in large part
to make this relation well characterised for a given instrument. When the target is a
gas, Ebinding is the ionising energy; when the target is a semi-conductor solid, Ebinding

is the energy needed to produce an electron-hole pair.
The target is then equipped in such a way that the charges, or electron-hole

pairs, are collected at some suitable position, and subsequently counted for each
incoming photon. The energy resolution of the detector is the precision with which
the incoming photon energy can be measured. It is therefore given by the precision
with which the number of charges can be counted. This has a fundamental statistical
limit given by Poisson statistics. The consequence of which is that the number of
charges cannot be estimated to better than its square root. The resolution of the
detector is therefore
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ΔE
E

�
√

Ncharges

Ncharges
=

√
Ebinding

Ephoton
. (1.5)

The smaller the binding energy, the better the resolution of the instrument.
Electron-hole energies being considerably smaller than the ionisation energies in
the gases that can be used, solid state detectors provide a much better theoretical
resolution. Cryogenically cooled detectors of different designs are also used. These
detectors use the same principle but the particles excited by the photons are low
energy thermal excitations (phonons). Their number is very high, and the resulting
energy resolution is therefore expected to be excellent.

There are many other features of detectors that must be optimised such as the
filter or window needed to contain the gas. These windows attenuate the incoming
photon flux by a factor eτ(Ephoton), where τ(Ephoton) is the optical depth of the window
at the energy of the photon. This can be a very complex function as many materials
may be used to build the windows and the structure that holds them.

1.3.2 Spectral and Image Extraction, Fitting

Unfortunately, detectors do not behave as simply as Eq. 1.4 suggests. Not all photons
deliver a charge, while some deposit considerably less charge in the counting
system. The response of the detector to a signal given by a delta function at a given
incoming photon energy therefore includes a significant signal with less charges
than Ncharge, and may look as given in Fig. 1.5.

In any observation, the detected signal, the count spectrum, is the superposition
of the monochromatic responses normalised by the incoming number of photons at
each energy. The complexity of the response to monochromatic irradiation makes
it impossible to infer directly the energy spectrum of the incoming photons. This
major difficulty is dealt with by an iterative process in which a model incoming
photon spectrum f (Ei) is folded with a matrix Mi j that models the detector through

cntsi =
n

∑
j=1

Mi j f j , (1.6)

where i is understood to mean Ei. Figure 1.5 is in effect one line of the matrix Mi j.
The result of this folding is the count spectrum cnts(E j) expected, provided that the
mathematical model of the detector Mi j is a faithful representation of all effects that
take place within it.

This count spectrum is then compared to the observed count spectrum, the
model parameters are adjusted to improve the agreement between the model
count spectrum and the observed count spectrum, a new model count spectrum
is generated with the improved parameters, folded with the instrument matrix,
compared again, etc. The act of comparison and model parameter adjustment
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Fig. 1.5 Response of a detector from the INTEGRAL gamma ray satellite to a delta function
distribution of photons at an energy of 400 keV (Data from ISGRI team)

is made quantitatively by minimising the difference between the observed count
spectrum and the model count spectrum as obtained through the folding pro-
cess described above. This difference is typically parametrised by the so-called
χ2 = ∑[(cntsobserved,i − bgi)− cntsi]

2, where the sum runs over the number of bins
in which the spectra are digitised. bgi represents the background, i.e. all the counts
that are registered at Ei but are not due to the observed source but to cosmic rays
or other effects. This operation is called fitting the spectrum. Clearly the quality of
the process depends crucially on the quality of the detector model that enters the
matrix Mi j and on the quality of the characterisation of the background. There are a
number of standard tools in the community which handle the ensemble of operations
of spectral fitting, and which contain large libraries of models that can be tried on
any set of data.

This whole process is very widely used. It is prone to a number of pitfalls that
should be understood. The first is that the choice of the model used depends on the
a priori knowledge or prejudice one has with regard to the astrophysical process
at play in the source observed. There are no model-independent results with this
procedure. A second pitfall is that if the minimisation of χ2 is to be correctly done,
the bins must all be statistically independent. You should not fit a spectrum with
considerably more bins than there are independent measurements, i.e. much more
than the spectral domain divided by the spectral resolution. A critical eye should
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Fig. 1.6 The principle of grazing incidence X-ray optics. The first reflection is off a paraboloid
surface and the second a hyperboloid one. Approximations with conical surfaces have also been
made, at the expense of the quality of the images (Credit: ESA, NASA)

always be applied when using these tools to avoid obtaining a good fit with a
completely inappropriate model and taking the resulting parameter values as a true
physical description of the source.

1.3.3 Optics

Normal incidence mirrors, those on which light falls almost perpendicularly to the
reflecting surface, do not reflect X-rays. It is therefore not possible to make X-ray
telescopes in the same way as optical telescopes. In early instruments, there was
actually no optics at all, only a collimator, i.e. a device placed at the front of the
detector that allowed only those X-rays coming from a given solid angle to reach it,
the rays coming from other directions being blocked. The localisation of sources is
then only possible to within the collimator acceptance angle, except if the signal can
be occulted by an object like the Moon, the position of which is well known with re-
spect to the detector. In this case the timing of the occultation, together with precise
ephemeris of the Moon, give additional information on the location of the source.

In 1952 Hans Wolter devised optical systems that could be used to make images
in the X-rays, these systems have been used in satellites since the late 1970s. They
are based on grazing incidence reflections off a matching pair of paraboloid and
hyperboloid surfaces as shown in Fig. 1.6.

The configuration shown in Fig. 1.6 has a lot of empty space and a very small
geometric area for the detection of X-ray photons. This led to the idea of nesting
shells of mirrors in cylindrical layers as was done for example for the XMM-Newton
satellite and as shown in Fig. 1.7.

This technique has been used to observe sources to energies up to about 10 keV.
When the mirrors are in addition coated with a series of thin layers, this technique is
expected to work for photons up to some 50–100 keV. Above this energy the photons
are not reflected any more and other techniques must be found. INTEGRAL, as
SIGMA before it, use coded masks. The principle is that the shadow of a mask of
known geometry is registered on the detectors. Since the shadow is cast by sources
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Fig. 1.7 The 56 nested XMM-Newton mirrors (Credit: ESA)

at infinity, it is possible to reconstruct the position of the sources from the observed
shadowgramme. The principle is shown in Fig. 1.8.

This is a very poor optical system, as the detector must be as large as the pupil,
contrary to focusing optical systems in which the signal is concentrated on a small
area of the detector. In coded mask systems, therefore, the background that is to be
considered to deduce the signal as sketched in Sect. 1.3.1 is the whole background
affecting the detector, and not only that underlying the image of a source. Since the
background is proportional to the surface of the detector and can be known only
with a precision limited by Poisson statistics, the uncertainty of the background (the
“noise”) is given by the square root of the background and is therefore proportional
to the linear size of the detector. The signal, the number of photons impinging on the
detector, is proportional to its surface. The signal-to-noise ratio of these instruments
is therefore also roughly proportional to the linear size of the detector. Since the
mass of the instrument/satellite is proportional to the volume it is proportional
to the linear size to a power probably somewhat larger than 2. Given that the
mass of INTEGRAL is around 5 tons, an order of magnitude improvement in
sensitivity using the same technique would therefore imply a satellite between 500
and 5,000 tons, totally unrealistic in any near future. This indicates that progress
in gamma-ray astronomy in the 100 keV-MeV range beyond what was done with
INTEGRAL will require new ideas.
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Fig. 1.8 The shadow of two sources projected on a detector by a coded mask (Credit: ISDC)

1.3.4 Some Recent High-Energy Astrophysics Instruments
and Satellites

Since the photon energy is not the defining criterion, many instruments covering
most of the electromagnetic spectrum are used in high-energy astrophysics. High-
energy astrophysics is in essence a multi-wavelength enterprise. It is not the type
of instrument used, but the type of objects and the physical processes studied that
define the field. A host of outstanding space missions are now in operation in the
high-energy (photon) domain or have only recently terminated their operational
lives. Results from several of them will be used in the following chapters. A
schematic list of recent and flying missions is:

Compton Gamma Ray Observatory, CGRO: This US mission flew from 1991 to
2000. It included instruments that had no imaging capability and were sensitive
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from some 30 keV to GeVs. One of the most important instruments on board was
BATSE that registered gamma ray bursts over the entire sky.

ASCA: A Japanese X-ray telescope operated between 1993 and 2000 that
provided images up to some 10 keV.

BeppoSax: An Italian X-ray satellite operated between 1996 and 2003 that
provided the first location of a gamma ray burst with a precision sufficient
to make X-ray imaging and subsequently optical follow-up observations. This
sequence led finally to finding the counterparts of GRBs and establishing their
extra-galactic nature.

Chandra: Launched in 1999 it is a US X-ray telescope with an excellent (less than
1”) angular resolution leading to very high quality imaging properties.

XMM-Newton: Another X-ray telescope with a very high throughput. It is a Eu-
ropean mission also launched in 1999. The strength of XMM-Newton lies in its
large effective area that allows spectacular spectroscopic results to be obtained.

INTEGRAL: A high-energy X-ray and gamma ray instrument with imaging capa-
bility based on coded masks launched in 2002. The instruments on INTEGRAL
allow us to localise sources to within a few arcminutes, and to measure spectral
energy distributions to 100 keV or more, depending on the source intensity.

SWIFT: Launched in November 2004 to make multi-wavelength observations of
gamma ray bursts.

SUZAKU: A Japanese multi-purpose X-ray instrument launched in July 2005.
HESS and MAGIC and VERITAS are facilities that observe the interaction of

TeV photons with the atmosphere. These facilities are the last of a long series
of early instruments that measure the Cerenkov radiation emitted as charged
particles, created by the scattering of a high-energy gamma ray on atmospheric
nuclei, travel faster than the speed of light in the air. These instruments are
sensitive in the energy domain of 100 GeV to 100 TeV.

FERMI is a satellite on which the main instrument (LAT) is sensitive from
20 MeV to 300 GeV. The principle of the instrument is that incoming photons
produce e+–e− pairs that are then traced in successive layers of the detector.
It was launched in June 2008. Fermi provides all-sky data with an angular
resolution that depends on the photon energy.

1.4 Historical Remarks

Figure 1.9 shows the radiation that reaches the Earth as a function of wavelength.
Clearly most of the “light” does not reach the ground and is therefore not available
to do astronomical observations from there. This is particularly true for high-energy
radiation that must be captured above the atmosphere in order to be studied. As a
consequence, high-energy astrophysics developed only in the space age.

It should also be remarked that even though one needs to go beyond the
atmosphere to observe in the X-rays, the region between the UV (longward of 1 Ryd)
and the X-rays at about 0.1 keV is inaccessible even from space as interstellar matter
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Fig. 1.9 Amount of absorption at different wavelengths in the atmosphere. The half-absorption
altitude is defined as the altitude in the atmosphere (from the Earth’s surface) where half of the
radiation at a given wavelength incident on the upper atmosphere has been absorbed. Except
for visible and radio ranges, the atmosphere absorbs very strongly and measurements at other
wavelengths require observations from orbiting instruments above the atmosphere (Image credit:
http://csep10.phys.utk.edu/astr162/lect/light/windows.html)

is opaque in this energy domain. Figure 1.10 shows the absorption cross-section
of matter with cosmic abundances. This has a peak at the photoionisation of H
(1 Ryd) and decreases shortward with roughly the third power of the frequency.
The absorption of radiation in the interstellar medium is given by a factor

e−(σ×NH), (1.7)

where σ is the effective cross-section depicted in Fig. 1.10 and NH is the column
density of hydrogen between the observer and the source. Since the lowest column
densities to nearby objects are around 1020 cm−2, the region of the spectrum
shortward of 1 Ry will remain unexplored for a long time to come.

The solar X-ray flux was known in the 1950s. It was then possible and easy
to extrapolate the X-ray flux from the Sun to the X-ray flux expected from even
the closest stars. The result is extremely weak fluxes that were not expected to be
observable (and were indeed not observed) with the instrumentation of the 1950s
or 1960s. There was therefore not much on which one could build in order to start
a new set of research activities in the 1950s. Despite this, Riccardo Giacconi and
colleagues started a program to observe the night sky in X-rays, using a series
of rocket flights. Their experiment was designed to observe the Moon which was
thought to emit X-rays as a result of the interaction of its bright side with solar
particles. This was also not observed. However, they discovered unexpectedly a
bright X-ray source now called Sco X-1 and the bright X-ray background (Giacconi

http://csep10.phys.utk.edu/astr162/lect/light/windows.html


1.4 Historical Remarks 17

103

10–24

10–23

10–22

10–21

10–20

10–19

10–18

10–17

102 10 1

WAVELENGTH (Angstroms)

E
F

F
E

C
T

IV
E

  C
R

O
S

S
  S

E
C

T
IO

N
 σ

e 
(c

m
2 )

 

AI

Si

Si

Si

S S

A

O
N

C

C

He+

He

H

Mg

Mg

Ne

º

Fig. 1.10 The effective cross-section of the interstellar medium (cross-section per hydrogen atom
or proton of the interstellar medium). Solid line – gaseous component with normal composition
and temperature; dot-dash – hydrogen in its molecular form; long dash – HII region about a B star;
long dash-dash-dash – HII region about an O star; short dash – dust (Cruddace et al. 1974, Fig. 2,
p. 500, reproduced by permission of the AAS)

et al. 1962). This earned Giacconi the 2002 Nobel Prize. Sco X-1 was found to be an
X-ray binary system, and the diffuse “background” is now thought to be due to the
superposition of the flux from a number of weak unresolved extra-galactic sources
(see Chap. 21). These two highly surprising results led to a fast development of the
field, the main steps of which have been:
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Fig. 1.11 The highly eccentric EXOSAT orbit. This type of orbit is now widely used for European
high energy astronomical satellites, as it avoids eclipses of the sources for a significant fraction of
the near Earth orbital period of 1.5 h (Credit ESA)

1962 Unexpected discovery of Sco X-1 by Giacconi et al. (1962) on a rocket flight
during which the diffuse background was also measured.

1963 The discovery of quasars by associating their optical and radio observations,
and by understanding that the lines observed in emission are highly redshifted
H lines, proving that the objects were much more luminous than entire normal
galaxies (Schmidt 1963). Although this is not an X-ray discovery, it is one that
gave the field of high-energy astrophysics a very strong impetus. Quasars were
also soon found to be strong X-ray sources and contributed to make high-energy
astrophysics the multi–wavelength discipline that it has become.

1967 Another completely unexpected discovery that was not made in the X-ray
domain is that of radio pulsars by Jocelyn Bell and Anthony Hewish while
measuring solar wind induced fluctuations of radio fluxes. It was soon deduced
that pulsars must be rapidly rotating neutron stars. The very high density of
pulsars implies that general relativity must be considered when discussing their
structure, thus linking high-energy astrophysics with relativity.

1970–1973 The first survey of the X-ray sky by the non-imaging UHURU
satellite.

1978–1981 The first X-ray images by the Einstein satellite. This provided an
immense increase in sensitivity over previous detectors.

1981–1983 EXOSAT had been designed before X-ray optics was thought to
be accessible, at least for European satellites. Although X-ray telescopes were
subsequently added to its features, the satellite was launched on a high eccen-
tricity 4 day orbit (see Fig. 1.11) designed so that as many sources as possible
would be occulted by the Moon, thus providing high precision localisation of the
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X-ray sources. Although this type of observation was never performed, the orbit
allowed for long uninterrupted observations with high sensitivity instruments
that led to many spectacular discoveries on the variability of X-ray sources. This
illustrates how odd design features sometimes lead to highly valuable unexpected
results.

1990–1999 The first imaging survey of the X-ray sky (in soft X-rays) with
ROSAT provided upwards of 105 sources.

1993–2001 The first X-ray sensitive CCD on the ASCA satellite.
1996–2001 BeppoSax and the localisation of gamma ray bursts.
1999 Launches of Chandra and XMM-Newton two large X-ray satellites. The

first is optimized for high angular resolution, while the second is aimed at a large
effective area.

In the gamma rays there are two additional difficulties compared to X-ray
detectors. The most fundamental is that the energy flux of most sources is fν ∝ ν−1

and therefore the photon flux is ∝ ν−2, where ν is the frequency of the photon.
Since the quality of the information obtained from a source is given by the number
of photons registered, gamma ray observations at 1 MeV are considerably more
difficult than X-ray observations at 1 keV. The second difficulty is that gamma rays
(and to date X-rays above about 10 keV) cannot be focused. This implies that the
detectors are as large as the pupil and, consequently, that the signal-to-noise (that is
given by the size of the detector) is very poor.

The main milestones, excluding a large number of ballon flights, are therefore
much fewer and far apart:

1975–1982 First survey of the sky by COS-B. This satellite produced a catalogue
of registered photons. Its main result was a catalogue containing some 25 sources.

1991–2000 The Compton Gamma Ray Observatory, CGRO, provided a wide
range of measurements, from detection and localisation of gamma ray bursts,
from which it was deduced that their sky distribution is isotropic, to a non
imaging very hard X-ray detector EGRET, an instrument based on the conversion
of gamma rays in e+–e− pairs and which provided some GeV sensitivity for the
first time since COS-B. COMPTEL was aimed at nuclear line observations and
produced the aluminium map shown in Fig. 1.3.

1989–1998 SIGMA, a French instrument on the GRANAT satellite of the Soviet
Union. This was the first instrument on a satellite with which images of the
gamma-ray sky could be made using a coded mask.

2002 INTEGRAL launch. Large increase of the sensitivity with imaging capa-
bilities also based on the coded mask technology. Close to 1,000 sources are
detected.

2000, 2004 Beginning of the operations of HESS and MAGIC in the TeV domain.
2004 launch of Swift. This mission is designed to detect gamma ray bursts in a

wide field of view and to aim automatically X-ray and UV instruments in the
position in which the gamma ray burst has been found.

2008 Launch of Fermi. This is the first instrument since EGRET to be sensitive in
the GeV domain. It detected hundreds of sources and provides an important link
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between the space borne X-ray and gamma ray instruments and ground-based
TeV astronomy.

1.5 Bibliography

The history of high-energy astrophysics is part of the history of modern astrophysics
and can, therefore, be found in many texts. One of them is The Cosmic Century: A
History of Astrophysics and Cosmology (Longair 2006).
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Chapter 2
Radiation of an Accelerated Charge

Whatever the energy source and whatever the object, (but with the notable exception
of neutrino emission that we will not consider further, and that of gravitational wave
emission that we will discuss in Chap. 15), all objects lose energy, or expressed
equivalently they cool, through the emission of electromagnetic radiation. The
processes at the origin of the radiation differ widely, but all are based on the fact that
accelerated electric charges radiate. What differs in the various emission processes
is the force at the origin of the acceleration and hence the acceleration as a function
of time, a(t). We therefore start here by understanding how an accelerated charge
radiates. The following chapters will take the results we obtain here and apply them
to the different acceleration mechanisms we meet in astrophysical situations.

The path that leads from Maxwell’s equations to the solution relevant in the
case of the radiation field generated by an accelerated non-relativistic charge is
somewhat arduous. It can be followed in your preferred electrodynamics course or in
Feynman’s lectures, and will not be given here. The essential insights can, however,
be understood from an argument of J.J. Thomson as presented in Longair (1992).

2.1 Energy Loss by a Non-relativistic Accelerated Charge

Consider a charge at the origin of an inertial system at t = 0. Imagine then that the
source is accelerated to a small velocity (small compared to the velocity of light c,
this discussion is non-relativistic) Δv in a time interval Δ t. Draw the electric field
lines that result from this arrangement at a time t. At a distance large compared to
the displacements Δv×Δ t of the charge, the field lines are radial and centred on
the origin of the inertial system, because the signal that a perturbation has occurred
to the charge has not yet had the time to reach there. At smaller distances, however,
the lines are radial around the new position of the source. In between, the lines are
connected in a non radial way in a small perturbed zone of width c×Δ t. Note that
this presupposes that the solution describes a signal that moves with the velocity of
light, one of the features that this simplified treatment does not demonstrate.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 2, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 2.1 Schematical view of the electric field lines at time t due to a charged particle accelerated
to a velocity Δv � c in a time interval Δt (Adapted from Longair (1992))

Figure 2.1 gives the large picture and the detail of the perturbed field lines.
In this section we will denote electric fields by E in order to distinguish them

from the energy, denoted E . You can read from Fig. 2.1 that the ratio of the tangential
to the radial field line components in the perturbed zone is

Eθ
Er

=
Δv · t sinθ

cΔ t
. (2.1)

The radial field is given by the Coulomb law

Er =
e
r2 , e in e.s.u., r = ct. (2.2)

You can therefore deduce the tangential field component and find

Eθ = e · Δv
Δ t

sinθ
1

cr2 · t (2.3)

= e
r̈ sinθ

c2r
. (2.4)

Note that this field depends on the distance to the centre as r−1 rather than r−2.
This is a characteristics of the radiation field in the far zone. The only electrical
field component that is relevant for radiation is that which is perpendicular to the
direction of propagation, i.e. Eθ . It is the one we consider further here.
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Introducing the electrical dipole moment p = e · r, we write

Eθ =
p̈sinθ

c2r
. (2.5)

We may now calculate the energy flux carried by this disturbance. The energy
flux transported by electromagnet fields is given by the Poynting vector S:

S =
c

4π
E×B. (2.6)

The magnetic field is equal and perpendicular to the electric field in electromag-
netic radiation:

B = n×E (2.7)

Using (2.5) the energy loss in the direction θ in a solid angle dΩ , dE
dt dΩ =

|S|r2 dΩ , is therefore
dE
dt

dΩ =
c

4π
|p̈|2 sin2 θ

c4r2 · r2dΩ . (2.8)

In order to find the energy loss from the charge, one needs to integrate (2.8)
over the solid angle dΩ . The configuration is cylindrically symmetrical around the
direction of the acceleration. The integration over one angle is therefore trivial and
dΩ = 2π sinθdθ . The result is

∣
∣∣
∣
dE
dt

∣
∣∣
∣=

c
4π

|p̈|2
c4

∫ π

0
2π sin3 θ dθ =

2
3
|p̈|2
c3 (2.9)

This is the so-called Larmor formula. It is given here in Gaussian units and gives
the energy carried by the electromagnetic radiation emitted by an accelerated charge
as a function of this acceleration. The radiation is dipolar (see the sin2 θ in (2.8)).
The absolute value is there to remind us that the sign will be different whether one
considers the energy loss from the charge or the gain in the radiation.

2.2 Spectrum of the Radiation

One may use the results we have obtained for the energy radiated by an accelerated
charge to calculate the spectrum of the emitted radiation. This is done by considering
the Fourier transform of the dipole, and calculating from there that of the electric
field and of the energy flux. The Fourier transform of the dipole p(t) is given by

p(t) =
∫ ∞

−∞
e−iωt p̂(ω)dω . (2.10)

Remember that the Fourier transform of the second time derivative of a function
is given by
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p̈(t) =−
∫ ∞

−∞
ω2e−iωt p̂(ω)dω . (2.11)

Writing the definition of the transform of the electric field on one side and taking
the Fourier transform of (2.5) on the other side, one obtains using (2.11)

Eθ (t) =
∫ ∞

−∞
e−iωt Ê (ω)dω (2.12)

= −
∫ ∞

−∞
ω2e−iωt p̂(ω)

sinθ
c2r

dω , (2.13)

from which we read the following expression for the Fourier transform of the
electric field

Ê (ω) =−ω2 p̂(ω)
sinθ
c2r

. (2.14)

Integrating the energy loss (2.9) over time one finds the energy that crosses a
surface per surface element dA

dE
dA

=

∫ ∞

−∞
energy flux ·dt =

∫ ∞

−∞

c
4π

E 2(t)dt (2.15)

where we have used the fact that the energy flux is given by the Poynting
vector (2.6).

From the theory of Fourier transforms we use
∫ ∞

−∞
E 2(t)dt = 2π

∫ ∞

−∞
|Ê (ω)|2 dω = 4π

∫ ∞

0
|Ê (ω)|2 dω (2.16)

and therefore

dE
dA

= c
∫ ∞

0
|Ê (ω)|2 dω (2.17)

giving finally the emitted spectrum

dE
dω

=

∫
c|Ê (ω)|2 dA (2.18)

(2.14)
==

∫
c

ω4|p̂(ω)sinθ |2
c4r2 dA (2.19)

=
8π
3

ω4

c3 |p̂(ω)|2 (2.20)

This shows that in a non-relativistic approximation (remember that we assumed
Δv to be small compared to the velocity of light) the spectrum is proportional to the
square of the Fourier transform of the dipole moment.
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2.3 Radiation of a Relativistic Accelerated Particle

Not all the radiating charges that we will meet in this book are non-relativistic. We
will see that, often, very high energy particles must be present in order to explain
the observed radiation. It is therefore also necessary to know how relativistically-
moving charges radiate. In order to approach this question we introduce the basic
elements of special relativity, which we will use whenever appropriate. We do not
give a presentation of special relativity here, rather, we recall those elements that we
need for the derivation. We will introduce further elements as they become necessary
in the following chapters.

In special relativity one considers the flat metric of four-dimensional space time

ds2 = c2dτ2 = c2dt2 − dx2, (2.21)

which describes the distance between two events in space time. This distance is
invariant under the Lorentz transformations

t ′ = γ
(

t − v
c2 x

)
,x′ = γ(x− vt),y′ = y,z′ = z, (2.22)

where γ =
√

1−β 2−1
is the usual gamma factor, β = v

c , and v is the relative velocity
of the reference frames along the x-axis.

We next introduce the four-velocity

uμ =
dxμ

dτ
, (2.23)

which, as a small difference between coordinates, is a vector. Written explicitly

u0 =
dx0

dτ
= c

dt
dτ

= γ · c, (2.24)

because

(
dτ
dt

)2 = (dt2 − 1
c2 dx2)/dt2 = 1− v2

c2 =
1
γ2 . (2.25)

Similarly

u =
dx
dτ

= γ ·v, (2.26)

as

(
dτ
dx

)2 = (dt2 − 1
c2 dx2)/dx2 = (

1
v2 − 1

c2 )ev =
1
v2

1
γ2 ev, (2.27)

where ev is a unit vector in the direction of the velocity. Note that we will write v to
mean three-velocity, and in general bold italics vectors are three dimensional while
bold upright vectors are four dimensional.
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The acceleration is the second proper time derivative of the coordinates

aμ =
duμ

dτ
, (2.28)

which from (2.24) and (2.26) gives

a0 = c · dγ
dτ

(2.29)

ai =
d(γ ·vi)

dτ
. (2.30)

In order to generalise these results to describe the radiation of a non-relativistic
accelerated charge to relativistic charges, we write (2.9) in an explicitly covariant
form, i.e. in a form that is explicitly invariant under Lorentz transformations. In the
system in which the particle is at rest, we have

γ = 1,dτ = dt ⇒ a0 = 0,ai =
dvi

dt
. (2.31)

In this system, the non-relativistic derivation of Sect. 2.1 is valid, and we know
that the energy carried by the radiation field created by an accelerated charge per
unit time P = dE

dt is

P =
2
3

e2 |v̇|2
c3 =

2
3

e2

c3 a ·a, (2.32)

where a · a is the scalar product of the four-vector a with itself. To obtain the last
equality in Eq. 2.32, we have used Eqs. 2.28–2.31. The formulation

P =
2
3

e2

c3 a ·a (2.33)

is manifestly covariant. In order to convince yourself of this, consider the transfor-
mations of the left part of the equality under Lorentz transformations

Energy → γ ·Energy (2.34)

Δ t → γ ·Δ t (2.35)

therefore

dE
dt

→ dE
dt

. (2.36)

This is clearly a scalar. The right side of the equality is a scalar product and thus
also a scalar. The equality (2.33) is therefore valid in all systems of reference and
corresponds to the relativistic generalisation of the Larmor formula (2.9) that we
were seeking.
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We can now write Eq. 2.33 in the system of the observer in which the particle is
moving relativistically explicitly as

P =
2
3

e2

c3

[

c2
(

dγ
dτ

)2

−
(

d(γ ·v)
dτ

)2
]

(2.37)

Doing the algebra and using

dγ
dτ

=
γ3

c2 v · dv
dτ

, (2.38)

one obtains

P =
2e2

3c3 γ6
[
−
(

v̇ · v
c

)2 − |v̇|2
γ2

]
(2.39)

and

|P| = 2e2

3c3 γ6
[

a2
‖+

1
γ2 a2

⊥

]
, (2.40)

where we have introduced (v · v̇) = v · a‖ and |v× v̇| = v · a⊥, the components of
the acceleration parallel and perpendicular to the velocity, and where we have used
|v̇|2 = a2

‖+a2
⊥. The sign is naturally different if one considers the energy lost by the

particles or that gained by the radiation field, and must be set accordingly. The power
radiated by a relativistically-moving accelerated charge is finally expressed as

P =
2e2

3c3 γ4(a2
⊥+ γ2a2

‖). (2.41)

2.4 Relativistic Aberration

In order to understand the properties of the light observed from a relativistically-
moving source it is still necessary to see how the geometry of the emission differs
between the rest frame of the charge and that of the observer. Consider a source
moving with a velocity v along the x-axis with respect to an observer and write with
“′” the coordinate system in which the source is at rest, the “source system” in the
following. Both systems are related by the Lorentz transformation

x′ = γ(x− vt)

y′ = y

z′ = z

t ′ = γ
(

t − v
c2 x

)
(2.42)
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photon: u'y = c

e− at rest

observer: vx = −v

x'

y'

x

y

1/γ

Fig. 2.2 The source at rest in
the primed system of
reference emits a photon
along the y-axis,
perpendicular to the velocity
of the observer who sees the
photon with an angle of
90◦ −1/γ from the observer’s
y axis

Consider now a photon emitted by the source along a direction, say the y′-axis,
perpendicular to the velocity v. The photon moves with the speed of light: u′y = c,
while all other components vanish in the source rest frame, see Fig. 2.2.

The transformation of the velocities is given by

ux =
dx
dt

=
γ(dx′+ vdt ′)

γdt ′(1+ v
c2 u′x)

=
u′x + v

1+ vu′x
c2

(2.43)

uy =
dy
dt

=
dy′

γdt ′(1+ v
c2 u′x)

=
u′y

γ(1+ vu′x
c2 )

(2.44)

uz =
dz
dt

=
dz′

γdt ′(1+ v
c2 u′x)

=
u′z

γ(1+ vu′x
c2 )

(2.45)

which for the special case of our photon simplifies to ux = v, uy =
c
γ and uz = 0.

Consider now the direction under which the photon is observed in the observer’s
restframe

tanθ =
uy

ux
=

1
γβ

, (2.46)

where, as usual β = v
c .

We conclude from this analysis that all the photons emitted by a moving source
in the forward half sphere are observed as coming from a cone of half opening angle
(γβ )−1 in the observer’s rest frame. The change of apparent direction under which
the photon is observed in both frames is called the relativistic aberration. The fact
that all the photons emitted in a half sphere appear in a small cone leads to what
is called beaming. The source appears much brighter to observers lying within the
cone than to those located outside the cone.

We now have the tools needed to understand the radiation emitted by charges
accelerated through different forces. In the following chapters we will deduce
the properties of the radiation emitted by the different processes by estimating or
calculating the second derivative of the dipole moment and deducing the efficiency
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of the process through the energy-loss formula of Larmor (2.9) or its relativistic
generalisation (2.41) using beaming where appropriate (2.46). The source spectra
will be calculated using Eq. (2.20).

2.5 Bibliography

Detailed derivations of the results presented here can be found in Jackson (1975)
for the classical electrodynamics and in Rybicki and Lightman, (2004) and Longair
(1992).
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Chapter 3
Bremsstrahlung

Bremsstrahlung is a German word meaning radiation from braking. This is also
called free-free emission being the emission that free electrons produce when
accelerated in the vicinity of ions. It is mainly a thermal process in the sense that the
underlying distribution of electrons and ions are thermal. Note, however, that there
are cases where this may not be verified and where, therefore, different distributions
of particle energy need be considered. Since temperatures are seldom high enough
for the electrons to be relativistic, we will consider only the non-relativistic case.
We will estimate at the end of the chapter the contribution of line emission, i.e. that
resulting from bound electrons, to the total emission of the plasma.

The classical description of this process starts from the emission of an accelerated
charge as derived in Chap. 2. Omitting the constants, we have for the energy loss of
the charge (see Eq. 2.9)

dE
dt

∝ |p̈|2, (3.1)

where p is the electric dipole moment.
First note that for an ensemble of charges with identical charge-to-mass e/m

ratios

p = ∑
i

eiri = e∑
i

ri = m
e
m

M
M ∑

i
ri = M

e
m

rcm, (3.2)

where rcm is the centre of mass of the system.
Newton’s laws tell us that the centre of mass of a system of particles is fixed when

only internal forces act on the particles. It follows from (3.2) that the total dipole of
the system is also fixed and hence that p̈ vanishes in the absence of external forces.
A system of identical charged particles will therefore not radiate any electric dipole
radiation.

One should also note that in a plasma of electrons and ions, the electrons are
accelerated a factor mp/me � 1,800 more efficiently than the ions by electromag-
netic forces. The radiation of the plasma is therefore dominated by the emission
of the electrons. We will therefore here (and elsewhere) concentrate on electron
acceleration and radiation.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 3, © Springer-Verlag Berlin Heidelberg 2013
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3.1 Emission from Isolated Electron–Ion Pairs

Consider first the acceleration of an isolated non-relativistic electron in the vicinity
of an ion. The force between both particles is the electrostatic Coulomb force. The
electron trajectory is depicted in Fig. 3.1.

We can calculate the spectrum emitted during the collision between a single
electron of charge e− and a single ion of charge Ze with trajectories such that the
collision impact parameter is b (Fig. 3.1). Since the ion is negligibly accelerated we
will consider it fixed.

We derived in Eq. 2.20 the emitted spectrum as a function of the Fourier
transform of the electric dipole

dE
dω

=
8π
3

ω4

c3 |p̂(ω)|2. (3.3)

We must therefore calculate |p̂(ω)|2. The electric dipole is as usual p =−er. Its
second derivative is

p̈ =−ev̇. (3.4)

The Fourier transform of Eq. 3.4 can be written as

−ω2 p̂(ω) =− e
2π

∫ ∞

−∞
v̇eiωt dt, (3.5)

which we can now estimate knowing electrostatic forces and the characteristics of
the collision. We first consider the parameters of the collision and introduce τ , its
characteristic time

τ =
b
v
, (3.6)

where v is the velocity of the electron. For ω
2π � 1

τ , i.e. for frequencies that are
large compared to the inverse of the characteristic time, the term e(iωt) oscillates
rapidly and the integral in (3.5) vanishes. In the other limit: ω

2π � 1
τ , ωt vanishes,

the exponential is 1 and the integral reduces to
∫

v̇ dt � Δv. We therefore obtain

p̂(ω)∼
{

e
2πω2 Δv, if ωτ � 1
0, if ωτ � 1

, (3.7)

Ze (b2 + v2 t2)½

v ⋅ t

b

e−

Fig. 3.1 Trajectory of an electron in the electrostatic field of a fixed ion. The impact parameter of
the collision is defined as depicted and is written b
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which we can insert in (3.3) to obtain

dE
dω

=

{
2
3

e2

c3π |Δv|2, if ωτ � 1
0, if ωτ � 1

. (3.8)

We consider next the electrostatic force to estimate Δv = |Δv|. We discuss
the case of a large impact parameter for which the acceleration is predominantly
perpendicular to the velocity and is given by the Coulomb force felt by the electron.
Without loss of generality, assume that the electron moves at first parallel to the x-
axis and that t = 0 at closest approach. Consider the z-component of the Coulomb
electro-static field (which we denote here also as E to distinguish it from the energy
E) generated by the ion Ez = E · b√

(b2+v2t2)
to obtain

Δv⊥ = − e
m

∫ ∞

−∞
Ez dt (3.9)

= −Ze2

m

∫ ∞

−∞

b

(b2 + v2t2)3/2
dt (3.10)

= −2Ze2

mbv
. (3.11)

We can now use (3.6) to express τ in terms of b (ωτ = ω b/v) and insert (3.11)
into the expression for the spectrum (3.3) to give

dE
dω

=

{
8
3

Z2e6

πc3m2b2v2 , if b � v
ω

0 if b � v
ω .

(3.12)

3.2 Electron Distribution: The Impact Parameter

The result obtained in the previous subsection is generally very far from any physical
reality. Indeed in nature we observe macroscopic plasmas in which the electrons
and ions do not come in isolated form, but rather in large populations described by
distributions. The first ensemble we want to consider is a beam of electrons moving
in parallel with the same velocity amplitude. We therefore consider a distribution of
impact parameters b.

The energy emission per unit frequency and per unit time in a volume element
dV is given by

dE
dωdVdt

= ion density ·
∫

2πbdb · electron flux︸ ︷︷ ︸
nev

·dE(b)
dω

(3.13)

= ninev2π
∫ bmax

bmin

db ·b dE
dω

(3.14)
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(3.12)
==

16
3

Z2e6nine

c3m2v

∫ bmax

bmin

db
b

(3.15)

=
16e6Z2

3c3m2v
neni ln

(
bmax

bmin

)
, (3.16)

where we have used (3.12) to express the spectrum emitted in a single interaction of
impact parameter b. bmin and bmax are the boundaries of the integral. bmax is limited
by the condition ω � v/b for which the integral in (3.12) vanishes. We therefore
use bmax =

v
ω .

For very small bmin, the approximation we made of a large impact parameter is
not valid. We will therefore leave this as a parameter and write

dE
dωdVdt

=
16πe6

3
√

3c3m2v
neniZ

2gff(v,ω), where gff(v,ω) =

√
3

π
ln

(
bmax

bmin

)
. (3.17)

gff is of the order 1 and cannot be calculated with the method we described here. It
is called the Gaunt factor.

It is important to note that, quite expectedly, the emissivity is proportional to the
square of the density. This process will therefore play a particularly prominent role
whenever the densities are high.

3.3 Electron Distributions: Thermal Bremsstrahlung

The next step in estimating the bremsstrahlung of a plasma is to consider a
distribution of electron velocities. We must therefore integrate equation (3.17) over
the velocity distribution of the electrons. This distribution can have many shapes that
will depend on the origin of the electrons in the plasma. One particularly relevant
distribution is that describing a thermal plasma. The probability that an electron has
a velocity v in a thermal non-relativistic plasma of temperature T is

dP ∼ e−E/kT d3v ∼ v2e−
mv2
2kT dv, (3.18)

where k is the Boltzmann constant.
We can now integrate equation (3.17) over the velocities and normalise with the

integral of the probability distribution of equation 3.18 to obtain

dE
dVdtdω

(T,ω) =

∫ ∞
vmin

dv dE
dVdtdω (v,ω)v2e−mv2/2kT

∫ ∞
0 v2e−mv2/2kT dv

. (3.19)

The integration limit vmin is given by the condition 1
2 mv2 > h̄ω . When this

condition is not satisfied, the collision cannot give rise to a photon of energy h̄ω .
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The integral cannot be solved analytically, if only because we have in it the function
gff(v,ω) for which we have no analytical form. We can, however, establish the main
dependencies of the spectrum from a dimensional analysis of the terms of Eq. 3.19.

First we note from Eq. 3.17 that dE
dVdtdω (v,ω) ∝ 1

v . It follows that dE
dVdtdν v2

is proportional to v, while the denominator is explicitly proportional to v2. The
integration will therefore lead to a term proportional to 1

<v> ∝ T−1/2. Note that we
cannot expect to create photons of energy larger than that of the particles entering

the scattering. The integration will therefore be proportional to e(
−hν
kT ), where ν is

the cyclic frequency rather than the angular frequency. We therefore expect that the
integration will lead to

dE
dVdtdν

∼ neniT
−1/2 · e−hν/kT

(
ν =

ω
2π

)
. (3.20)

When all the algebra is carried out, one gets

dE
dVdtdν

=
25πe6

3mc2

(
2π

3km

)−1/2

T 1/2Z2nenie
−hν/kT ḡff, (3.21)

where ḡff is the Gaunt factor averaged over velocity, it is a function of the
temperature T and frequency ν . The resulting emissivity in c.g.s. units is

ε ff
ν = 6.8 ·10−38Z2neniT

−1/2e−hν/kT ḡff
erg

scm3 Hz
. (3.22)

The numerical value of ḡff is 1 < ḡff < 5 for 10−4 < hν
kT < 1. More precise values

can be found in the literature. Integrated over the spectrum the emissivity is

εff = 1.4 ·10−27T 1/2neniZ
2ḡB

erg
scm3 . (3.23)

ḡB is the integrated Gaunt factor, with a value between 1.1 and 1.5. Adopting a value
of 1.2 leads to results accurate to about 20 %.

The same reasoning that we made here for a thermal electron distribution can
naturally be made using other electron distributions that might result from non-
thermal physical processes.

Optically-thin thermal plasmas that emit predominantly as bremsstrahlung are
found in clusters of galaxies. We discuss them in Sect. 3.5. In these objects, the
hot gas emitting bremsstrahlung in the X-ray domain dominates the baryon mass.
Clusters of galaxies are therefore predominantly large hot gas concentrations in
which galaxies form a minor constituent.

Early observations of the diffuse X-ray background (discussed in Chap. 21)
indicated that this emission could be well described by a 45 keV free-free emitting
plasma. The origin of the gas remained, however, mysterious. More recent observa-
tions show that the background is resolved at a few keV in a population of AGN.
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While the situation is much less clear above 10 keV, it is expected that also at these
energies the background is due to a large number of faint sources. This “diffuse”
X-ray background has, therefore, no relationship to the emission of a hot gas that
would permeate the whole Universe. This is a clear example showing how relying
just on spectral fitting techniques leads to a good representation of the data, but with
a model that bears no resemblance to physical reality.

3.4 Line Emission

The emission we have discussed in the preceding sections is a continuum. This is
due to the fact that the underlying electron energies are also continuous. In ions and
atoms, on the other hand, the electron energies are discrete rather than continuous.
Only photons of discrete energies, corresponding to differences in the energy levels,
can be emitted. In a plasma of a given temperature the energy levels are populated
following well-defined rules. It follows that these plasmas emit, in addition to the
bremsstrahlung continuum, a characteristic set of lines (this is also sometimes called
bound-bound emission). The relative importance of the line emission compared to
the continuum emission is a function of temperature. In a wide range of temperatures
the line contribution should not be neglected when interpreting observations. This
is particularly true when observations of low-energy resolution are used, in which
the individual lines cannot be distinguished. It is interesting to note in this respect
that in the low-energy X-ray emission of AGN (see Chap. 20 for an introduction
to AGN) there is an “excess” over the expected emission that had been thought to
originate from the integrated line emission that could not be resolved with existing
instruments. Subsequent observations, obtained when the instrumentation allowed
researchers to make observations that should have revealed the lines failed to detect
enough lines, leaving the question of the “excess” to be solved in a different way.

The ionisation energy of Fe XXVI is at about 9 keV (Carliss and Sugar 1982).
This is the highest astrophysically-relevant ionisation energy, because of the high
abundance of iron compared to that of the heavier nuclei in the Universe. It follows
that for gases of temperatures higher than 10 keV (�108 K) virtually all ions are
completely stripped of their electrons. There can therefore not be any line emission
at these temperatures. For lower temperatures, such as those observed in the coronae
of the sun and stars for example, XMM-Newton and Chandra observations have
shown a great richness of lines. In clusters of glaxies (see Sect. 3.5) lines are also
observed superimposed on the bremsstrahlung continuum and yield fascinating
information on the history of the gas. The same is true of X-ray observations of
supernova remnants where the analysis of the gas through the lines reveals the
chemical composition of the remnant.

In addition to lines in emission or in absorption one observes absorption “edges”
in the X-ray spectra at the ionisation energies. Whether lines are seen in emission
or in absorption depends on the geometry and structure of the source as seen by the
observer. The edges are caused by free-bound transitions, i.e. where free electrons
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Fig. 3.2 Simulated spectrum for a plasma with temperature T = 106.2 K, an electron density of
1010 cm−3 and solar abundance of heavy elements (Z = 1)

are captured at discrete energies by the ions. The edges appear as jumps in the
absorption cross section, and they are clearly visible in the case of a neutral gas of
cosmic abundances in Fig. 1.10.

To calculate the expected line emission from a plasma of a given temperature
requires knowledge of the population of all energy sates of all the ionisation levels
present at that temperature, and this for all the elements present in the plasma.
This is a titanesque task, as for Fe in a plasma of temperature of some keV a
very large number of ionisation levels must be considered, each with its very
numerous energy levels. The task is of such difficulty that often the uncertainties
in the interpretation of the data are dominated by uncertainties in the underlying
atomic physics. Here we consider a model for the line emission of the plasma that
is widely used in the astrophysical community to give one example of the spectrum
of a plasma of T = 106.2 K (Fig. 3.2) and to calculate numerically the integrated line
emissivity (see Fig. 3.3). We then show the ratio between the line emissivity and the
continuum emissivity in Fig. 3.4. One sees here that, as expected, the line emission
dominates when the temperatures are such that many ionisation levels are present,
and decreases at high energies when practically all nuclei are completely stripped
of electrons. It is easily seen that the lines may be up to 25 times more efficient in
cooling a plasma than the continuum at a temperature of about 106 K.
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Fig. 3.3 Contribution of the thermal bremsstrahlung continuum, of the line emission, and of the
sum of both components as a function of temperature in a plasma of solar abundance
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3.5 Example: Clusters of Galaxies

One example of particular interest is given by clusters of galaxies. These objects
subtend a very large solid angle on the sky, and they are also extremely massive.
Before X-ray observations were possible clusters of galaxies were known from
the large overdensity of galaxies that defines them. But we know now that the
dominant radiation from these objects is not emitted by the galaxies themselves,
but by the intra-cluster gas that is heated in the deep potential well of the cluster to
temperatures corresponding to several keV. These objects, the largest gravitationally
bound structures in the Universe, are thus compact in the sense that the gravitational
well is deep enough to generate X-rays.

The X-ray emission observed in clusters of galaxies is thermal and optically thin.
One therefore observes in them directly the bremsstrahlung and the lines discussed
above. The temperature of the gas, expressed in units of energy, is of the order of
1–10 keV. The emission is more-or-less regular in the clusters, depending on how
virialised or relaxed the cluster actually is. The mass of the gas far exceeds that of
the sum of the individual galaxies by a factor around 10.

Figure 3.5 shows the Coma cluster as seen in the optical domain. Clearly, the
emission is dominated by that of the galaxies in the cluster. In Fig. 3.6 we show
the same cluster but observed in the X-rays with XMM-Newton. The galaxies are
not seen anymore, their emission in this domain being negligible. The emission is

Fig. 3.5 Optical emission from the Coma cluster of galaxies (Credit: Kitt Peak)
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Fig. 3.6 XMM-Newton observations of the Coma cluster (Credit: U. Briel, MPE Garching,
Germany and ESA)

instead dominated by a smooth component that extends across the cluster. The shape
of the spectrum can be used to deduce the temperature of the gas. In this case one
finds a temperature of kT = 8.25 keV (Arnaud et al. 2001).

Figure 3.7 shows an early X-ray spectrum of the Perseus cluster obtained by
the HEAO-A1 instrument. The continuum is well described by a thermal emission
of kT � 6.5 keV. Striking on this plot is the enhanced emission at two energies
compared to the smooth continuum. This enhanced emission is due to emission lines
created by the presence of Fe 25 times ionised (Fe XXVI). These lines correspond
to the Lyα and Lyβ lines of Fe in its one electron configuration. In order to
understand this identification, remember that the energy of the H Lyα line is at
0.00103 keV and that the line energy is proportional to Z2 as one progresses in
the chemical table of the elements. For Z = 26 the corresponding line is at 7 keV,
as observed.



3.5 Example: Clusters of Galaxies 41

HEAO-I

HRI Prediction
inner IO'

S = 0.0014
Si = 0.0017
Fe = 0.014

Energy (kev)

P
ho

to
ns

/c
m

2  
se

c 
ke

V

1 5 10 20

100

10−1

10−2

10−4

10−5

10−3

Fig. 3.7 X-ray spectrum of the Perseus cluster from HEAO-A1 instrument. A model of the
emission as thermal bremsstrahlung emission of gas at about T = 6.5 · 107 K is shown. This high
temperature is confirmed by the presence of emission lines, due to highly ionised iron, Fe+25

at energies of 6.7 and 7.9 keV. This high temperatures is indeed required to ionise Fe so highly.
(Fabian et al. 1981, Fig. 7, p. 52, reproduced by permission of the AAS)

This observation leads immediately to the conclusion that the cluster gas is not
primordial. Only H and He were produced during the Big Bang nucleosynthesis in
significant amounts. All other elements have been subsequently synthesised in the
interior of stars. Thus the presence of Fe in the cluster gas implies that the gas has
been processed by the stars within the galaxies.

Present-day observations, in particular with the XMM-Newton satellite, show
much more detail than shown in Fig. 3.7. Figure 3.8 shows the observed low-
energy spectrum of the cluster A 2052. From these data it is possible to deduce
the elemental abundance as a function of the distance to the centre of the cluster
as well as the temperature also as a function of the distance (Figs. 3.9 and 3.10).
From these observations one sees that the central temperature is less than that of
the outskirts of the cluster. This is an immediate consequence of the dependence
on the square of the density of the emissivity. The central regions are denser and
thus cool faster through bremsstrahlung than the outer regions. This has led to
a long standing debate. The gas seems to cool with a characteristic time that is
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Fig. 3.8 XMM-Newton spectrum of A 2052 in the inner three shells (Kaastra et al. 2004).
The spectra of the 0.5–1.0 and 1–2 arcmin shells have been multiplied by factors of 5 and 25,
respectively. The spectra are shown as energy times counts/s/keV

considerably less than the age of the Universe. There should therefore be substantial
amounts of cold gas in the central regions of clusters that should be observable in
some form. This gas has, however, never been seen, nor have stars that could result
from the presence of this gas been observed. This long-standing problem is now
solved by the observation that the cluster structures are quite a bit more complex
than early observations seemed to indicate. Shocks are observed that are caused
by the interaction of the cluster gas with the active galaxies located in their central
regions. This leads to additional heating of the gas as shown in Fig. 3.11, where both
the Perseus cluster observed by the Chandra telescope and the VLA image of the
central active galaxy NGC 1275, are displayed. The structures of the active galaxy
NGC 1275 match well those observed in the intra cluster gas, suggesting, indeed,
that the energy delivered by the AGN is energizing the cluster and preventing the
gas from cooling.

Another intriguing and fundamental observation made with clusters arises from
the comparison of different measurements of their mass that can be performed using
optical and X-ray data. The mass of the optically-luminous matter in the clusters is
deduced from the optical luminosity of the cluster galaxies and the mass-to-light
ratios known from nearby galaxies. The mass of the hot gas is deduced through the
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Fig. 3.9 (a) Surface brightness, (b) electron density, (c) temperature, and (d) pressure, as a
function of radius deduced from Chandra observations of the A 2052 cluster. The vertical dashed
lines mark the mean inner and outer radii of the bright X-ray ring. (Blanton et al. 2001, Fig. 2,
p. L16, reproduced by permission of the AAS)

measurement of the gas temperature and luminosity. Equation 3.23, which gives
the gas emissivity, allows one to deduce the density of the gas from the X-ray
luminosity. With this density and the size of the cluster one can deduce the mass
of the gas.

A further mass, the gravitational mass of the clusters, can be deduced from the
gas temperature. Indeed in order to bind gas of a given temperature, the gravitational
field must be such that the thermal velocity of the gas is less than the escape velocity.
Figure 3.12 gives the optically-luminous mass, the X-ray emitting mass and the
gravitational mass as a function of distance from the centre of the cluster. One sees
that the mass of the galaxies is about an order of magnitude less than that of the hot
gas, which is in turn much less than the total gravitational mass. This is a powerful
illustration of the dark matter problem. Indeed the largest fraction of gravitating
matter in clusters is convincingly shown to be in forms that are unobserved. This
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Fig. 3.10 Iron abundance profiles measured in the four nearby galaxy clusters, M 87/Virgo,
Perseus, Centaurus, and A1795 as measured by XMM-Newton (Boehringer et al. 2004). The values
are in solar units based on the solar abundance of iron quoted by Feldman (1992). The dashed line
shows the iron abundance with a value of ∼0.2 solar, observed on a large scale in clusters, and
assumed to come mostly from type II supernovae enrichment before cluster formation

last argument was already made by Fritz Zwicky in 1933 using the relative velocities
of the galaxies rather than the X-ray temperature as a measure of the depth of the
gravitational well.

3.6 Bibliography

Bremsstrahlung is extensively discussed in Rybicki and Lightman (2004) from
which the discussion presented here is a slightly simplified presentation. Readers
wanting a more thorough presentation are referred to that text.

The X-ray properties of clusters of galaxies are reviewed in Boehringer and
Werner (2010).
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Fig. 3.11 The Perseus cluster as observed by Chandra. Modern images show that the intra-cluster
hot gas is not homogeneous, but has a very significant amount of structure. The central galaxy of
Perseus is an active galaxy that is probably injecting very large amounts of energy into the gas,
thereby preventing it from cooling through bremsstrahlung emission in the central dense regions.
(Credit: X-ray: NASA/CXC/IoA/A. Fabian et al.; Radio: NRAO/VLA/G. Taylor)
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Fig. 3.12 Integrated radial mass profiles for the Perseus cluster of galaxies (Boehringer 1995).
Shown are the gravitational mass, the gas mass and the galaxy mass profile. For the first two
profiles the upper and lower limits are given. For the galaxy mass profile the luminosity profile was
converted into a mass profile by assuming a mass to light ratio for the galaxies of 5 in solar units
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Chapter 4
Cyclotron Line Emission

The force acting on a charge e moving non-relativistically with a velocity v of
magnitude v in a uniform magnetic field B is the Lorentz force. In the absence
of an electrical field we have

F =
e
c

v×B. (4.1)

This force is perpendicular to the velocity and thus does not change its mag-
nitude, but only its direction. The magnitude of the force is also constant in a
homogeneous magnetic field. The resulting motion of the charge is therefore circular
when projected onto the plane perpendicular to the axis of the magnetic field
and free along this same axis (see Fig. 4.1). Even though the magnitude of the
velocity does not change, the charge is continuously accelerated and according to
Chap. 2 will therefore radiate electromagnetic waves. When the movement is non-
relativistic, one speaks of cyclotron emission.

4.1 Gyro Frequency

The rotation frequency of the charge perpendicular to the field axis is described by
the angular frequency ω . Consider the magnitude of the Lorentz force acting on a
particle of mass m in the plane perpendicular to the magnetic field

F = |F|= ma =
e
c

vB. (4.2)

For a circular uniformly-accelerated motion one can derive by a simple geometric
consideration (Fig. 4.2), that |v2 − v1|= |dv| � vdθ . Using dθ = ωdt, one obtains

dv
dt

= v ·ω . (4.3)

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 4, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 4.1 The general path of a moving charge in a constant magnetic field is a helix with its axis
parallel to the direction of the magnetic field
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Fig. 4.2 A particle moving with speed v (|v1| = |v2|= v) from r1 to r2 along a circular orbit

Since v = rω , the acceleration a = vω = rω2 = e
mc vB, where the last equality

follows from Eq. (4.2). One therefore obtains

ω = ωB =
eB
mc

. (4.4)

The relativistic generalisation of Eq. 4.4 is

ωB =
eB

γmc
, (4.5)

where γ is the relativistic factor. The frequency (4.5) is called the gyro frequency, the
cyclotron frequency, or the Larmor frequency. The radius of the electron trajectory
perpendicular to the magnetic field rL, the Larmor radius is found from
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2πrL = v⊥
2π
ωB

, (4.6)

giving rL = v⊥ mc
eB .

4.2 Emitted Power

The power emitted by an electron moving in a magnetic field can be calculated from
the Larmor formula derived in Chap. 2 and the acceleration specific to the motion
of the charge. From Eq. 2.9, the emitted power is

P =

∣
∣
∣
∣
dE
dt

∣
∣
∣
∣=

2
3

e2|v̇|2
c3 . (4.7)

with ω = ωB, |v̇|= ωB ·v and Eq. 4.4 for ωB one finds

P =
2
3

e2

c3

(
eB
mc

)2

·v2 (4.8)

=
2
3

e4

m2c4
︸ ︷︷ ︸

r2
0

B2v2

c
(4.9)

=
2
3

cr2
0B2β 2, (4.10)

where we have introduced the classical electron radius r0. The emission is clearly
monochromatic at the frequency ν = ω

2π .
In the strong magnetic fields met close to neutron stars, this classical description

of the electron emission is not quite sufficient to understand the cyclotron radiation
observed from cosmic sources. Quantum mechanical effects become important
when the Larmor radius becomes smaller than the de Broglie wavelength λdB = h̄

mv
for a non relativistic electron, i.e. the dimension within which the electron can be
localised. The inequality rL < λdB leads to

BQ >
m2v2c

eh̄
. (4.11)

Quantitatively this inequality means that the physics of electrons of energy
around 10 keV in magnetic fields larger than ∼1012 G must be described in the
framework of quantum theory.

For this one needs to address the quantum mechanics of a charge in a magnetic
field, which we sketch here. The reader is referred to Landau and Lifschitz (1967)
or Meszaros (1992) for a detailed treatment.
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A quantum mechanical treatment of the process starts from a classical Hamilto-
nian that describes the forces at play, and from which the equations of motion will
be derived. For an electric charge in a magnetic field, the Hamiltonian is expressed
using the vector potential A

H =
1

2m

(
p− e

c
A
)2

where B = ∇×A. (4.12)

The quantum mechanical operator is obtained by replacing the classical momen-
tum p by the corresponding quantum operator

p → p̂ =−ih̄∇ (4.13)

leading to the Hamilton operator

Ĥ =
1

2m

(
p̂− e

c
A
)2

. (4.14)

For a B field parallel to the z-axis the vector potential A is

Ax =−1
2

B · y,Ay =
1
2

B · x,Az = 0 (4.15)

and the Hamilton operator becomes

Ĥ =
1

2m

(
p̂x − e

c
By
)2

+
1

2m

(
p̂y +

e
c

Bx
)2

+
p̂2

z

2m
. (4.16)

The trajectories corresponding to this Hamiltonian are made of a circular
movement in the plane perpendicular to the magnetic field, and a constant velocity
parallel to the field. This is, as expected, the same result as obtained in the classical
treatment of the problem. The energy levels, the Landau levels, are quantised and
given by the eigenvalues of the Schrödinger equation

Ĥψ = Eψ , (4.17)

where ψ is the wave function of the electron. The eigenvalues of the energy are

En =

(
n+

1
2

)
eh̄B
mc

+
p2

z

2m
. (4.18)

The circular movement in the plane perpendicular to the magnetic field is
quantised, whereas, again as expected, that parallel to the magnetic field is free.
Electrons (charges in general) have energies given by Eq. 4.18, and they can migrate
from one level to another by absorbing or emitting a quantum of energy that is a
multiple of eh̄B

mc . This implies that lines form in the spectrum of electrons in magnetic
fields. These lines are equidistant in frequency.
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4.3 Observed Cyclotron Features

The discussion presented in the first two sections of this chapter are needed to
understand the synchrotron radiation presented in Chap. 5. This is a sufficient
justification for the present chapter. However, it became evident in the 1970s that
certain features of X-ray spectra of some sources are of cyclotron origin.

A practical way to express Eq. 4.4 in units that are relevant for X-ray astronomy is

Ec = h̄ωB = 11.6 ·
(

B
1012 G

)
keV, (4.19)

showing that for magnetic fields of the order of 1012 G cyclotron features are
expected in the tens of keV spectral region.

During a balloon flight in 1976, Truemper et al (1978) observed the hard X-
ray spectrum of Her X-1 in which a feature is clearly detected around 40 keV
(Fig. 4.3). Her X-1 is a well known X-ray pulsar (see Chap. 16 for a discussion
of these objects). Interpreted in terms of atomic transitions, the line energy would
necessarily imply elements way above Fe. To understand this point remember that
the Lyman transitions of the hydrogen-like Fe are around 7 keV. The energy of the
hydrogen-like transitions is proportional to Z2. A line around 40 keV might thus be

coming from elements with Z
26 �

√
40
7 or Z around 62. The periodic table shows

around 62, elements like promethium (Z = 61) or samarium (Z = 62), most unlikely
elements to be present in large quantities in the surroundings of neutron stars! A
feature around 40 keV might also be interpreted in terms of nuclear transitions. One
such transition is known at these energies from 241Am, also a very unlikely element
to be present in large quantities in an optically-thin environment necessary for us to
observe the transition.

The most natural explanation for the feature observed in Her X-1 is therefore in
terms of a cyclotron transition in a B-field of some 3 · 1012 G as given by Eq. 4.19.
The exact value of the field cannot be given with certainty using the data presented in
Fig. 4.3 as it is not possible to know from these data whether the line is an absorption
line or an emission line at a slightly higher energy. More recent studies show that
the line is in absorption (Fig. 4.4).

Although a field of the order of 1012 G may sound at first to be as improbable
as atomic transitions of Pm or nuclear transitions of Am, it should be noted that
neutron stars (which are one of the component of an X-ray pulsar) are the product
of stellar collapse. Remembering that the magnetic flux is a conserved quantity, one
can estimate the field surrounding the collapsed object through

B = B0 ·
( r

10km

)2 ∼ 103 ·
(

7 ·105

10

)2

= 5 ·1012 G, (4.20)
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Fig. 4.3 Deconvolved X-ray spectrum of the Her X-1 pulsar (balloon observations on 1976 May
3). Solid line, best-fitting exponential spectrum with a Gaussian line to describe the line around
40 keV. For comparison, a total X-ray spectrum of Her X-1 observed by OSO-8 during the 1975
August on-state is shown. (Truemper et al 1978, Fig. 2, p. L109, reproduced by permission of
the AAS)

where we have taken a field of 103 G as the initial magnetic field of the star, and the
size of the Sun as its initial radius. This simple argument shows that fields of the
order of 1012 G are indeed as plausible around compact objects as fields of 103 G in
stellar environments, where they are indeed commonly observed.

We have seen that cyclotron lines should appear in equidistant energy intervals.
This is indeed the case as shown in the data presented in Fig. 4.4 where the hard
X-ray spectrum of V0332+53, an X-ray pulsar in a binary system, is shown.
Recent work tends to explain the observed transitions as absorption features. The
continuum radiation is produced close to the neutron star as matter flows from
the companion to the neutron star. The radiation field is then partially absorbed
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Fig. 4.4 INTEGRAL spectrum of V0332+53. Cyclotron lines are observed around 25, 50 and pos-
sibly 75 keV (Data from Kreykenbohm et al. (2005), image credit I. Kreykenbohm (ISDC,IAAT))

at the cyclotron frequency and its multiples, thus causing the absorption lines.
The structure of the mass flow and of the magnetic field on the one side, and
the radiation transfer on the other side are, however, extremely complex and
modelisation work is still needed to fully understand the geometry and the physical
conditions in the sources.

Recently (Bignami et al. 2003) have reported XMM-Newton spectra of the
isolated neutron star 1E1207.4−5209 (Fig. 4.5). This neutron star is not in a binary
system as the previously discussed X-ray pulsars. Rather, the observed radiation
is that of the hot surface of the star. The X-ray spectrum shows deep absorption
features at 0.7, 1.4 and 2.1 keV which the authors interpret as the signature of a
magnetic field of 8 ·1010 G. This is the only isolated neutron star for which this has
been observed.

Observations in the 1990s by GINGA (a Japanese X-ray satellite) claimed
detections of cyclotron features in the emission of gamma ray bursts. These features
could be seen only during a short portion of the bursts. These observations have not
been confirmed by other satellite observations.
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Fig. 4.5 Spectra of 1E1207.4-5209 collected by two cameras on board of the XMM-Newton
satellite during August 2002. Data points and best fitting continuum spectral models are shown,
together with residuals in units of standard deviations from the best fitting continuum. Three
absorption features are visible at energies of 0.7, 1.4 and 2.1 keV (Bignami et al. 2003, Fig. 1,
p. 725, reprinted with kind permission of Nature Publishing Group)
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4.4 Bibliography

The physics of electrically-charged particles in magnetic fields is found in several
classical texts. Those of Jackson (1975), Landau and Lifchitz (1967) or Rybicki
and Lightman (2004) have served as basis of the presentation given here and are
recommended for a deeper discussion.
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Chapter 5
Synchrotron Emission

One speaks of cyclotron radiation when the electrons moving in a magnetic field
are not relativistic, and of synchrotron radiation when the particle energies are
relativistic.

Synchrotron radiation is a very important form of radiation in astrophysics. It is
encountered in most environments: in the solar corona, in supernova remnants, in the
Galaxy, in galaxies in general, and in AGN in various guises, as the huge radio lobes
of radio galaxies, but also as compact jets or as one of the many components that
make the continuum emission of AGN. Gamma ray bursts are most probably also
the source of powerful synchrotron radiation. Synchrotron emission will, therefore,
be met again in several chapters of this book.

Synchrotron emission is most often observed in the radio domain, but in extreme
cases also in the X-ray domain or even in the gamma-ray domain. Wherever
observed it is traditionally in the realm of high-energy astrophysics. Whereas
synchrotron emission is an important process in the study of the Sun, this aspect
will not be discussed further in this text. Note, however that the theory described
here applies in that case as well.

5.1 Power Emitted by a Single Electron in a Magnetic Field

The relativistic charge (most often an electron; we will therefore consider exclu-
sively the electron leaving the reader to adapt wherever necessary) moving in a
magnetic field has a helicoidal movement (Chap. 4) with an angular frequency
ωB = eB

γmc (see Eq. 4.5) in the magnetic field and correspondingly an acceleration
a⊥ = ωB · v⊥, and a‖ = 0. Equation 2.41 for the power emitted by the relativistic
electron then becomes (with as usual β = v

c ):

P =
2e2

3c3 γ4 e2B2

γ2m2c2 β 2
⊥c2. (5.1)

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 5, © Springer-Verlag Berlin Heidelberg 2013
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We consider the average power emitted by the electron assuming that all velocity
directions are equally probable

〈β 2
⊥〉 =

1
4π

∫
(β sinα)2 dΩ (5.2)

=
2β 2

3
, (5.3)

where β sin α is the projection of the velocity onto the plane perpendicular to the
magnetic field. The synchrotron emission power for a single electron is therefore

Psync =
4
9

e4

c3

γ2β 2B2

m2 (5.4)

=
1

6π
σTcγ2β 2B2 (σT =

8π
3

e4

m2c4 ) (5.5)

=
4
3

σTcγ2β 2uB , (5.6)

where uB = B2

8π is the energy density of the magnetic field (B in gauss) and where
we have introduced the Thomson cross section σT. Note that when B is expressed
in gauss, uB is in ergcm−3, and Psync in ergs−1 with no additional constants. This is
a strength of this system of units.

We can use Eq. 5.4 to estimate the time an electron needs to loose a significant
fraction of its initial energy:

tcool =
Ee

Psync
=

γmec2

Psync
≈ 6 ·108B−2γ−1 s, (5.7)

showing that the stronger the magnetic field, and the higher the energy of the
electrons, the faster they cool.

5.2 Synchrotron Characteristic Frequency

In order to understand the shape of the spectrum emitted by a population of electrons
with an isotropic velocity distribution, we first consider the movement of a single
electron and calculate the time during which the electron is observable along its
path. Since the radiation emitted by a charge moving at relativistic velocities is
bundled in a cone of half opening angle 1/γ (Sect. 2.4), an observer can only “see”
the electron while it is in the forward cone (Fig. 5.1). This takes place during a
fraction ΔS of the orbit.

The observer will therefore register a pulse of radiation while the electron covers
the section of arc ΔS = a ·Δθ where Δθ = 2

γ , and where a is the radius of the
circle formed by projecting the electron motion on the plane perpendicular to the
magnetic field.
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Fig. 5.1 Left: The electron moves helicoidally in a magnetic field emitting synchrotron radiation
in a cone of half-opening angle 1/γ in the direction of motion. Right: only photons emitted while
the electron in Δt covers the section of arc ΔS will reach the observer, who will therefore register
a pulse of radiation during a time Δt0

Geometrical considerations (Fig. 5.1, right panel) allow us to derive that

ΔS =
2a
γ
. (5.8)

From the movement of the electron we know that for the component of the
velocity perpendicular to the magnetic field we have Δv

Δ t = ωBvsinα (see Eq. 4.3,
where vsinα is the velocity perpendicular to the magnetic field). With |Δv|= |vΔθ |
and ΔS = vΔ t we have

ΔS
Δθ

= v2 Δ t
Δv

=
v

ωB sinα
(5.9)

and with Δθ = 2
γ

ΔS =
2v

γωB sinα
. (5.10)

The pulse thus lasts a time

Δ t =
ΔS
v

=
2

γωB sinα
. (5.11)

This is not the time interval during which an observer at rest will measure the
light pulse, because the photons emitted as the electron enters the visibility arc will
travel while the electron progresses. The time during which the observer “sees” the
electron is therefore given by (see Fig. 5.2)

cΔ t0 = cΔ t − vΔ t ⇒ Δ t0 = (1−β )Δ t � 1
2γ2 Δ t. (5.12)
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Fig. 5.2 The photons emitted by the electron in A and B, at time tA and tB, reach the observer at
time t0 and t ′0, respectively. The duration of the pulse seen by the observer (Δt0 = t ′0 − t0) is the
result of the travel time of the photons and of the contemporary motion of the electron

Δt0 =
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1

Fig. 5.3 Time dependence of the intensity of the synchrotron emission from a single electron seen
by an observer (arbitrary units). The pulses have duration Δt0 =

1
γ3ωB sinα and period 2π/ωB

Inserting the expression for Δ t we found in Eq. 5.11 gives finally

Δ t0 =
1

γ3ωB sinα
. (5.13)

The time dependence of the intensity of radiation registered by the observer is
shown in Fig. 5.3.
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Fig. 5.4 Synchtrotron spectrum emitted by a single relativistic electron moving in a magnetic
field given in Ginzburg and Syrovatskii (1965). The function F(x) corresponds here to φν(γ) with
x = ν

νc(γ) . The emission peaks around the characteristic frequency νc

Fourier transform theory tells us that the corresponding spectrum will include
frequencies up to 1

Δ t0
. We therefore introduce a characteristic frequency νc with

νc =
ωc

2π
=

1
2π

1
Δ t0

=
1

2π
γ3ωB sinα (5.14)

=
1

2π
γ2 eB

mec
sinα. (5.15)

The spectral shape of the emission by a single electron will therefore have
a peak around νc, as shown in Fig. 5.4. We know from this discussion at what
characteristic frequencies an electron of given energy radiates (5.15). We also
know with which luminosity it radiates from Eq. 5.4, and how long it takes for
the electron to radiate a substantial fraction of its energy from (5.7). Combining
these results we can express the electron cooling time as a function of the emitted
photon energy

tcool =
3γmec2

4σTcγ2β 2uB

(using 5.7) (5.16)

γ ≈
(

4πmecνc

3eB

)1/2

(using 5.15) (5.17)

or

tcool [s] =
3mec2

4σTcβ 2uB

[√
4πmecνc

3eB

]−1

≈ 6 ·108B−3/2
[G] ν−1/2

[MHz], (5.18)

which shows again that electrons emitting at higher energies cool faster. We will be
able to deduce deep physical insight of AGN physics in Sect. 5.4.1 using just these
simple relationships.
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5.3 Spectrum Emitted by a Population of Electrons

Whereas we now know how a single electron radiates when moving in a magnetic
field, we do not yet have the tools to understand the spectrum emitted by a
synchrotron emitting source. In order to do this we must consider the radiation of a
population of electrons.

We can always express the synchrotron spectrum emitted by a single electron as

Pν(γ) =
4
3

β 2γ2cσTuBφν (γ),with
∫ ∞

0
φν(γ)dν = 1. (5.19)

The general shape of φν(γ) is known. From our previous discussion (Eq. 5.15 and
Fig. 5.4), we indeed know that the emission peaks at the characteristic frequency

νc =
1

2π
γ2 eB

mec
sinα. (5.20)

We can now consider a population of electrons distributed in energy according to
a power law

n(γ)dγ = n0γ−p dγ. (5.21)

This distribution is often met in environments in which particles are accel-
erated to very high energies through non-thermal processes (see Chap. 9). Since
synchrotron radiation is a process relevant for relativistic particles, i.e. electrons
for which the energy E � mec2 = 511 keV, it is unlikely that the electron-heating
process is thermal. A power law is therefore a natural distribution to consider here.
The following discussion should be adapted for other (e.g. thermal) distributions.

In an optically thin medium the spectrum emitted by the population of electrons
is the superposition of the emission of each electron

fν ∼
∫ ∞

1
Pν(γ)n(γ)dγ (5.22)

In order to perform the integration in Eq. 5.22 we need to know the function
φν(γ), which we only described in rough terms. However, if the electron distribution
in energy is very wide, we can use the fact that the emission of a single electron is
peaked at the characteristic frequency to approximate φν(γ) by a delta function

φν(γ)→ δ (ν −νc) = δ (ν − γ2νL), with νL =
eB

2πmec
. (5.23)

This form makes the γ dependence of the characteristic frequency explicit, and
allows us to perform the integration over γ

fν ∼
∫

Pν(γ)n(γ)dγ (5.24)

∼
∫

γ2φν(γ)n(γ)dγ (5.25)
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∼
∫

γ2δ (ν − γ2νL)γ−p dγ (5.26)

∼
∫

γ2δ (ν −ν ′)γ−p dν ′

γ
, with ν ′ = γ2νL (5.27)

∼
∫ (

ν ′

νL

)−(p−1)/2

δ (ν −ν ′)dν ′ (5.28)

∼
(

ν
νL

)−(p−1)/2

. (5.29)

This is a power law of index (−(p−1)
2 ) which depends directly on the power law

of the energy distribution of the electrons (which has an index p). This is observed
in supernova remnants and in radio-loud AGN (Chap. 20 and Fig. 5.6) among other
contexts.

If you consider that the electron acceleration is perpendicular to the magnetic
field, you will realise that the synchrotron emission must be polarised. A detailed
discussion (Rybicki and Lightman 2004) will yield that the linear polarisation is
about 70 % for an isotropic electron distribution in a homogeneous magnetic field.
Observations of AGN often yield considerably lower values. This is due to the fact
that the magnetic field is highly inhomogeneous in the synchrotron emission region.
Therefore, even at the highest angular resolutions available to date, the source region
that is mapped into a single image resolution element is so large that the magnetic
field cannot be considered homogeneous. Polarisation is nonetheless an important
diagnostic for synchrotron emission.

A detailed derivation, including the constant factors we have not considered
in Eq. 5.29, gives the synchrotron emissivity in [erg cm−3 s−1 Hz−1] (Rybicki and
Lightman 2004):

P(ω) =

√
3

2π
e3N0

mc2

Bsinα
p+ 1

Γ
(

p
4
+

19
12

)
Γ
(

p
4
− 1

12

)( mcω
3eBsinα

)−(p−1)/2
(5.30)

5.3.1 Synchrotron Self-absorption

In order to understand the shape of the spectrum of a synchrotron source at all
frequencies, consider the equation for radiative transfer

dIν
ds

= κνρSν −κνρIν , (5.31)

where ρ is the mass density, κν the mass absorption coefficient, Iν the intensity and
Sν the source function.

The source function is given by Sν = jν
αν

, the ratio of emissivity and absorption.

From (5.30) we know that the emissivity is proportional to ν−(p−1)/2. For the source
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Fig. 5.5 General shape of the synchrotron radiation emitted by a population of electrons dis-
tributed with a power law of index p

function not to diverge in the low frequencies, one sees that the absorption coeffi-
cient must increase in the low frequency limit. The medium will therefore become
optically thick at low frequencies. It is self-absorbed. The emitted spectrum will
therefore differ from Eq. 5.30 and needs be calculated for that part of the spectrum.

In an optically-thick case, the left-hand side of Eq. 5.31 vanishes, because as
much radiation is absorbed as is emitted. The right-hand side of this equation states
that the intensity is equal to the source function: Iν = Sν . In order to understand
the shape of the source function in the synchrotron case, we make an analogy with
another case of well known optically thick emission, the black body, for which

Sν =
2ν2

c2

hν
ehν/kT − 1

. (5.32)

The first term on the right-hand side of Eq. 5.32 is proportional to the phase
space available for emission, while the second term gives the mean energy of
the oscillator emitting at energy hν . At low energies, this latter factor is kT , while the
ν dependence of the source function is ν2. In the case of synchrotron emission, the
first term is the same (the phase space volume being independent of the emission
process), and the second term is the energy γmec2 of the electron radiating at
frequency ν . We have seen previously (and see Eq. 5.20) that this is proportional
to ν

1
2 ·B−1/2. We therefore have

Sν ∼ ν2 ·ν1/2 = ν5/2 ·B−1/2. (5.33)

This result is independent of the shape of the electron distribution.
The general shape of the synchrotron emission of a power-law distribution of

electrons as a function of frequency is therefore given in Fig. 5.5.
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The frequency at which the emission has a maximum, νm, contains information
about the magnetic field. At this frequency, we can use either optically thin or thick
approximations with equal validity. A uniform sphere of intensity Iν produces at a
distance d a flux of

fν = πIν(
R
d
)2, (5.34)

where R is the radius of the uniform sphere. For an optically-thick source, Iν = Sν ,
which we have calculated in Eq. 5.33. Introducing the observed angular radius of
the source θs = R/d we see that the maximum flux is

fνm ∼ B−1/2ν5/2
m θ 2

s , (5.35)

from which one may deduce that, having observed the spectrum and measured the
frequency and flux of the maximum emission as well as the angular size of the
source, one can estimate the magnetic field B

B ∼ f−2
νm

ν−5
m θ−4

s . (5.36)

Note, however, that since the frequency of the maximum emission enters in
Eq. 5.36 with the fifth power, this expression will provide only rather imprecise
magnetic field measurements.

5.4 Examples

The results obtained here provide a powerful insight into the physics of several types
of object. We illustrate this with two examples from the study of AGN and one using
the Crab nebula supernova remnant.

5.4.1 The Infrared Emission of the Quasar 3C 273

3C 273 is one of the brightest and best-studied quasars. Its emission extends over
the whole electromagnetic spectrum from radio waves to high energy gamma rays.
The emission is made up of a number of components from very different origin (see
Chap. 20). It has been, and still is, a challenge to find the physical processes at the
origin of the emission in the various spectral domains. The discovery of hot dust
emitting in the near infrared is one story in which explicit use of the properties of
synchrotron radiation are used to disentangle two very different components.

Observations of the quasar 3C 273 in 1986 spanning the radio to infrared showed
very unexpected results. It was already known that the radio to mm emission from
the object was of synchrotron origin, and it had been expected that this component
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extends to higher frequency, at least into the visible domain. Repeated observations
were made to measure the variability of the source in this spectral domain, as
illustrated in Fig. 5.6. It was then thought that there was a quiescent “state” (Fig. 5.6,
panel 1) on which outbursts (Fig. 5.6, panel 2) would be occasionally seen. The
aim of the observations was to measure the outburst characteristics. What was seen
instead was that the mm flux had decreased significantly (Fig. 5.6, panel 3 and 4),
indicating that the synchrotron flux had diminished. It was also seen, however, that
the near infrared emission remained stable. Equation (5.18), however, implies that
the high frequency flux must decrease faster than the low frequency flux. It was
therefore clear that the near infrared emission is not the high-energy tail of the
synchrotron component, but must be of a very different origin, probably due to
thermal dust. A more recent multi-wavelength spectrum of 3C 273 taken while the
synchrotron emission was at the lowest recorded level to date confirms this result
very nicely (see Fig. 5.7). Dust emission is indeed explicitly seen to peak in the
near infrared region during this observation. The result also became easier to accept
when it was realised that other AGN do also have a large dust emission component
(see Sect. 5.4.2).

Using quantitatively Eq. 5.18 during a synchrotron flare observed in the same
quasar 3C 273 in 1988 (see Fig. 5.8, Courvoisier et al. 1988) it is also possible to
obtain a quantitative estimate of the magnetic field. The flare was very energetic,
and the synchrotron emission dominated the dust emission component discussed
above. During this flare it was possible to measure the cooling time of the electrons,
measured as the flux decrease time ( f · ( d f

dt )
−1) at the observed frequency. It was

thus possible using Eqs. 5.16 and 5.17 to see that the electrons radiate in the near
infrared with a γ factor of about 1,000 and that the magnetic field in the emission
region is of the order of 1 G. Note that this estimate assumes that the emission region
is not moving with a bulk relativistic motion, (see Chap. 18).

5.4.2 Far Infrared Emission of Radio-Quiet Active Galaxies

The radio emission of radio-loud quasars has been identified for a very long time as
being due to synchrotron processes. This is based on the spectrum of the emission,
on its variability, and on its polarisation. This emission extends to the mid infrared
domain and, during flares, as we have seen, to the near infrared and even optical
domains. It was therefore natural to expect that the far infrared emission of the radio-
quiet AGN would be due to the same process, and that the absence or weakness
of radio emission in radio-quiet objects would be due to self-absorption effects.
Following this line of argument, it was expected in the 1980s, when instrumentation
sensitive enough to probe long wavelength end of the emission became available,
that one would measure a spectrum proportional to fν ∝ ν

5
2 as we calculated

in Eq. 5.36. Observations turned out to give a quite different picture. Figure 5.9
shows such early measurements from which it can be seen that the slope of the
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Fig. 5.6 Millimetre to
optical spectrum of 3C273:
(a) the “quiescent” spectrum
(reported as a dashed line in
(b)–(d)); (b) 4–7 March
1983, flare spectrum; (c)
15–24 February 1986; (d) 3–6
March 1986. (Robson et al.
1986, Fig. 1, p. 134, reprinted
with kind permission of
Nature Publishing Group)
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Fig. 5.7 Spectral energy distribution of 3C 273 in June 2004 as observed with the INTEGRAL,
RXTE and XMM-Newton satellites and with the ESO, IRAM, Metsähovi, UMRAO and Effelsberg
optical, infrared and radio telescopes (Tuerler et al. 2006). The data are compared with the historic
average (grey line) and the observed range of variation, showing that in June 2004 the quasar was
at its weakest state ever observed in the mm band

spectrum is steeper than the 5
2 that was expected. Such slopes cannot be understood

in terms of synchrotron emission from a homogeneous electron population, and
only extremely constrained models could provide these slopes in the context of
synchrotron processes. A much better interpretation of these results is that the far
infrared emission of radio-quiet AGN is due to emission from cool dust. We have
already seen that even in radio-loud objects such as 3C 273, dust emission plays
an important role and dominates (at least outside flares) the near infrared emission.
Thus dust emission with a broad distribution of temperatures plays a very important
role in the physics of active galactic nuclei. Note that at first sight one might
expect that dust radiates like a black body. In this case an even shallower slope
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Fig. 5.8 Light curve at infrared energies (H band) for the quasar 3C 273 (left panel) over more
than 10 years. In the right panel, a zoom of the flare which occurred in 1988 shows a variability
of the emission on timescales of a day (Data from Courvoisier et al. (1988), reprinted with kind
permission of Nature Publishing Group)
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Fig. 5.9 mm to X-ray spectra of six radio-quiet quasars (Chini et al. 1989). 1.3 mm data were
collected by the IRAM 30 m telescope. The spectral indices between 100 μm and 1.3 mm suggest
that the energy distributions are dominated by thermal emission from dust

of 2 is expected. Emission from small dust grains is, however, more subtle and is
characterised by a very steep frequency dependence of the emissivity, leading to
spectral slopes that can differ significantly from 2 (and even from 5

2 ).

5.4.3 The Crab Nebula

The Crab nebula is a prominent “gaseous” nebula in the northern sky (Fig. 5.10).
It has been associated since 1928 with the appearance of a “guest star” observed
in 1054 in China. These bright objects are now known as supernovae, and they are
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Fig. 5.10 Images of the Crab nebula at different wavelengths. Left upper: radio image from the
NRAO; right upper: infrared image at 2 μ from 2MASS; left lower: optical image from VLT/ESO;
right lower: high-resolution X-ray image from Chandra

the remnants of the cataclysmic explosion of a star. We will come across type II
supernovae when we discuss the neutron stars that result from these explosions (see
Chap. 13; type I supernovae do not leave a compact remnant).

The Crab nebula is observed over the complete electromagnetic spectrum, from
radio waves to gamma rays (see Fig. 5.10). It is in particular a very strong and
was thought until about 2010 to be a stable X-ray and gamma ray source. It
therefore serves as a calibration source and as a flux unit (the crab) for high-energy
instrumentation, in a way somewhat similar to the use of the bright star Vega in
optical astronomy. Giving an observed flux in crab units is equivalent to giving
the measurement as a ratio of the observed source flux to that of the Crab at the
given energy. It has the great advantage of being independent of any calibration
of the instrument, but with the disadvantage that it is physically difficult to use.
Contrary to the magnitude scale, the crab is a linear unit. Present calibrations are:
1 crab = 2.4 ·10−10 ergcm−2s−1 keV−1 at 50 keV. Measurements of variations in the
high-energy emission of the Crab now bring considerable difficulties, as they imply
that the crab unit is not as constant over time as needed.
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Fig. 5.11 The INTEGRAL ISGRI 20–500 keV spectrum of the Crab obtained from a 130 ks
observation during revolution 239 of INTEGRAL. The best-fit photon index is 2.254± 0.001 and
the flux at 1 keV is 15.8 phcm−2s−1keV−1 (Courtesy of P. Lubinski)

The luminosity of the nebula is some 1038 erg s−1 and the angular size of the
nebula is of about 3.5 arcmin. The hard X-ray spectrum of the Crab is given in
Fig. 5.11, and is as good a power law as can be found. The emission is strongly
polarised (40 % in the optical domain). Estimates of the magnetic field yield values
of about 5 · 10−4 G. The emission is therefore naturally interpreted in terms of
synchrotron emission.

Recalling the cooling time arguments of Sect. 5.2, one concludes that electrons
emitting at 10 MHz have an energy of some 70 MeV, while those emitting in the
gamma rays at 1022 Hz have an energy of 1015 eV, a very considerable energy
indeed for single electrons. From Eq. 5.18 and the estimated magnetic field value,
one finds that electrons radiating at 100 GHz cool in a comfortable 6,000 years,
while those emitting in the X-rays at 1020 Hz cool in a matter of some 10 weeks,
considerably less than the age of the nebula. This simple calculation therefore leads
to the conclusion that the electrons must be continuously provided and accelerated
within the nebula. They cannot have originated from the explosion itself, some
1,000 years ago. The X-ray image (lower right panel in Fig. 5.10) indeed shows
features that indicate that energy is continuously fed through shocks from the central
bright source, a pulsar, to the nebula.
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Chapter 6
Compton Processes

We study here the scattering of photons on electrons, and the energy transfer
between the electron gas and the radiation field that results from these interactions.
This is one of the most important processes in high-energy astrophysics, as it allows
to transfer an important fraction of the electron energy to the photons and thus
to radiate this energy away from the source. This is therefore an efficient cooling
mechanism in many conditions in which there is a large supply of photons. It is also
an important process in the sense that the resulting radiation appears predominantly
in the high-energy spectral domains, from the X-rays up to TeV energies in some
cases. It is thus one of the emission mechanisms that is often met by astrophysicists
confronted with X-ray or gamma-ray observations.

6.1 Thomson Cross Section

A special case of the electron–photon interaction is Thomson scattering. In this case
the photon energy hν is much less than the electron rest mass mec2. The inertial
system of the centre of mass is therefore that in which the electron is at rest and
in which the electron remains at rest. The derivation of the cross section is a direct
application of the Larmor formula for the energy loss of the accelerated charge
(Eq. 2.9) that we derived in Sect. 2.1

dE
dt

=
2
3
|p̈|2
c3 . (6.1)

As before: p̈ = e · v̇, and v̇ is the acceleration of the charge. The electron
is accelerated when it interacts with a photon by the electric field E of the
electromagnetic radiation. Representing the radiation field by a wave moving along
the z-axis (Fig. 6.1) one has

v̇x =
e
m

Ex, v̇y =
e
m

Ey with Ex = E0x sin(ωt), Ey = E0y sin(ωt). (6.2)

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 6, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 6.1 Geometry of Thomson scattering of a beam of radiation by a free electron. We assume
that the beam propagates in the positive z-direction and that the scattering angle α lies in the x–z
plane

which gives

dE
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=
2

3c3

∣
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∣
e2

m
Ēx

∣
∣∣
∣

2

+
2

3c3

∣
∣∣
∣
e2

m
Ēy

∣
∣∣
∣

2

=
2
3

e4

m2c3

|E0|2
2

, (6.3)

for the energy of the subsequent radiation. The factor 2 at the end of Eq. 18.5 comes
from

Ē 2
x =

E 2
0x

2π

∫
sin2(ωt)dt =

E 2
0x

2
. (6.4)

If we remember that the cross section, σ , of a scattering is the ratio between the
radiated energy and the incoming energy flux, and that the incoming energy flux is

the magnitude of the Poynting vector S= c
4π E 2, S̄= c

4π
E 2

0
2 of the incoming radiation,

we can write the cross section for the Thomson scattering as

σT =
dĒ/dt

S̄
=

2
3

e4

m2
ec3 · 8π

c

|E 2
0 |

2|E 2
0 |

(6.5)

=
8π
3

e4

m2
ec4 (6.6)

=
8π
3

r2
0 = 6.65 ·10−25 cm2, (6.7)

where we have introduced the classical electron radius r0 =
e2

mec2 .
To understand the angular dependence of the diffusion, and thus to calculate the

differential cross section dσ
dΩ , we consider again the result obtained in Sect. 2.1 for

the energy radiated in the solid angle dΩ
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dE
dt

=
c

4π
|p̈|2 sin2 θ

c4r2 · r2dΩ , (6.8)

where θ is the angle between the electron acceleration (the x-axis in Fig. 6.1) and
the direction of the emitted radiation.

For a non-polarised radiation field, S̄x = S̄y and

dEx

dt
=

c
4π

e4E 2
0x cos2 α

2m2c4 dΩ (6.9)

dEy

dt
=

c
4π

e4E 2
0y

2m2c4 dΩ (6.10)

dE
dt

=
e4

8πm2c3 (E
2
0y +E 2

0x cos2 α)dΩ (6.11)

S̄x,y =
c

4π
E 2

x,y

2
(6.12)

dE
dt

=
e4

m2c4 (S̄y + S̄x cos2 α)dΩ , (6.13)

which gives for a non-polarised radiation field

dE
dt

=
e4

m2c4 · S
2
(1+ cos2 α)dΩ . (6.14)

Finally

dσT

dΩ
=

dE/dt
S

=
emitted energy in α

energy flux
(6.15)

=
1
2

e4

m2c4 (1+ cos2 α). (6.16)

6.2 Compton Scattering

In Sect. 6.1 we have considered the case in which the incoming photon energy hν1

is much less than the electron rest energy mec2 = 511 keV. In this case the frequency
of the outgoing radiation is the same as that of the incoming radiation, the photon
energy is therefore also the same, and the scattering is elastic, hν2 = hν1. We relax
here the hypothesis on the energy of the incoming photon energy and consider the
scattering of X-ray photons (of energies up to few 100s keV) on electrons. This is
the so-called Compton scattering.

We first consider the energy momentum conservation for the four-vector P.
The subscript “i” indicates the incoming particles and “f” the outgoing particles.
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Fig. 6.2 Geometry for the scattering of a photon by an electron initially at rest

The particles we consider are the electron e and the photon γ . In the following, ε
will indicate photon energies while E will indicate electron energies. With this in
mind consider the scattering in the frame in which the electron is initially at rest

The momentum four-vectors of the photons are introduced as

Piγ =
εi

c
(1,ni), Pfγ =

εf

c
(1,nf). (6.17)

where ni,f are unit three-vectors that characterise the directions of the incoming and
outgoing particles.

The energy-momentum conservation is given by

Piγ +Pie = Pfγ +Pfe (6.18)

or
Pfe = Piγ +Pie −Pfγ .

This can be squared and transformed into an expression that gives the outgoing
photon energy (using Fig. 6.2 as the definition of the angles that appear in the
expressions)

|Pfe|2 = (Piγ +Pie −Pfγ )
2 (6.19)

= P2
iγ +P2

ie +P2
fγ + 2PiePiγ − 2Pfγ Piγ − 2Pfγ Pie (6.20)

m2
ec2 = m2

ec2 + 2PiePiγ − 2PfγPiγ − 2Pfγ Pie (6.21)

0 = mec
εi

c
− εiεf

c2 (1− cosθ )− εf

c
mec (6.22)

εf =
εi

1+ εi
mec2 (1− cosθ )

. (6.23)

(Pie = (mc,0)).
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This expression gives the change of energy of the photon in the frame in which
the electron is initially at rest. Clearly, when the incoming photon energy εi � mec2,
εf � εi, and we recover the elastic scattering described as Thomson scattering.

Note that when the photon energy becomes large compared with the electron rest
mass the cross section is modified. While we do not derive this result here we do
recall it for completeness. The resulting cross section is called Klein–Nishina cross
section which is given by

dσ
dΩ

=
r2

0

2

(
εf

εi

)(
εi

εf
+

εf

εi
− sin2 θ

)
. (6.24)

One illustration of the photon energy shift in Compton scattering is given by the
case in which a monochromatic energy source, say resulting from the annihilation of
electrons and positrons at rest which produces a line at 511 keV, is situated in front of
a cloud of cold electrons, e.g. a molecular cloud (remember that for photon energies
of many keV the electron binding energy in the atom can be neglected and the elec-
trons can be considered to be free). In this case, Eq. 6.23 implies that a line will also
be observed at 170 keV, as the photons are back-scattered and θ = π (see Fig. 6.3).

Although a line at 170 keV is yet to be observed, the example is of more than
academic interest. Compton reflection has indeed been suggested to take place in
the central regions of our Galaxy by Revnivtsev et al. (2004). These authors have
suggested that the continuum high-energy radiation from the surroundings of the
central black hole at the centre of the Galaxy (see Sect. 11.3) is reflected by the
molecular cloud (Sgr B2) located at some 100 pc from the centre of the Galaxy.
This reflection is then observable as high-energy radiation from the molecular
cloud, and explains why this particular molecular cloud is an INTEGRAL source. If
this interpretation is correct, light travel arguments and the observed reflected flux
indicate that the central region of our Galaxy was some 104 times brighter some
300 years ago than it is now (see Fig. 6.4). Further instances of Compton reflection
will be met when we discuss AGN in Chap. 20.

We now consider the scattering in a reference frame where the electron is not
initially at rest but moves with a relativistic speed and has an energy γ mec2. The
reasoning we have made remains true in the electron rest frame, and we must
therefore transform the incoming photon energy as measured in the observer frame
to that of the electron. This is done by considering the Doppler factor γ(1−β cosθ ).
We then apply Eq. 6.23. This means primarily that the photon direction is very
significantly altered. The outgoing photon energy must then be transferred back in
the observer frame (cosθ → cos(π −θ ) = −cosθ ). The final energy of the photon
in the observer rest frame is therefore deduced from the chain

εf = ε ′fγ(1+β cosθ ) (6.25)

=
ε ′i

1+
ε ′i

mec2 (1− cosθ ′)
γ(1+β cosθ ) from (6.23) (6.26)



80 6 Compton Processes

θ = 180°
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b

Fig. 6.3 Top: X-ray photons back-scattered by a cloud of cold electrons. Bottom: illustration of the
spectrum that could be expected from a monochromatic e+-e− annihilation line and its reflection
for the geometry shown in the left panel

=
εiγ(1−β cosθ )

1+
ε ′i

mec2 (1− cosθ ′)
γ(1+β cosθ ) (6.27)

≈ γ2εi, (6.28)

where θ ′ is the scattering angle in the “′” system of reference. Equation 6.27 is valid
for ε ′i � me c2. When this approximation is no longer valid, the quantum effects that
lead to the Klein–Nishima cross section must also be taken into account here. We see
that in essence the photon energy was increased by a factor γ2. Each factor γ comes
from one of the reference frame changes. This factor implies that when the electrons
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Fig. 6.4 3.5◦ · 2.5◦ hard X-ray (18–60 keV) image of the Galactic centre region obtained with
INTEGRAL/IBIS, with contours of brightness distribution in the 6.4 keV line as measured by
ASCA/GIS. The largest molecular clouds (among them, Sgr B2) are indicated and the position of
the Galactic centre Sgr A� source is marked with a cross. The corresponding spectrum is shown in
the lower panel. This spectrum is typical of a reflexion component (Revnivtsev et al. 2004)
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are relativistic, the photons can gain a very large factor in energy in the scattering
process. In this case the process is commonly called “inverse Compton” scattering.
It explains why X-ray photons are often created by scattering of soft photons on hot
or relativistic electrons.

6.3 Power Emitted by a Single Electron

Let us now calculate how much energy is radiated by a single electron in the
Compton process. In order to do this we first consider the density of the photons
per unit volume and energy

V dε = nd3 p, (6.29)

where n is the photon density in the corresponding phase space. n is an invariant
under the Lorentz transformation, as it is a number per phase space volume element
d3xd3 p which is invariant.

It follows that

V
dε
ε

= V ′ dε ′

ε ′
(6.30)

is a Lorentz invariant. Remembering that the cross section of any interaction is
the ratio of the energy loss to the incoming energy flux, and that the incoming
energy flux can be written as cε ′i V ′

i dε ′ in the electron rest frame, the emit-
ted energy is

dE ′
e

dt ′
= cσT

∫
ε ′iγV

′
iγ dε ′ (6.31)

With Eq. 6.30 and knowing that θ ′ is the angle between the vectors x and p′f, we
can express the energy loss of the electrons in the observer rest frame

dEe

dt
=

dE ′
e

dt ′
= cσT

∫
ε ′2iγ

V ′
iγ

ε ′iγ
dε ′ (6.32)

= cσT

∫
ε ′2iγ

V

ε
dε (6.33)

dEe

dt
= cσTγ2

∫
(1−β cosθ )2εV dε. (6.34)

For an isotropic distribution of velocities, one has

〈(1−β cosθ )2〉= 1+
1
3

β 2 (6.35)

and therefore
dEe

dt
= cσTγ2

(
1+

1
3

β 2
)

uγ , (6.36)
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where uγ =
∫

εV dε is the energy density of the incoming photon gas. Equation 6.36
gives the energy radiated by the electron in the scattering process. In the global
energy budget, one must also consider the energy lost by the incoming photon gas
in the scattering process

dEγ

dt
= σT × incoming flux =−cσT

∫
εV dε =−cσTuγ . (6.37)

The sign indicates that energy is lost by the incoming radiation flux. The energy
budget for the radiation field is thus

dErad

dt
=

dEe

dt
+

dEγ

dt
(6.38)

= cσTuγ

[
γ2
(

1+
1
3

β 2
)
− 1

]
(6.39)

Using the identity γ2 − 1 = γ2β 2, one finally obtains

PCompton =
dErad

dt
=

4
3

σTcγ2β 2uγ . (6.40)

This results looks very similar to that obtained when describing the energy loss
of relativistic electrons in synchrotron emission (see Eq. 5.6):

Psync =
4
3

σTcγ2β 2uB. (6.41)

The ratio of the synchrotron to the Compton powers is thus

Psync

PCompton
=

uB

uγ
(6.42)

and is given by the ratio of the magnetic field energy density to that of the radiation
field. This expression also shows the very similar nature of the two processes, which
both describe the interaction of the electron with the electromagnetic field, albeit in
very different guises.

6.4 Power Emitted by a Distribution of Electrons

Equation 6.40 gives the energy losses for a single electron. This expression can be
generalised for a distribution of electrons by integrating over the distribution N(γ).
For a power law distribution N(γ)dγ = N0γ−pdγ
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P =

∫
PCompton(γ)N(γ)dγ (6.43)

=
4
3

σTcuγN0
(γ3−p

max − γ3−p
min )

3− p
. (6.44)

For a thermal distribution of density ne of non-relativistic electrons for which
γ � 1, Eq. 6.40 leads to

P =
4
3

σTcne〈β 2〉uγ . (6.45)

In a thermal gas Ekin =
3
2 kT = 1

2 mv2, 〈β 2〉=
〈

v2

c2

〉
≈ 3kT

mc2 and

P =

(
4kT
mc2

)
cσTneuγ , [P] = erg · s−1cm−3. (6.46)

The emission spectrum can also be calculated in this case. This is done e.g.
in Rybicki and Lightman (2004) to which the reader is referred. For a power law
distribution of electrons in which the electron distribution is proportional to γ−p

e ,
repeating the calculation made for a delta function approximation of the emission
of a single electron given in Sect. 5.3 leads to the same conclusion, i.e. the emission

spectrum is proportional to ν− p−1
2 .

6.5 Energy Gains Per Scattering

6.5.1 Non-relativistic Electrons

The energy budget of the radiation was found in Eq. 6.45 to be

PCompton ≈ 4
3

σTcβ 2uγ (6.47)

(γ ≈ 1 for non-relativistic electrons). The rate of scattering per electron is

ND = σTnγc, where nγ =
uγ

hν
. (6.48)

Therefore
ND = σTc

uγ

hν
. (6.49)

The average energy gain per scattering is therefore

Δε ≈ PCompton

ND
=

4
3

β 2hν (6.50)
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Δε
ε

=
4
3

β 2, with ε = hν. (6.51)

For a thermal distribution of electrons of temperature Te, we have

1
2

me〈v2〉= 3
2

kTe ⇒ 〈β 2〉= 3kTe

mec2 (6.52)

and we can therefore express Δε
ε in terms of the temperature of the electron gas

Δε
ε

=
4
3
〈β 2〉= 4kTe

mec2 . (6.53)

6.5.2 Relativistic Electrons

In the case of a relativistic electron population characterised by a (single) energy
γmec2, we have

PCompton ≈ 4
3

σTcγ2uγ (β ≈ 1). (6.54)

The rate of scattering is given as above, and therefore

Δε
ε

=
4
3

γ2, with ε = hν. (6.55)

For a thermal, but relativistic, electron population we have

〈γ2〉= 〈E2〉
(mc2)2 (6.56)

and

〈E2〉=
∫

E2 ·E2e(−
E
kT ) dE

∫
E2e(−

E
kT ) dE

, (6.57)

which is given by the Γ function

〈E2〉= Γ (5)(kTe)
5

Γ (3)(kTe)3 = 12(kTe)
2, (6.58)

and thus finally the relative energy gain per scattering is

Δε
ε

= 16

(
kTe

mec2

)2

. (6.59)
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6.6 Multiple Scattering in an Optically-Thin Limit

It is interesting to derive the slope of the emitted Compton radiation when
considering the multiple scatterings that the photons undergo in an electron gas of
well-defined energy that is optically thin. In this case we assume that the resulting
spectrum will be a power law of slope −α

Iν ∝ ν−α . (6.60)

At each scattering the photon energy is multiplied by a factor A which is a
function of the electron energy discussed in Sect. 6.5. After K scattering the photon
energy has become

εK = εiA
K . (6.61)

The intensity at εk is given by the intensity at ε and the probability to have K
scatterings, which in an optically-thin situation is given by τK , where τ is the optical
depth of the medium. We therefore have

I(εK) = I(εi)

(
εK

εi

)−α
= τKI(εi). (6.62)

Using Eq. 6.61 one obtains

I(εi)(A
K)−α = τKI(εi)⇒ AK·(−α) = τK ⇒−α lnA = lnτ

and then the following expression for the slope α

α =− lnτ
lnA

(6.63)

which is given by the optical depth of the electron gas and the energy gain factor A
which depends on the energy of the electrons.

6.7 Example: X-Ray Emission of AGN

Consider a situation in which we measure the original, often called “seed”,
photon flux and the Comptonised photon flux Cs and Ch. For a given geometrical
arrangement of the seed photon source and Comptonising medium, the optical depth
is proportional to this ratio

τ = Const · Ch

Cs
. (6.64)
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Fig. 6.5 The X-ray slope α versus the log of the ratio of the UV (soft photon) count rate and the
X-ray (Comptonised) count rate for the Seyfert galaxy NGC 5548 (Walter and Courvoisier 1990)

Inserting this in Eq. 6.63, one obtains

α =− ln(Const · Ch

Cs
)/ ln(A) =− ln(Const)/ ln(A)− ln(

Ch

Cs
) · ln(A), (6.65)
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Fig. 6.6 The X-ray slope α versus the log of the ratio of the UV (soft photon) count rate and the
X-ray (Comptonised) count rate for the quasar 3C 273. The slope of the relation indicates gives A,
the energy gain per scattering, and consequently indicates an electron temperature of the order of
1 MeV (Walter and Courvoisier 1992)

a linear relationship between the slope of the X-ray spectrum and the ratio of the
count rates, both measurable quantities. The slope of this linear relation is

d lnα
dln(Ch

Cs
)
=− 1

ln(A)
. (6.66)

This relation can then be used to estimate the temperature of the Comptonising
medium, assuming that this process is indeed at the origin of the X-ray emission.
This was done for a few AGN, including NGC 5548 and 3C 273. In the case of
NGC 5548 the results are given in Fig. 6.5. The Compton amplification factor A
deduced from the slope of the correlation is 15± 5, which leads, using Eq. 7.3, to a
temperature of some 500 keV.

In the case of the quasar 3C 273 the results of a similar analysis are given in
Fig. 6.6. The temperature that can be deduced from the slope of the correlation is of
the order of 1 MeV. In this case, however, subsequent measurements depict a more
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complex situation in which the ratio moves in the plane in such a way that implies
that the geometry of the Comptonising region also changes with time.

6.8 Bibliography

Compton scattering is discussed in detail in Rybicki and Lightman (2004) and in
Longair (1992) and Longair (2011) to which the reader is referred to for more
detailed descriptions.
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Chapter 7
Comptonisation

We now consider the Compton process in a medium and see how we can describe
statistically the modification of a photon distribution as the photons interact with
an electron gas. Imagine for example some source of photons at the centre of
a hot medium. We want to understand the observed photon spectrum, i.e. the
photon energy distribution that emerges from the hot medium. This is called the
Comptonised photon distribution. We then apply the results to some astrophysically
relevant cases.

7.1 Compton Temperature

First we calculate the temperature of an electron distribution for which there is
no net energy transfer between the electrons and the photons. In this example we
consider a thermal electron distribution and a power-law distribution of photons
(n(p)d3 p ∝ p−α p2dp). We do this in a non relativistic case. The resulting tempera-
ture corresponds to the energy equilibrium between both distributions.

We have calculated in Sect. 6.2 the energy of the photon after scattering from its
initial energy and the deflection angle (Eq. 6.23)

εf =
εi

1+ εi
mec2 (1− cosθ )

. (7.1)

From this we calculate the relative change of energy (the energy loss of the
photons) for the scattering to be

εi − εf

εf
=

εi

mec2 (1− cosθ ) =
hν

mec2 , (7.2)

where we have used the photon frequency to express the initial photon energy, aver-
aged over the angles assuming an isotropic distribution, noting that < cosθ > =0

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
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for an isotropic distribution. In the non-relativistic limit, we have calculated in
Sect. 6.5 the average energy gain per photon per scattering and found

Δε
ε

=
4kTe

mec2 . (7.3)

There will therefore be no net energy transfer when the average energy loss
equals the average energy gain, which defines the Compton temperature TC

∫ hν
mec2 n(p)d3 p
∫

n( p)d3 p
=

4kTC

mec2 , (7.4)

which means that

kTC =
1
4
〈hν〉. (7.5)

For a power law of index 1 < α < 2

〈ν〉 � α − 1
2−α

(
νmin

νmax

)α−1

νmax. (7.6)

For the relatively commonly observed spectral slope of α = 1.7 between 1 and
100 keV, the Compton temperature is TC ≈ 1 ·108 K. We conclude, without surprise,
that hard X-ray seed photons will play only a marginal role in the heating or cooling
of gas of some 108 K. The same does not apply for a much less energetic seed
photon distribution. Clearly, for 〈hν〉 � kTC the photon energy gain per scattering
will be much larger than the loss, and a net energy flux from the electrons to the
photons will result. In this case the photons extract energy from the gas that cools
correspondingly.

The reader may make the same reasoning for a relativistic electron temperature,
or turn the distributions around and consider a thermal photon distribution and a
power law distribution of electrons.

7.2 The y Parameter

The Compton temperature calculated in the previous section implies that for the
corresponding distributions there is no net energy transfer between electron gas
and photons. It does not mean, however, that the distributions are not modified,
but merely that there are equal energy transfers in both directions. In order to assess
whether a photon distribution is significantly modified by the Compton process in a
given electron gas, one introduces the so-called y parameter which is defined as

y = fractional energy change per scattering× number of scatterings. (7.7)
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The fractional energy change is the factor Δε
ε calculated in Sect. 6.5, while the

number of scatterings for the photons in the electron gas is given by max(τ,τ2).
The last point can easily be understood because for small optical depths τ , the
number of scatterings is Nscatt � 1− e(−τ) � τ while for optically thick media, the
photons undergo a random walk for which the number of scatterings in a given
region of space is Nscatt � L2

�2 � τ2, where L and � are the size of the region and the
mean free path respectively. It follows that for y � 1: the incident spectrum will be
significantly modified, while for y � 1; the incident spectrum will not be markedly
modified.

7.3 The Kompaneets Equation

The description of the spectral modification of a photon distribution as it moves
through a hot electron population is made through an equation called the Kom-
paneets equation. This is derived from the general problem of the modification of a
distribution through collisions that is given by the Boltzmann equation. For a photon
occupation number n(E), i.e. the number of photons in a phase space cell at energy E

∂n(E)
∂ t

= diffusion into dE − diffusion out of dE. (7.8)

The Boltzmann equation has the form

∂n(E)
∂ t

= c
∫

d3 p
∫

dσ
dΩ

dΩ [ fe(p1)n(E1)(1+ n(E))− fe(p)n(E)(1+ n(E1))] ,

(7.9)

when one considers photons of energy E and electrons of momentum p scattering
into E1 and p1. The factors of the form (1 + n(E)) appear because photons
obey Bose–Einstein statistics and account for stimulated emission and absorption
processes. The electron energy distribution is given by fe. Energy and momentum
conservations do have to be satisfied.

For non-relativistic electrons the energy gain per scattering Δε
ε is small and the

Boltzmann equation reduces to the Fokker–Planck equation. The Fokker–Planck
equation is obtained by introducing

Δ =
E1 −E

kT
(7.10)

and expanding Eq. 7.9 for small Δ one has

n(E1) = n(E)+ (E −E1)
∂n
∂E

+ · · · (7.11)

fe(p1) = fe(p)+ (p− p1)
∂ fe

∂p
+ · · · (7.12)
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and therefore

1
c

∂n
∂ t

=
[
n′+ n(1+ n)

]∫
d3 p

∫
dσ
dΩ

dΩ feΔ

+

[
1
2

n′′+ n′(1+ n)+
1
2

n(1+ n)

]∫
d3 p

∫
dσ
dΩ

dΩ f Δ 2, (7.13)

where n′ = ∂n
∂x , x = E

kTe
is the energy of the photons expressed in units of the electron

gas temperature, and where we have considered the case of a thermal electron
distribution

fe(Ee) =
ne

(2πmkT )3/2
e−

Ee
kT (7.14)

for which f ′e = − 1
kTe

f . The two terms on the right-hand side can be estimated to
finally obtain the Kompaneets equation

1
neσTc

∂n
∂ t

=

(
kT
mc2

)
1
x2

∂
∂x

[
x4(n′+ n+ n2)

]
. (7.15)

Note that the expansion in Δ means that the Kompaneets equation is only valid
in the case of soft photons in a hot medium. For a discussion of the inverse case,
in which hot photons are down scattered, see Liu et al. (2004). In Eq. 7.15 the term
in n′ represents diffusion along the x-axis, the term in n represents a cooling of the
photon population as the photons scatter on electrons that take part in the original
energy recoil, and the term in n2 represents stimulated reactions.

7.4 Solutions to the Kompaneets Equation

7.4.1 Equilibrium Solution

One may note that for E � kTe, the term in n2 may be neglected compared to the
first-order term, because the occupation number is small. In this case one has an
equilibrium solution given by

n ≈ e−x, (7.16)

for which

n′ ≈ −n, (7.17)

and therefore
∂n
∂ t

∼ 0. (7.18)
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Fig. 7.1 Strong Comptonisation of a bremsstrahlung spectrum in an optically thick, non-
relativistic medium. The bremsstrahlung spectrum dominates at low frequency and shows a
characteristic self-absorption region and a flat region. At higher frequency, photons have been

multiply scattered via the Compton process, resulting in a Wien spectrum, I ∝ ν3e(−
hν
kT ) (C. Flynn

private communication)

7.4.2 Saturated Comptonisation: y � 1

At high energies the photons and electrons will reach equilibrium for y � 1, and
the solution for the photon phase space density is given by Eq. 7.18. The intensity
I ∝ ν2e−xhν , the phase volume times the occupation number times the energy of the
photons. The high-energy spectrum will therefore have the shape given in Fig. 7.1.

The intensity maximum is found through

d
dν

(
ν3e−

hν
kT

)
= 3ν2e−

hν
kT −ν3 h

kT
e−

hν
kT (7.19)

and
d

dν

[
ν3e−

hν
kT

]

ν=νmax
= 0 ⇒ hνmax = 3kT. (7.20)

In Fig. 7.1, the low-energy photon spectrum is given by the source photon
spectrum (a bremsstrahlung spectrum in this case). The region of the maximum
is called the Wien peak.
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7.4.3 Intermediary Case, y � 1

In this regime, the importance of the Wien peak decreases compared to the situation
described above. Numerical solutions show (Fig. 7.2) that the importance of the
Wien peak increases with increasing optical depth τ , and hence with y. The figure
is given for a power-law input photon distribution surrounded by a spherical 25 keV
electron distribution.

7.4.4 Low Optical Depth

In this case the Wien peak is not seen, and the spectrum curves down above � kTe.
This is illustrated in Fig. 7.3 in which the data points are from the INTEGRAL and
RXTE satellites and the model, given by the full line, is a numerical representation
of the Comptonised spectrum with parameters kT ∼ 74 keV and τ ∼ 0.9.

7.5 The Sunyaev–Zeldovich Effect

Consider what happens when a cluster of galaxies lies along the path of the 3K
microwave background photons. The clusters of galaxies are, we have seen it, filled
with a hot (several keV) electron gas. The background photons scatter on the hot
electrons of the cluster through the Compton process, and their spectrum is therefore
slightly modified. This is called the Sunyaev–Zeldovich effect.

In this case the source photon distribution is a blackbody of temperature TCMB,
x = hν

kTe
� 3K

107K
� 1 and the terms in n, the cooling, and in n2 of Eq. (7.15) can

be neglected. The only term that contributes to the Comptonisation of the cosmic
microwave background (CMB) radiation is that describing the diffusion of photons
along the x axis.

The Kompaneets equation Eq. 7.15 thus reduces to

∂n
∂y

=
1
x2

∂
∂x

[
x4
(

∂n
∂x

)]
, with x =

hν
kTe

, (7.21)

where

y =
kTe

mec2 τT (7.22)

(beware of a factor 4 that differs when using Δε
ε from Sect. 6.5 in the definition of y)

and having used dy = kTe
mec2 dτT = kTe

mec2 neσTcdt to express the left-hand side of (7.15)
in terms of dy, an element of the photon path.
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Replacing x by xR = x Te
TCMB

in Eq. 7.23 leads to

∂n
∂y

=
1

x2
R

∂
∂xR

[
x4

R

(
∂n
∂xR

)]
, with xR =

hν
kTCMB

, (7.23)

In this case the optical depth is small, and we can therefore assume that the
deviations from the Planck function n= 1

exR−1 will be small and solve for the change
in the photon distribution by introducing the Planck function in the right-hand side
of Eq. 7.23
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∂n
∂y

=
1

x2
R

∂
∂xR

[
x4

R

(
∂n
∂xR

)]
(7.24)

=
1

x2
R

∂
∂xR

[
−x4

R
exR

(exR − 1)2

]
(7.25)

=
1

x2
R

exR
[−4x3

R(e
xR − 1)+ x4

R(e
xR + 1)

]

(exR − 1)3 (7.26)

=
xRexR

(exR − 1)2

(
xR(exR + 1)
(exR − 1)

− 4

)
. (7.27)

With y small we may write

∂n
∂y

� Δn
Δy

=
Δn
y
. (7.28)

Here y corresponds to the hot gas cloud crossed by the photons, and Δn is the
modification of the incident photon distribution as the gas crosses the cluster.

We may then write Eq. 7.27 as

Δn
n

= y
xRexR

exR − 1

(
xR(exR + 1)
(exR − 1)

− 4

)
. (7.29)

In the Rayleigh–Jeans part of the spectrum, the limit of small xR, Eq. 7.29 can be
expanded to

Δn
yn

=
xRexR

(exR − 1)2 (xR(e
xR + 1)− 4(exR − 1)) (7.30)

=
xR(1+ xR+

x2
R
2 )

(xR +
x2

R
2 )2

[
xR

(
2+ xR+

x2
R

2

)
− 4

(
xR +

x2
R

2

)]
(7.31)

and

Δn
n

=
y(xR + x2

R)(−2xR − x2
R)

x2
R

(7.32)

≈ y(−2x2
R

x2
R

) (7.33)

= −2y =
Δ I
I
. (7.34)

The last equality comes from I ∝ ν3n and the fact that the photon energies are
only slightly changed in the process. Sunyaev (1980) has argued that with the small
optical depths that characterise clusters of galaxies the diffusion approximation that
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Fig. 7.4 Compton scattering of a Planck distribution by hot electrons in the case y = 0.15. The
intensity decreases in the Rayleigh–Jeans region of the spectrum, and increases in the Wien region
(Sunyaev and Zeldovich 1980)

we have followed may not be appropriate, and has instead solved the Comtonisation
problem for single scattering and followed a more appropriate path in this case. He
concluded that the results of the two methods do not differ markedly.

Take as a concrete example the Coma cluster (e.g. Birkinshaw 1990), with kTe =
7.9 keV (from X-ray observations), a size R = 500 kpc and an electron density ne =
3 ·103 cm−3. It follows that

y =
kT

mec2 τT =
kT

mec2 neσT R = 4.8 ·10−5, (7.35)

a small number indeed, thus justifying our assumptions. In the low frequency part
of the black body spectrum, the Rayleigh–Jeans part

Iν ∼ ν2kT (7.36)

and then
Δ Iν
Iν

=
ΔT
T

⇒ ΔT =
Δ Iν
Iν

T
(7.34)
== −2.8 ·10−4K. (7.37)

It should be noted that the temperature change is negative. This unexpected
feature is due to the fact that the whole distribution is shifted to higher energies.
In the Rayleigh–Jeans part of the spectrum, this therefore corresponds to a shift
towards lower fluxes at a given frequency, and therefore to a lower (brightness)
temperature (see Fig. 7.4).
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It is interesting to consider a simplistic approach to the Sunyaev–Zeldovich effect
in which one considers that on average each incoming photon is displaced to higher
energies by a factor τ ×ΔE/E . This is suggested as an exercise.

Although very small, the Sunyaev–Zeldovich effect is observable and has been
observed in many cases. Figure 7.5 gives contours of radio flux decrease compared
to the surrounding area superposed on an X-ray image of few well-observed clusters.

The Sunyaev–Zeldovich effect is important in cosmology, as it allows a measure
of cluster distances that is completely independent of the classical distance scale
based on the properties of stars. Consider a galaxy cluster, i.e. a hot electron gas for
our purpose. The X-ray luminosity of the cluster, assuming an isothermal sphere,
was calculated in Chap. 3 and found to be

LX =
4
3

πR3 ·1.4 ·10−27T 1/2n2ḡ. (7.38)

We therefore have a system of equations for the size of the sphere R, its distance
D, and the electron density ne

LX = an2
eR3, y = bneR, R = Dsin θ

LX

y2 =
a
b2 R,

4πD2 fX

y2 =
a
b2 Dsinθ

in which we have as observables, the X-ray flux, the angular diameter, the
temperature (given by the shape of the X-ray spectrum), and the parameter y from
the radio measurement of the flux decrement. a and b are proportionality constants.

This system can thus be solved for the distance

D =
a
b2 sinθ

y2

4π fX
(7.39)

The distances thus obtained can be used to compute the Hubble constant as
shown in Fig. 7.6 in which distance deduced from the Sunyaev–Zeldovich effect
for a sample of clusters at different redshifts is shown.

In practice the measurement of distances through the Sunyaev–Zeldovich effect
is rather complex. The clusters are not isothermal, nor are they perfect spheres, and
the density is not constant within the cluster. Nonetheless, the value of the Hubble
constant obtained in this way, while not necessarily better constrained than that
obtained through other methods, gives a similar value. This is a very strong point
in favour of the coherence of the cosmological description developed over the last
decades.
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Chapter 8
Pair Processes

A further form of interaction between photons and electrons is the creation and
annihilation of electron–positron pairs. These processes are important at energies
above the electron rest mass of 511 keV. The presence of numerous pairs can
also significantly modify the photon energy distributions at lower energies through
increased Compton scattering due to substantial electron–positron pair creation.

8.1 Pair Creation

We first show that it is not possible to create an electron–positron pair out of a single
photon in vacuum. Let Eγ be the photon energy and Ep the pair energy

Eγ = hν, Ep = 2γmec2, Pγ =
hν
c
, Pp = 2γmevx, (8.1)

vx is the component of the velocity parallel to that of the incoming photon.
The conservation of energy requires that hν = 2γmec2 while the conservation of

momentum requires hν
c = 2γmevx. Since vx �= c both equations cannot be fulfilled

simultaneously. Pair creation from a single photon can only happen in the presence
of matter (nuclei) that can absorb some momentum.

We next calculate the limiting energies of two photons (of energies ε1 and ε2) to
create a particle–antiparticle pair (also denoted 1,2). Let Pγi be the 4-momentum of
the photon i and Ppi be that of the particle i.

Pγ1 =
(ε1

c
,p1

)
, Pγ2 =

(ε2

c
,p2

)
. (8.2)

At the threshold, the particles are created with 0 momentum

Pp1 = (mc,0), Pp2 = (mc,0). (8.3)

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 8, © Springer-Verlag Berlin Heidelberg 2013
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The conservation of energy momentum is written

Pγ1 +Pγ2 = Pp1 +Pp2 (8.4)

which we square and solve
2Pγ1Pγ2 = 4m2c2 (8.5)

2
(ε1ε2

c2 − p1p2

)
= 4m2c2 (8.6)

ε1ε2

c2 (1− cosθ ) = 2m2c2 (8.7)

or

ε2 =
2m2c4

ε1(1− cosθ )
, (8.8)

where the angle is that between the two incoming photons.
The cross section for this process is close to the Thomson cross section, as we

are dealing with the interaction of photons with electrons. The cross section can be
expressed as a function of ω =

√
ε1ε2 and is found to be (see e.g. Lang (2006) and

references therein)

σ(ω) =
πr2

e

2
(1−β 2)

[
2β (β 2 − 2)+ (3−β 4) ln

(
1+β
1−β

)]
, (8.9)

where

β =

[
1− (mc2)2

ε1ε2

] 1
2

. (8.10)

In the regime ω � mec2, this reduces to

σ = πr2
e

(
1− m2c4

ω2

)1/2

≈ 0.2σT. (8.11)

Thus from Eq. 8.8 one can see that photons of energy ε2 > 4 · 1014 eV interact
with microwave background photons for which ε1 � 6 ·10−4 eV to create electron–
positron pairs. Note that lower energy photons will be able to interact with other
sources of low-energy photons such as the stellar infrared background.

One can use the cross section for this process and the density of low energy
photons (400 cm−3 for the microwave background) to calculate the distance � at
which the optical depth τ equals 1, i.e. the distance at which the Universe becomes
opaque to photons of energy higher than the threshold. This is given by

τ = nγσ�, (8.12)



8.1 Pair Creation 107

Hubble
Radius

VIRGO

Galactic
Centre

Total

Radio

Electrons

Starlight and
IR               

B B

B B
μ+ μ–

1013

1023

1025

1027

1029

1017 1021

Eγ (eV)

h υ0 = 6x10–4eV 

λ i
nt

 (
cm

)

Fig. 8.1 Interaction length of γ-rays on the various background radiation fields (Wdowczyk et al.
1972). Unless otherwise stated the process concerned is electron pair production. BB denotes the
2.7 K black body radiation (∼400 photonscm−3). Several important distances are indicated on the
right-hand side; Virgo denotes the distance to the important cluster of galaxies at the centre of our
supercluster

and therefore

�τ∼1 =
1

nγσ
≈ 2 ·1022cm. (8.13)

We give in Fig. 8.1 the distance at which a photon of a given energy travels to
reach an optical depth of one, given densities of the low-energy background photons
(stellar and microwave).

It follows from this that ultra high-energy photon sources, such as presently
observable with the HESS and MAGIC telescopes, cannot be at very large distances.
They must be closer than the distances at which the photon optical depth to pair
creation is less than about 1.

Pair creation processes are also important where the density of ω � 1 photons is
large. In this case the photons can interact within the region to create pairs, which
can considerably modify the emergent spectrum.

Consider an optical depth of one for the pair creation

τγγ→e+e− ∼ 1 ∼ nγ(ω ∼ 1)σTR. (8.14)

The photon density may be calculated from the source luminosity and size R

nγ(ω ∼ 1) =
L

4πR2c
1

mec2 . (8.15)
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and

τγγ→e+e− ∼ 1 ∼ L
4πmec3R

σT (8.16)

The process is therefore important in the hard X-ray domain whenever the
luminosity of a source is high and the size is small. The latter is often inferred
from the time variability of the source.

One uses often a unitless number, the compactness l, to characterise the ratio
of L

R

l =
L
R

σT

mec3 , (8.17)

Pair processes are therefore important for

l >∼ 4π ∼ 10, because then τγγ→e+e− >∼ 1. (8.18)

This process is of particular importance when discussing jets in active galactic
nuclei or in gamma ray bursts. The argument here is that in order to be observed
the sources must be optically thin to pair creation. Since the variability implies a
size for the source, the photon density is limited by Eq. 8.18. However, the observed
fluxes are sometimes much larger than implied by this limit. One concludes that
the sources are relativistically beamed towards the observer, i.e. the observed flux
originates in relativistic jets of high bulk gamma factors, as this is the only way to
reconcile both the variability timescale and the high fluxes observed. In gamma ray
bursts (see Chap. 19) this argument implies bulk gamma factors than can exceed
many 100 s.

8.2 Pair Annihilation

The inverse process to pair creation, pair annihilation, is also possible. The cross
section is essentially given by the Thomson cross section, as expected for photon–
electron interactions. For an electron at rest and a positron of energy γmec2 one has
(see Lang 2006, formula 4.364)

σe+e−→2γ =
3σT

8
1
γ
· [ln(2γ)− 1]. (8.19)

When the electrons and positrons are cold (slow), they can recombine into
“positronium”, essentially a hydrogen atom in which the proton is replaced by a
positron. 25 % of the positronium is in the form of a singlet 1S0, while 75 % is in
a triplet 3S0. In this structure, the wave functions of the positron and the electron
overlap, which leads to unstable configurations. The lifetime of the singlet state is
of order 1.25 ·10−10 s and the annihilation results in two photons of 511 keV each.
The lifetime of the triplet state is 1.5 ·10−7 s. It decays into three photons forming a
continuum.
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Fig. 8.2 The electron–positron annihilation line at the centre of the Galaxy observed by the
spectrometer SPI on board INTEGRAL. The Galactic distribution of the line is given in
Knoedelseder et al. (2005), while the line profile is discussed in Churazov et al. (2005)

This has been known to occur in the central regions of the Galaxy and has now
been mapped by INTEGRAL as shown in Fig. 8.2. The spectrum includes the line
from the singlet state and the continuum from the triplet state. The intensity indicates
that there are some 1043 annihilations per second, while the line profile indicates
that the positronium is at a temperature of about 7,000 K. While the origin of the
electrons is not difficult to understand, the presence of positrons cool enough to
form positronium is much more difficult to understand and the subject of numerous
discussions. Possible positron sources include nucleosynthesis and decay of dark
matter particles.

8.3 Bibliography

The cross sections for pair production and pair annihilation are not derived here.
The reader is referred to Lang (2006) where the formulae can be found together
with references to the original literature.
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Chapter 9
Particle Acceleration

We have seen in the discussion of synchrotron radiation that there are high energy
electrons in different environments in nature. One also knows since the beginning
of the twentieth century that there is a “penetrating” radiation that comes from outer
space and that is measurable on the ground. This latter knowledge stems from a
long history of very ingenious experiments and deductions that started in 1900
(see e.g. Longair 2006). The main steps in this history are first the remark that an
electroscope (the apparatus made of two thin sheets of metal that separate when
both are electrified with charges of the same sign) discharges slowly in time, even
in the absence of any known source of ionisating radiation. This loss is due to some,
then unidentified, ionising flux (remember that radioactivity was then not known).
However, in one experiment one of these electroscopes was taken to the top of the
Eiffel tower by Wulf in 1910. It was seen that the ionisation flux decreased by about
a factor 2 from the ground to 330 m. This decrease was much less than would be
expected if the ionisation was due to gamma rays originating at the surface of the
Earth. The next major step was due to Viktor Hess who flew in an open air balloon
to some 5,000 m and measured the ionisation flux as he ascended. He showed that
the flux decreases for the first 1.5 km and then increases with altitude. From this
result Hess concluded that there must be a very “high penetration power” radiation
coming from outer space.

In 1929, Bothe and Kohlhörster used the newly-developed Geiger counters to
show that the cosmic radiation, as it was called, was made of charged particles
rather than gamma rays. This was shown by placing two counters on either
side of a high absorption medium and registering coincidences. Were the cosmic
radiation particles gamma rays, such coincidences would be very unlikely. However,
charged particles would be expected to trigger both counters, provided they crossed
the absorption medium. It was thus conclusively shown that there is a flux of
very energetic particles impinging onto the Earth from outer space. The particle
energy was inferred to be very high in order to explain the very important
“penetration power” necessary for the particles to cross the atmosphere and to be
observed at sea level.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 9, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 9.1 The all-particle spectrum of cosmic rays (Figure credit: S. Swordy, Springer images).
The arrows and values between parentheses indicate the integrated flux above the corresponding
energies

This work has continued over the subsequent decades, yielding a wealth of data
on these cosmic rays. Figure 9.1 shows their energy spectrum from 108 to 1021 eV.
The low-energy portion of this curve is modulated by solar activity. Strong solar
activity increases the pressure in the inner solar system and pushes the low-energy
cosmic rays out while having no effect on the higher energy particles. In the lower
energy domain, the composition of the cosmic rays can be measured and is given in
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Fig. 9.2. This composition shows a number of effects. First, the abundance of some
of the light elements (Li, Be B) is higher than in the interstellar medium. This is
the result of spallation reactions, i.e. collisions of heavy element cosmic rays with
interstellar material that results in the decay of the heavy ion and the creation of
lighter nuclei. A second effect is the presence of 22Ne in larger quantities than in
the solar wind. This could indicate that the material that is accelerated originated in
Wolf-Rayet stars.

The spectrum shown in Fig. 9.1 is characterised by a power law of index 2.5–
2.7 for energies below about 1015 eV and 3.08 for energies between 1015 and
1019 eV. The break is commonly called the knee. Above 1019 eV, there is evidence
for a hardening of the cosmic ray distribution. The break in the spectral energy
distribution here is called the ankle. The mere existence of these very high cosmic
rays is a puzzle to which we will return at the end of this chapter.

The shape of the spectral energy distributions is thus described by power-
laws of the form N(E)dE ∝ E−γdE extending over very wide energy domains.
The existence of power-law energy distributions for particles is also evident from
the broad-band synchrotron spectra and Compton emission spectra discussed in
Chaps. 5 and 6. These distributions differ very markedly from thermal distributions,
and are therefore generated by non-thermal phenomena.

Charge acceleration may be caused by very strong electric fields. Such fields
are found in the magnetosphere of fast rotating neutron stars where electrons are
accelerated to high energies and then lose some of this energy in radio emission.
This will be briefly described in Chap. 14. A very different type of particle
acceleration is found in multiple interactions of particles in which a small amount of
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energy is gained at each interaction. This is called stochastic particle acceleration.
We will describe here one such process that is in some sense similar to the
acceleration of a ping pong ball that is being squeezed between the table and a bat.

9.1 Second-Order Fermi Acceleration

We will consider the interaction of a population of light particles (of mass m) with
a number of massive “mirrors” (of mass M) with random motions (Fig. 9.3). Let
the particles be relativistic and the mirrors non-relativistic and the interaction be an
elastic collision. This treatment is due to Fermi (1949, 1954).

The four-impulse of any particle is pμ =m ·uμ , u0 = γ ·c and ui = γvi. The energy
conservation during an interaction from an initial state “i” to a final state “f” reads

ΔE = mc2(γp,f − γp,i) =
1
2

M(v2
M,i − v2

M,f). (9.1)

The momentum conservation reads

MvM,f +mγp,fvp,f = MvM,i +mγp,ivp,i, (9.2)

Squaring Eq. 9.2 and arranging the terms leads to

M2(v2
M,i − v2

M,f) = 2Mm(γ f vp,fvM,f − γivp,ivM,i)+m2(γ2
f v2

p,f − γ2
i v2

p,i), (9.3)

where for all particles and states v2 stands for |v|2. For collisions during which
the particle energy changes by only a small amount γi � γf � γ , vp,f � −vp,i and

V

m

V

M

Fig. 9.3 Interaction geometry for the second-order Fermi acceleration process, illustrating the
collision between a particle of mass m and a cloud of mass M
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vM,f � vM,i. With these approximations the second term of the right-hand side of
Eq. 9.3 vanishes, and momentum conservation leads to

M2(v2
M,i − v2

M,f)� 2M(mγc2)(−2
vp,ivM,i

c2 ), (9.4)

which can be inserted into Eq. 9.1 using E = γmc2 to obtain

ΔE =−2E
vp,ivM,i

c2 . (9.5)

The probability of collisions is proportional to the relative velocity of the
particles (and their densities). Thus the “head on” collision probability is given by
vp+vM, while “rear” collisions are proportional to vp−vM. Thus the average energy
gain per collision is

< ΔE >=
vp + vM

2vp
·2E

vp,xvM,x

c2 − vp − vM

2vp
·2E

vp,xvM,x

c2 , (9.6)

which simplifies to

< ΔE >= 2
v2

M

c2 E. (9.7)

Let the characteristic time elapsed between two collisions be tF. The average
energy gain per unit time is then

dE
dt

∝
< ΔE >

tF
=

2v2
M

tFc2 E =
E

τacc
, (9.8)

with τacc =
tFc2

2v2
M

, the acceleration time. We may therefore relate the time a particle

has spent in the region with its energy

E = e
t

τacc ,or t = τacc lnE. (9.9)

(The time at which the process started is 0.)
If the rate with which accelerated particles leave the acceleration region is

given by
dn
dt

=
1

τesc
·n(t), (9.10)

with n(t) the density of particles and τesc independent of the particle energy, we have

n(t) = n0 · e−
t

τesc . (9.11)

Since Eq. 9.9 gives a one-to-one relationship between time and energy, we can
substitute it into Eq. 9.11 and obtain the energy distribution of the accelerated
particles



116 9 Particle Acceleration

n(E(t)) = n0e−(
lnE·τacc

τesc ) = n0

(
elnE

)− τacc
τesc

= n0 ·E− τacc
τesc . (9.12)

The differential distribution, i.e. the number of particles between E and E + dE
is trivially obtained from Eq. 9.12 as

dn(E) ∝ E−γdγ, (9.13)

with γ = 1+ τacc
τesc

= 1+ tFc2

2v2
Mτesc

, where we have re-introduced the acceleration time

from the properties of the collisions.
This already possesses one of the properties we want to see in the distribution of

particles, namely the shape of a power law.
The result has, however, a number of weaknesses. Firstly, it is a slow process of

second order in vM
c , as is evident from Eq. 9.7. Remember also that vM is the velocity

of the massive “mirrors” and is non relativistic. The process is called second-order
Fermi process and is thought to be very ineffective. The second-order nature of
the process is to be found in the fact that only the probability for the “head on” and
“rear” collisions differ, not the energy exchanged. A first-order process would imply
that both interactions lead to different energy exchanges between the “mirrors” and
the accelerated particles.

A second difficulty lies in the fact that many observations lead to very similar
indices of particle distributions, and that the cosmic ray energy distribution is well
described by power laws of constant indices over very wide energy ranges. It can
be seen from Eq. 9.13 that this implies that the acceleration and escape times are in
some sense “universal” (or at least that their ratio is). This is very unlikely in very
different physical environments.

A third difficulty is that protons of E ≤ 100 MeV lose a considerable amount of
energy through ionisation processes in any medium. It therefore seems impossible to
take thermal particles of energies MeV or less and accelerate them beyond 100 MeV,
past the ionisation barrier, where the Fermi process begins to dominate over energy
losses. This is known as the injection problem.

9.2 Diffusive Shock Acceleration

It was observed in so-called collisionless plasmas heated by electromagnetic
radiation, for example in thermonuclear fusion experiments, that there was also a
small fraction of high-energy particles that formed a high-energy tail of the thermal
particle distributions. The theory of turbulent plasmas was then developed (in the
1960s). In these plasmas one finds a turbulent plasma and E and B fields as well as
quasi-particles (called plasmons, because they are collective phenomena within the
plasma). It was shown that this combination can lead to particle acceleration. This
then leads to the development of the diffusive shock acceleration.
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shock

u1 u2

Zone 1 Zone 2

Fig. 9.4 Interaction geometry for the diffusive shock acceleration process. The particle distri-
bution is isotropised on both sides, outside the shock through diffusion on collective magnetic
quasi-particles

The principle ingredients of this theory are a collisionless shock occuring in
a plasma. By collisionless shock one understands a shock of width less than the
mean free path of the particles. On both sides of the shock, interactions between
the particles and fluctuations of the electromagnetic field isotropise the distributions
(Fig. 9.4).

This configuration leads to a first-order particle acceleration process. In order
to see this consider a non-relativistic particle that crosses the shock twice, after
having been “isotropised” on either sides of the shock, and look for the change in
its momentum as measured from the fluid on either side. We give in the following
paragraphs a rather simplified version of diffusive shock acceleration as discussed
in Kirk (1994).

When crossing the shock, a particle does not change its velocity, neither in
direction nor in magnitude (the shock is collisionless). However, seen in the different
rest frames of the fluid on either side of the shock, the velocities and the momentum
do differ in the following way (μ is the cosine between p2 and the x-axis).

The y and z component of the relative momentum don’t change, since the particle
moves parallel to the x axis, but the x component changes by m(u1 − u2), which is
the difference of momentum due to the velocity change of the plasma

pz1 = pz2; py1 = py2 ; px1 = px2 −m(u1 − u2). (9.14)

Using the conservation of momentum and squaring, one finds

|p1|2 = p2
x1
+ p2

y1
+ p2

z1
(9.15)

= |p2|2 − 2mp2(u1 −u2) (9.16)

= |p2|2 − 2μ1|p2|mΔu, (9.17)



118 9 Particle Acceleration

where we have neglected the term in (u1 −u2)
2 and where μ1 is the cosine of the

angle between p2 and (u1 −u2).
In order for the particle to cross the shock front we must have μ1v1 > −u1, and

so μ1 has to satisfy the condition 1 > μ1 >− u1
v1

.
Using |p2| � |p1| one finds

|p1|2 = |p2|2
(

1− 2μ1

|p2|
mΔu

)
(9.18)

� |p2|2
(

1− 2μ1

|p1|
mΔu

)
(9.19)

And hence,

|p2| � |p1|
(

1+
μ1

|p1|
mΔu

)
(9.20)

Behind the collisionless shock zone the particles are re-isotropised. Our particle can
therefore cross the shock again, at which point it will have a momentum

p̄1 = p2

(
1− μ2Δu

v2

)
, (9.21)

where μ2 must satisfy the condition −1 < μ2 <− u2
v2

.
Using Eqs. 9.20 and 9.21, the difference of momentum of the particle after these

two crossings, when it is back in zone 1 is (to first order in Δu)

Δ p = p̄1 − p1 (9.22)

= p2

(
1− μ2Δu

v2

)
− p1 (9.23)

= p1

(
1+

μ1Δu
v1

)(
1− μ2Δu

v2

)
− p1 (9.24)

�
(

μ1

v1
− μ2

v2

)
p1Δu (9.25)

The gain of momentum per particle is therefore

Δ p
p1

� Δu
v
(μ1 − μ2). (9.26)

To calculate the mean gain of momentum one considers a population of isotropised
particles. The probability of crossing the shock region is therefore proportional to
|μv+ u|. Hence,

〈
Δ p
p1

〉
=

∫ 1
−u/v1

dμ1|μ1v1 + u1|
∫ −u2/v2
−1 dμ2|μ2v2 + u2|Δ p

p
∫ 1
−u/v1

dμ1|μ1v1 + u1|
∫−u2/v2
−1 dμ2|μ2v2 + u2|

(9.27)



9.3 Highest Energy Particles 119

Performing the integration using Eq. 9.26, we find to first-order in Δu
v

〈
Δ p
p1

〉
=

4Δu
3v

, with v � v1 � v2. (9.28)

This is indeed a first order process in Δu
v .

The resulting spectrum of the accelerated particles can also be calculated under
the assumption that escape from the shock region is independent of energy and is
found to depend only on the shock properties. This means that strong shocks will
systematically lead to similar particle distributions. We can therefore understand
that the difficulties of the second-order Fermi process are largely overcome in this
scenario.

9.3 Highest Energy Particles

The spectrum shown in Fig. 9.1 makes it evident that there are particles at energies
up to 1020 eV. This energy corresponds to a powerfully served tennis ball. It is a
macroscopic energy concentrated in a microscopic particle. The mere existence of
particles at these energies raises a number of questions: How are they accelerated?
Where are they accelerated? Can they propagate all the way to us?

First one can set the scene by looking at the gyro radius

RL =
v

νL
, (9.29)

where

νL =
eB

γmc
(9.30)

is the gyro frequency. At 1019 eV the Larmor radius is 1022 cm or 100 kpc for a
typical magnetic field of 10µG.

Particles can only be accelerated in regions where they are confined. Therefore,
if the confinement is magnetic, and it is difficult to imagine any other confinement
vessel at these energies, the region must be larger than the gyro radius of the particles
at the highest energies observed. The relation between magnetic field and source size
for particles of given energy is illustrated in Fig. 9.5. The highest observed energies
can only originate in the lobes of radio galaxies or in Active Galactic Nuclei (AGN).
Accelerators of very high energy cosmic rays are therefore expected to be related to
some form of active galaxies, most probably powerful radio galaxies.

Next consider the propagation of high-energy particles. At very high energies
hadrons of energy ε interact with photons of energy γ to create π0 particles. This
reaction has a threshold at

γ · ε = 144.7MeV (9.31)
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Fig. 9.5 Diagram illustrating the size and magnetic fields required for a region to accelerate
magnetically-confined particles from the the review by Bauleo and Martino (2009), Fig. 4.
Reprinted by permission of Nature Publishing Group

and a resonance at 1.2 GeV. This means that there must be a decrease in the flux of
very high energy particles for energies γε ≥� 1 GeV. For photon energies of 3 K,
i.e. 10−4 eV, the corresponding particle energy is of the order of 1020 eV. This cut-
off is called Griesen-Zatsepin-Kuzmin, or GZK, following the names of the people
who predicted this effect. With the cross section of the π0 creation, and the density
of the microwave background photons one can calculate that the Universe is opaque
to high-energy particles for distances larger than about 50 Mpc. This distance hardly
includes many potential high-energy cosmic ray accelerators. One concludes from
these arguments that the distribution of cosmic rays is expected to decrease at the
GZK cutoff. Large efforts have been undertaken to perform these measurements.
There followed some contradictory claims on the rate of the highest energy events
with one collaboration (AGASA) claiming rates that indicated that the GZK cut-off
was not observed.
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Fig. 9.6 The Auger detector in Argentina as described in the Auger website (www.augeraccess.
net/Pierre Auger Observatory.htm). The dots represent water-tank particle detectors while fluores-
cence detectors are shown by green rays

There is a large project now ongoing to measure the distribution of the highest
energy cosmic rays, the Auger project. This works by observing the interaction of
the incoming cosmic rays with the atmosphere. This interaction creates a shower
of particles that leave an observable signature in the form of fluorescence light and
particles. The rates are very low, being typically measured in units of events per
square kilometer and per century. This implies that a very large geometrical area
must be used if the measurements are to take significantly less than a century. The
instrument is located on a high plateau in Argentina (Fig. 9.6).

The Auger detector started taking data in 2004. The data as of 2006 (Watson
2006) are shown in Fig. 9.7. They indicate that the Auger instrument is probably
seeing less events at the highest energies than claimed by the AGASA collaboration
and therefore more in line with the presence of a GZK cut-off. Better statistics
are, however, needed to make definitive claims. The main difficulty resides in the
measurement of the energy of each event. With a spectrum as steep as that of the
cosmic rays, even a small uncertainty in the event energies leads to large effects on
the spectral slope.

In November 2007 the Auger collaboration (2007) claimed a correlation between
the highest energy events and the positions of AGN as reported in the Veron
and Veron-Cetty catalogue of AGN. This correlation is shown in Fig. 9.8. This
correlation is in some sense expected if AGN are the acceleration sites, and if cosmic
rays at these energies travel along lines such that they are only weakly deflected by
the extragalactic magnetic field. It is possible, however, that the correlation is rather
simply with very large scale structures in the Universe that are themselves correlated
with whatever sources are responsible for the acceleration of comic rays.

www.augeraccess.net/Pierre_Auger_Observatory.htm
www.augeraccess.net/Pierre_Auger_Observatory.htm
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Fig. 9.7 Auger and other detector data showing the very high energy end of the cosmic ray
spectrum. The steepening of the spectrum in the last energy bins is taken to signify the onset
of the GZK cutoff (Watson 2006) (Image reproduced with permission of CERN)

Fig. 9.8 The 27 highest energy cosmic rays (circles of 3.1◦) detected by the Auger collaboration
overlaid on a plot of the Veron and Veron-Cetty catalogue of AGN, taking only the objects at less
than 75 Mpc. The blue coloured regions indicate sky areas of equal coverage, the darker the region,
the deeper the exposure (Auger collaboration 2007)
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9.4 Bibliography

The articles of Fermi (1949, 1954) give a very clear and elegant treatment of the
subject and are well worth reading.

Recent work on very high energy cosmic rays is reviewed in Bauleo and Martino
(2009).

Diffusive shock acceleration is described e.g. in Kirk (1994).
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Chapter 10
Accretion

Accretion is central to the study of high-energy astrophysics. The gravitational
binding energy of a particle of mass m at the surface of an object of size r and
mass M is

GMm
r

, (10.1)

which is a fraction GM
rc2 of the rest mass of the object. For a solar mass object with

a radius of 10 km, typical of a neutron star, this fraction amounts to some 13 %.
This is to be compared with the nuclear binding energy that can be gained from
the fusion of H, which is about 0.007mc2, or a factor 20 less than the gravitational
binding energy. Another way of expressing the same notion is to say that a proton or
a neutron is bound 20 times more strongly by gravitation at the surface of a neutron
star than this particle is bound to other nucleons in a nucleus. We will see further
in this book (Chap. 12) how this analysis is to be modified in the case in which the
compact object is a black hole, which is known not to have a solid surface.

A large quantity of readily available gravitational energy per unit mass is
a necessary but insufficient condition to account for the very high luminosity
observed, mainly as X-rays, in compact objects. A further condition is that enough
matter is driven per unit time into the central regions of the potential well. This is
what is called accretion. Even though gravity is an attractive force, this condition
is difficult to fulfill, because angular momentum prevents matter from falling into
the potential well. Loss of angular momentum is therefore a necessary condition for
matter to be accreted in the vicinity of a massive compact object.

10.1 Eddington Luminosity and Accretion Rate

The accretion rate is also limited by the presence of radiation pressure. The photons
created by the accreted matter exert a pressure on the infalling material and may
even stop the accretion flow. The force Frad caused by radiation pressure on free

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 10, © Springer-Verlag Berlin Heidelberg 2013
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electrons is given by

Frad =
LaccσT

4π r2c
, (10.2)

where Lacc is the luminosity of the object onto which matter accretes and σT is the
Thomson cross section. The gravitational attraction force Fgrav is dominated by that
exerted on the nucleons and ions. For hydrogen:

Fgrav =
GM mp

r2 . (10.3)

Both forces have the same dependence on radius. Therefore, if one of the two
dominates at a given radius, it will do so at all radii.

Both forces are equal for the so-called Eddington luminosity LEdd:

LEdd =
4πGMmpc

σT
� 1.31038 M

M
erg
s
. (10.4)

This expression is valid for spherically symmetric geometries and fully ionised
accreting material. It gives a very good order of magnitude for the relation
between mass accretion rate and accretion luminosity. One therefore expects
that accreting stellar mass compact objects may have luminosities of the order
of 1038 erg s−1 and that the central compact objects in AGN that radiate up to
1047 erg s−1, as is observed in very bright quasars like 3C 273, may be as massive
as 109M or 1010M.

In very general terms, the accretion luminosity is related to the mass accretion
rate by

L = ηṀc2, (10.5)

where η is the accretion radiation efficiency (or accretion efficiency in short). The
Eddington luminosity is therefore related to a corresponding mass accretion rate by

LEdd = ηṀEddc2. (10.6)

We have just seen that for neutron stars the binding energy of accreted matter
is approximately 10 % of the rest mass energy, therefore η ≈ 0.1. We will show
in Chap. 12 that this is also true for accretion onto black holes. Thus, for a disk
radiating at the Eddington luminosity the accretion rate is

ṀEdd =
LEdd

ηc2 =
4πGMmpc

ηcσT
≈ 1.3 ·10−8

(
M

M

)[
M
yr

]
. (10.7)

For a supermassive black hole of ∼109M, as e.g. in the bright quasar 3C 273,
the deduced accretion rate is of the order of 10 M/year.
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10.2 Spherically-Symmetric Accretion

We first consider the (somewhat academic) case of a compact object of mass M
at rest in a gas (say the interstellar medium) characterised by a density ρ∞ and a
temperature T∞. This is sometimes referred to as Bondi accretion. In this case the
angular momentum of the gas vanishes and we only consider the (negative) radial
velocity v.

The spherically symmetric continuity equation (mass conservation) is obtained
from counting the matter entering and leaving a shell at distance r

∂
∂ t

(4πr2ρ(r, t)Δr) = 4πr2ρ(r, t)v(r, t)− 4π(r+Δr)2ρ(r+Δr, t)v(r+Δr, t).

(10.8)
In the absence of an explicit time dependence, and to first order in Δr, this

reduces to
d
dr

(r2ρv) = 0, (10.9)

which leads to r2ρv = const. This constant is essentially the mass accretion rate

Ṁ =−4πr2ρv. (10.10)

The conservation of momentum, the Euler equation, in a spherically symmetric
steady state (partial time derivatives vanish, no explicit time dependence), where the
external force is gravitation, can be easily understood. The momentum conservation
is Newton’s second law applied to an element of fluid

ρ
dv
dt

=−�P+ f , (10.11)

where −�P, the gradient of the pressure, is the density of the force exerted by the
pressure P and f is the density of external forces. The left-hand side is composed
of two terms: dv = ∂v

∂ t dt + (v�)vdt, where the first is the change in time of the
velocity of the element, and the second is the change of velocity within the fluid as
the element moves. In a steady fluid, in a spherical problem and with gravitation as
the external force, the Euler equation becomes (using (v�)v = 1

2 �v2)

v
dv
dr

+
1
ρ

dP
dr

+
GM
r2 = 0. (10.12)

We still need the equation of state for a perfect gas

P =
ρkT
μmH

, (10.13)

where μ is the mean molecular weight, 1 for neutral hydrogen and 1/2 for fully
ionised hydrogen, and the polytropic relation:
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P = Kργ , (10.14)

where γ = 5/3 for a non-relativistic adiabatic gas. For an isothermal gas the equation
of state (10.13) indicates that γ = 1. The aim is then to find ρ(r), T (r), v(r) and P(r).

We need to transform the Euler equation in a form that can be integrated. To do
this we use the identity

dP
dr

=
dP
dρ

dρ
dr

(10.15)

in Eq. 10.12 to obtain

v
dv
dr

+
1
ρ

c2
s

dρ
dr

+
GM
r2 = 0, (10.16)

where we have used the fact that the speed of sound cs =
√

dP
dρ . The continuity

Eq. 10.9 allows us to express

dρ
dr

=− ρ
r2v

d
dr

(r2v), (10.17)

which we introduce to obtain

1
2

(
1− c2

s

v2

)
d
(
v2
)

dr
=−GM

r2

(
1− 2c2

s r
GM

)
. (10.18)

Although this equation can still not be formally integrated, as cs depends also on
the radius in an unknown way, it nevertheless provides some useful insight.

The following points can be made:

• At large r, the right-hand side is positive, as cs is finite and r grows indefinitely.
• At large r the left-hand side, dv2

dr is negative, since the velocity increases as
the radius decreases (we search for an accretion solution rather than for a wind
solution). The left hand side is only positive, therefore, if cs > v, i.e. if the flow
is subsonic at large distances.

• As the gas approaches the star the factor (1− 2c2
s r

GM ) increases (remember that it
starts negative). It reaches zero for

r = rs =
GM

2c2
s (rs)

� 7.5 ·1013(
T (rs)

104K
)

M
M

cm, (10.19)

a size considerably larger than the size of the compact object.
• At small radii, the right-hand side must be negative and therefore the left-hand

side must also be negative which itself requires that the flow is supersonic.
• At rs, the left-hand side must also vanish, hence either dv2

dr = 0, meaning no
acceleration, or v2 = c2

s , the speed equals the speed of sound.

Thus an accretion solution starts at infinity with a subsonic flow, the flow
becomes supersonic at rs, the sonic point, and ends supersonic close to the compact
object. It is the type (ii)A solution indicated in Fig. 10.1.
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There are other types of solutions for the flow, characterised by their behaviour
at the sonic point. There is a second trans-sonic solution (type (ii)A′’ in Fig. 10.1),
the accretion solution is type (ii)A. There are two more families of solutions with
dv2

dr = 0 at rs and two more with dv2

dr = ∞ at rs. Solutions that remain subsonic at all
radii (lowest curve in Fig. 10.1) correspond to a slowly settling atmosphere.

Since we know that the accretion velocity is the speed of sound at the sonic point
we can estimate the mass accretion from Eq. 10.10

Ṁ = 4πr2
s ρ(rs)cs(rs) (10.20)

The integration of Eq. 10.18 leads to a relation between the quantities at infinity
and at rs (Frank et al. 2003). For reasonable parameters, these authors conclude that

Ṁ � 1.4 ·1011
(

M
M

)2( ρ(∞)

10−24

)(
cs(∞)

10kms−1

)−3

gs−1. (10.21)

The maximum luminosity produced by this accretion flow is Ṁ multiplied by the
binding energy per unit mass at the surface of the compact object

Lacc =
GMṀ
Rstar

, (10.22)

This accretion luminosity is of the order of 1031 erg s−1 for a neutron star,
considerably less than the solar luminosity and therefore than the observed lumi-
nosities of X-ray sources which emit 1036–1038 erg s−1. This argument shows that
spherical accretion is unlikely to be an important astrophysical phenomenon in these
circumstances.
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10.3 Geometrically-Thin Optically-Thick Accretion Disks

Accretion disks form when matter with angular momentum falls towards the centre
of a deep gravitational potential well, i.e. onto a compact object or a black hole. This
is expected in binary systems when the infalling matter is shed from the companion
star of the compact object (Fig. 10.3). In order to fall, the matter must shed angular
momentum along the way. In what follows we consider accreting matter that follows
nearly Keplerian orbits at all radii, so that the radial velocity is always very small
compared to the azimuthal velocity. We will show how viscous forces in this
structure transport angular momentum outward, thus allowing matter to fall into the
potential well. This approach was suggested and developed by Shakura and Sunyaev
in 1973 (Shakura and Sunyaev 1973). As the matter falls towards the centre of the
disk, the rate at which it looses gravitational energy increases, and the disk becomes
hotter. In the central regions around a neutron star or a black hole of stellar mass,
the temperatures reached are such that X-ray emission becomes the most important
cooling process. When the central object is less compact, as is the case for white
dwarfs, the disk is less hot and emits more in the UV domain. In the case in which
the disk is optically thick a simple expression for the emitted spectrum can be
obtained.

We will describe here only some elements of the theory of accretion disks largely
following the rendering of the original work of Shakura and Sunyaev (1973) by
Frank et al. (2003).

Figure 10.2 shows the equipotential curves in the equatorial plane of a binary
system. When one of the objects fills its Roche lobe, i.e. when it is so extended that
it reaches the inner Lagragian point L1, the point at which the attraction is the same
towards both objects of the binary system, the matter can flow from one object to the
other (Fig. 10.3). The material then falls in the potential well of the other object (in
our case the compact object) and organises itself in a disk in which the movement is
at all radii nearly following Keplerian orbits (Fig. 10.3).

L3

L1

L2

Fig. 10.2 The equipotential surfaces in a binary system with the Lagrange points L1–L3 (image
credit: wikipedia)
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M1
L1

M2

Fig. 10.3 Flow of matter in a binary system in which the L1 point is at the surface of the normal
star. The matter spirals in the disk, indicated here in light grey

Let us consider a disk with cylindrical coordinates r,Φ and z. Let the disk be
geometrically thin, so that zdisk � r and the mass can be described by its surface
density Σ . Let further the angular velocity of the disk at radius r be Ω(r). The
compact object has a mass M and radius Rstar. The Keplerian angular velocity is

ΩK =

√
GMstar

r3 , (10.23)

and the azimuthal velocity is

vΦ � vΦ ,K = rΩK(r) ∝ r−
1
2 . (10.24)

We write vr for the radial velocity and vΦ for the azimuthal velocity and note
that vΦ increases as r decreases.

The energy loss, and hence the radiation from the disk, is calculated from the
laws of conservation of mass and angular momentum considered hereafter.

10.3.1 Conservation of Mass

The conservation of mass in a ring is found as usual by counting the material which
gets into the ring and that which gets out of it.

∂
∂ t

(2πrΔrΣ(r)) = vr(r, t) ·2πrΣ(r, t)− vr(r+Δr, t) ·2π(r+Δr)Σ(r+Δr, t).

(10.25)
For matter with negative radial velocities, i.e. falling towards the centre, the first

term on the right-hand side corresponds to matter leaving the annulus of width Δr at
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R–λ
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Fig. 10.4 Schematics of particle transport across a boundary. The particles transport angular
momentum as described in the text

r, while the second term corresponds to matter entering the same annulus at r+Δr.
Noting that the right-hand side is a partial derivative, one obtains

r
∂Σ
∂ t

=− ∂
∂ r

(
rΣvr

)
, (10.26)

where vr is the radial velocity of the material, assumed to be small compared with
the Keplerian velocity.

10.3.2 Conservation of Angular Momentum

Keplerian rotation implies a velocity profile that is not solid rotation. Consequently
there exist shear forces and, therefore, transfer of angular momentum from annulus
to annulus. It is this transport of angular momentum (towards the outside) that allows
matter to fall in and hence to be accreted.

We consider transport of angular momentum due to random motions of the mate-
rial in the disk. One source of such motion is the thermal movement of the particles
(we will see, however, that this is not sufficient to explain the observed properties
of disks, it may nonetheless be useful to keep this as an image in the following).

Consider random motions of velocity v̄ and of mean free path λ . λ is much
smaller than the size of the disk. Figure 10.4 shows two annuli and particles “A”
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that move from the inside annulus towards the outside one, and particles “B” that
travel in the opposite direction.

The azimuthal velocities at the different radii we consider are

vφ (r) = Ω(r) · r (10.27)

vφ

(
r− λ

2

)
= Ω

(
r− λ

2

)(
r− λ

2

)
(10.28)

> vφ

(
r+

λ
2

)
(10.29)

Particles “A” transport towards the outside ring a momentum MAvφ (r− λ
2 ), larger

than the momentum transported in the other direction by the particles “B”, which is
MBvφ (r+

λ
2 ) (see Eq. 10.29).

The net transfer of angular momentum L = mvφ r across r per unit time due to
viscous transport is given by −G(r) defined as

ΔL
Δ t

= −G(r) = ṀA × (r+
λ
2
)×vφ (r− λ

2
)− ṀB × (r− λ

2
)×vφ (r+

λ
2
) (10.30)

= ṀA × (r+
λ
2
)×Ω (r− λ

2
)× (r− λ

2
)− ṀB × (r− λ

2
)×Ω (r+

λ
2
)× (r+

λ
2
)

(10.31)

= ṀA × (r2 − λ 2

4
)×Ω (r− λ

2
)− ṀB × (r2 − λ 2

4
)×Ω (r+

λ
2
) (10.32)

� ṀA × r2 ×Ω (r− λ
2
)− ṀB × r2 ×Ω (r+

λ
2
). (10.33)

Assuming that this process is random, and that there is no net transport of matter due
to the v̄ random movements

ṀA = ṀB = v̄Σ2πr (10.34)

and we obtain

G(r) = v̄Σ2πrλ r2 dΩ
dr

. (10.35)

We introduce the kinematic viscosity ν = λ v̄ and write Eq. 10.35 as

G(r) = 2πrνΣ r2 dΩ (r)
dr

, (10.36)

which gives us the transport of angular momentum across any r.
Consider now an annulus Δr. The amount of angular momentum it contains is

2πrΔr ·Σ · r ·vΦ (r) = 2πrΔrΣ r2Ω (r) = L(r). (10.37)
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L (R+ΔR/2)

L (R–ΔR/2)

G (R+ΔR/2)

G (R–ΔR/2)

L (R)
VR

Fig. 10.5 Schematics of the
conservation of angular
momentum in an annulus.
The angular momentum is
transferred at both boundaries
of the annulus as described in
Fig. 10.4

This angular momentum will be changed by the transport at both boundaries (r+Δr)
and (r−Δr) as we have just calculated (see Fig. 10.5) and by the transport linked with
a general flow of matter. This latter term is given by the change of flow of angular
momentum across Δr: d

dr
(Ṁr2Ω )Δr. (10.38)

With Ṁ =−2πrΣvr we have

dL
dt

=
d
dr

(Ṁr2Ω )Δr
︸ ︷︷ ︸

2πΔr d
dr (rΣ(−vr)r2Ω)

+G

(
r+

Δr
2

)
−G

(
r− Δr

2

)

︸ ︷︷ ︸
dG
dr Δr

. (10.39)

With

L(r) = 2πrΔrΣ r2Ω (r). (10.40)

The net variation of the angular momentum of the annulus is therefore

d
dt
(2πrΣ r2Ω ) =−2π

∂
∂ r

(rΣvrr
2Ω )+

∂ G
∂ r

, (10.41)

or, re-organising:

r
d
dt
(Σ r2Ω )+

∂
∂ r

(rΣvrr
2Ω ) =

1
2π

∂ G
∂ r

. (10.42)

This form of angular momentum conservation will be integrated in the next section.

10.3.3 Stationary Disks

We now consider a disk whose properties do not depend explicitly on time. This means
that all temporal variations are small compared to r/vr. In this approximation, ∂

∂ t = 0
and mass conservation (10.26) becomes

rΣvr = const. (10.43)
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which we write
Ṁ = 2πrΣ (−vr), (10.44)

thus introducing the mass accretion rate Ṁ (remember that vr is negative). The
conservation of angular momentum (Eq. 10.42) can also be trivially integrated to give

rΣvrr
2Ω =

G
2π

+
c

2π
(10.45)

in which we explicitly introduce G as calculated in Eq. 10.36 to obtain

ΣvrΩ = νΣ
dΩ
dr

+
c

2πr3 (10.46)

or, re-arranging slightly and writing Ω ′ for dΩ
dr

−νΣΩ ′ =−ΣvrΩ +
c

2πr3 . (10.47)

For a central star in slow rotation (actually for any stable star), the rotation velocity
of the star surface is less than the Keplerian rotation at the surface. On the other hand, Ω
increases as the distance to the star decreases (Ω ′ < 0). There exists therefore a radius at
which Ω ceases to increase towards decreasing distances and decreases again, i.e. there
is a radius r� at which Ω ′ = 0. We can use this radius to deduce the integration constant
of Eq. 10.47:

c = 2πr3
�ΣvrΩ (r�) (10.48)

(10.44)
== −r2

�ṀΩ (r�) =−Ṁ(GMr�)
1/2. (10.49)

Writing explicitly the derivative of the angular velocity for a Keplerian disk,

Ω ′ =−3
2

√
GMr−5/2, (10.50)

in Eq. 10.47 one finds

νΣ =
Ṁ
3π

(
1−

( r�
r

)1/2
)
. (10.51)

We can use this result to calculate the rate of dissipation of energy in the disk due
to the shear forces, D(r). From Eq. 10.42 we note that ∂G

∂ r is a force, hence ∂G
∂ r Δr is the

work done by this force along r; it is, therefore, an energy and ∂G
∂ r ΔrΩ is a power. The

rate of dissipation of energy in an annulus is therefore

Ω
dG
dr

Δr =
d
dr

(ΩG)Δr−G
dΩ
dr

Δr. (10.52)

The first term on the right-hand side, when integrated, gives a term at the inner and
outer rims of the disk only, while the second term gives the local dissipation in any
annulus. When expressed per unit area and remembering that a disk has two sides this
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becomes

D(r) = G
dΩ
dr

1
4πr

(10.36)
==

νΣ
2

(rΩ ′)2. (10.53)

For a Keplerian disk and with Eq. 10.51 this becomes

D(r) =
3GMṀ
8πr3

[
1−

( r�
r

)1/2
]
. (10.54)

Note that this is not explicitly depending on the viscosity ν . This means that we
assume that there exists a viscosity such that the matter in the disk can have a Keplerian
velocity at all radii. In other words we assume that the micro-physics is such that the
macro description we give is valid. This assumption is not at all trivial.

The luminosity of the disk is the integral of the energy dissipated per unit area
(Eq. 10.54) over the whole surface. Note that in Eq. 10.54 we have taken into account
that the disk has two faces. Hence the factor 2 below:

L = 2
∫ ∞

r�
D(r)2πr dr (10.55)

=
GMṀ

2r�
. (10.56)

This corresponds to half of the binding energy at the surface of a star of radius r�.
This comes from the fact that the matter at the inner rim of the accretion disk has still the
kinetic energy corresponding to the Keplerian velocity at this distance. When calculating
the binding energy at the surface of a star, one usually neglects the rotation there, hence
the factor 2. When matter is accreted onto a slowly rotating star, this means that there is
a substantial amount of energy that is not dissipated in the disk, but rather in a boundary
layer in which the kinetic energy of the matter on the last orbit in the disk is dissipated
and radiated.

10.3.4 Spectrum of the Disk

The emission spectrum can be calculated if we assume that the disk is optically-thick,
and therefore that the dissipated energy at the radius r given by (10.54) is radiated like a
black body. In this case

D(r) = σT 4. (10.57)

With (10.54) we can give the temperature profile of the disk

T (r) = [
3GMṀ
8πr3σ

(1− (
r�
r
)1/2)]1/4 ∝ T� · ( r�

r
)3/4. (10.58)

The last equation is valid at large r. There is therefore a characteristic radius
dependence of the temperature in accretion disks: T ∝ r−3/4, the external parts being
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Fig. 10.6 Emission spectrum
of an accretion disk (Pringle
1981)

cooler than the inner parts of the disk. This is one property that can be tested
in astrophysical observations (see Sect. 10.4). The characteristic temperature T� is
given by

T� =

(
3GMṀ
8πr3

�σ

)1/4

. (10.59)

This temperature corresponds to that of the inner radius of the disk, that is the
maximum temperature of the accretion flow in this geometry.

For white dwarfs, typical temperatures are of the order of few 104 K, while for
neutron stars or black holes of stellar masses, the temperatures correspond to some
107 K. The first objects will therefore be observable in the UV, while the more compact
objects will mainly radiate in X-rays.

Furthermore, for black holes the horizon size (the “radius”) is proportional to the
mass. We will see in Chap. 12 that the last stable orbit around these objects, hence here
r�, is also proportional to the mass M. We thus have T� ∝ ( Ṁ

M2 )
1/4. When accreting

at the Eddington luminosity (Eq. 10.4), M ∝ L. We can also write L ∝ ηṀc2, where
η is the radiative efficiency. We thus conclude that T� ∝ ( 1

L )
1/4. It follows that more

luminous objects are expected to be cooler, and thus radiate at lower frequencies, than
less luminous objects.

To calculate the spectrum one just has to integrate the black body emissivity Bν (T)
of the proper temperatures

Sν ∝
∫ rout

rstar

Bν(T (r))2πrdr. (10.60)

The resulting spectrum has the exponential tail of the highest temperature in the
disk at high frequencies, the ν2 dependency of the Rayleigh–Jeans part of the lowest
temperature and in between a ν1/3 dependency. The shape is given in Fig. 10.6.
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10.3.5 Viscosity

In Eq. 10.36 we introduced the kinematic viscosity ν = λ v̄ without specifying in any
way what λ , the mean free path, or v̄, the random velocity of the particles making up
the disk, is. We have seen, however, in Sect. 10.3.2 that viscosity plays an essential role
in controlling the transport of angular momentum. Viscosity must be sufficiently high to
allow enough material to loose angular momentum and thus to fall in the potential well
and produce the observed luminosities.

Consider molecular viscosity, i.e. that viscosity created by the random thermal
motion of the gas particles. In this case the mean free path λ = λD, the deflection length,
the distance it takes to significantly alter the motion of a particle, and v̄ � cs the speed
of sound. Numerically the deflection length is (Frank et al. 2003)

λD =
7105

lnΛ
T 2

n
cm, (10.61)

where lnΛ ,the Coulomb logarithm, is a numerical factor of order 10 and n is the density,
which for a disk of thickness H is

n =
Σ

mpH
. (10.62)

The speed of sound is

cs � 106
(

T
104 K

)1/2 cm
s
. (10.63)

We can now use Eq. 10.51 to estimate an upper limit for the mass accretion rate across
the disk.

Ṁmax � 3πνΣ � 109
(

H
1010 cm

)(
T

107 K

)3 g
s
. (10.64)

This result indicates that for disk parameters appropriate for accretion around a
compact object (a 1010 cm disk around a compact object of size 10 km, such that the
disk height is less than the radius, and of a temperature such that it is observable in
the X-rays) the mass accretion rate is many orders of magnitude less than that needed
to produce the observed luminosities (see the corresponding discussion for spherical
accretion in Eqs. 10.21 and 10.22). This shows that molecular viscosity is very far from
being sufficient to transport the angular momentum outwards in a Keplerian disk.

For accretion disks to be relevant in astrophysical contexts, the viscosity must be
considerably larger than the molecular viscosity. The maximum mean free path λ that is
meaningful for random motions in a disk is the disk height H. This is what is expected
if the random motions that transport angular momentum are turbulent with cells of the
maximum possible size. The appropriate velocity in this case is also the sound velocity.
The viscosity can then be parametrised as

ν = αcsH. (10.65)
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Although this is not a real physical explanation for the disk viscosity, it is possible that
magneto-hydrodynamic instabilities create motions such that Eq. 10.65 is a reasonable
approximation to the viscosity in a disk in which there is a magnetic field perpendicular
to the disk. This may lead to α of the order of 0.01–0.1, appropriate to model
observations of compact sources in our Galaxy. This approach has the added virtue
that the unknown physics is contained in a single parameter and that, assuming this
parameter to be a constant throughout the disk, all the equations for the disk structure
can be expressed algebraically. The solutions can be found in the literature, see
e.g. Frank et al. (2003).

10.4 Observational Evidence for Geometrically-Thin
Optically-Thick Accretion Disks

A test for the radial dependence of temperature is given by systems in which the
companion is a faint optical object, like in low mass X-Ray binaries (see Chap. 16) or
in cataclysmic variables, systems in which the compact object is a white dwarf. Some
accreting binary systems with a white dwarf are seen edge-on to the orbital plane. In
such systems the companion star will occult parts of the disk at each revolution, thus
allowing probing of the disk temperature structure. Qualitatively, the outer parts of the
disk being cooler than the inner parts, the eclipse is expected to have a different time
profile at short and long wavelengths. The cool parts of the disk being more extended
one expects the eclipse at long wavelengths to be shallower and longer than at short
wavelengths. Figure 10.7 shows a schematic view of such an eclipse, and illustrates that
the hot parts of the disk, small in extent, will produce deeper and shorter eclipses than
the cooler outer parts. Figure 10.8 shows measurements of this effect in the Z Cha white
dwarf binary system. There is at least qualitative agreement between the theoretical
expectations and observations.

In binary systems in which the compact object is a black hole the kinetic energy of
the matter on the innermost orbit of a disk is advected into the hole and not radiated.
It is therefore possible to observe the emission from the disk, at least when a disk
dominates the emission, which seems to be the case at certain epochs in accreting
binary systems. Observational evidence for disks is, however, difficult to obtain even in
these objects. There are various reasons for this: for example, soft X-rays, where disks
around black holes are expected to be important (see Sect. 10.3.4) are heavily absorbed
by the interstellar medium, which modifies the observed spectrum in a significant way.
Another complication comes from the fact that several emission components contribute
to the total emission from these objects, a major one being apparently due to hot gas
that surrounds the source and adds high-energy emission to that of the disk. General
relativistic effects also play an important role in the vicinity of a black hole, and modify
substantially the appearance of the object. Figure 10.9 shows the X-ray spectrum of
the black hole candidate LMC X-3 obtained with the SUZAKU satellite. The spectrum
has been fitted with a model that includes an accretion disk spectrum as described in
Sect. 10.3.4 and a power law to account for the high-energy X-ray emission that does
not originate in the disk (Kubota et al. 2010). This simple model gives a reasonable
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Fig. 10.7 (a) Eclipse geometry for a binary system with an accretion disk. Because of the very
different surface brightness distributions at short and long wavelengths, the predicted light curves
are very different: deep and narrow at short wavelengths (b), but shallow and broad at long
wavelengths (c) (After Frank et al. 2003)

representation of the soft X-ray emission of the object, thus providing evidence that
accretion disks as described here may, indeed, play an important role in accreting binary
systems at least at some epochs.

The observational evidence for optically-thick and geometrically-thin accretion disks
in AGN is more controversial. It was suggested in the 1980s, and much work was
subsequently invested in this direction, that the optical-UV emission of AGN is emitted
by an accretion disk. The expected temperature is in the right range, and the emission is
indeed broader than that attributable to a single black body. More detailed investigations
showed in the 1990s, however, that this interpretation leaves several open questions. It
was found, for example, that the spectral shape does not depend on the luminosity of

�
Fig. 10.8 The eclipse mapping technique used to find the surface brightness distribution of the
accretion disk in the dwarf nova Z Cha. The observations were made during an outburst, so that
the disk dominates the optical light. (a) Eclipse light curves (B, U, V from top). (b) Effective
temperature distribution given by maximum-entropy deconvolution, compared with Eq. 10.58 for
various values of Ṁ (From Horne and Marsh 1986)
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Fig. 10.9 X-ray spectrum of a black hole candidate system (LMC X-3). (Kubota et al. 2010, Fig. 2
p. 862, reproduced by permission of the AAS). The model used to fit the data in the top and middle
panels include a disk emitting black body radiation at its surface and a power law, while the model
used in the bottom panel includes a disk as above and a more physical description of the hard
component as a Compton process. The residuals (panels b and c) show that the fit is not completely
satisfactory, requiring a somewhat different discussion of the disk emission

the source, while accretion disks around massive and luminous objects should be cooler
than those around less massive black holes (Walter et al. 1994 and Walter and Fink
1993). The absence of a correlation between spectral shape and luminosity can only be
reconciled with accretion disks if other parameters are fine tuned in such a way that
the temperature dependence on the mass of the central object is compensated by other
effects. It was also found that the distance between the hot regions of the disk that emit
short wavelength UV radiation and that of the cooler regions emitting visible radiation
is such that perturbations traveling across the disk at the speed of sound would cause
delays between the visible and the UV light curves that are many orders of magnitude
larger than the observed delays. The near simultaneity of the variations (measured to be
around 10 days in the bright quasar 3C 273 by Paltani et al. (1998)), where accretion
disks suggest thousands of years, requires that if the temperature structure is that of an
accretion disk, the perturbations must travel with the speed of light. This paradox is most
often explained by assuming that the gravitational energy is mainly liberated in a hot
patchy corona that surrounds part of the disk, and emits X-ray radiation that thus heats
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the disk. The very complex variability patterns measured in well-observed AGN suggest,
however, that rather different models might apply in the innermost regions of AGN.

10.5 Bibliography

Hydrodynamics is described in standard textbooks, like, e.g. (Landau and Lifchitz 1967),
where a derivation of the Euler equation may be found.

Accretion physics is discussed in both great detail and clarity in Frank et al. (2003).
This text was used here for the discussion of spherical accretion and accretion disks.
Readers wanting to get a more complete picture of accretion processes in high-energy
astrophysics are referred to this book.
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Chapter 11
Radiation Inefficient Accretion Flows

All the gravitational binding energy is radiated away in geometrically thin and
optically thick accretion disks as discussed originally by Shakura and Sunyaev
(1973) and described above (Chap. 10). This is central in the model of accretion
disks and is expressed by Eq. 10.53. One can imagine, however, situations where
this is not the case and where the radiation efficiency of the accretion flow is
insufficient to emit all the gravitational energy liberated in the disk. One case
where this is possible is given by a flow in which the radiation transfer rate in
the accreted matter is insufficient to carry all the energy to the surface of the flow,
from where it can be radiated. Part of the energy is then advected with the flow.
Advection dominated accretion flows (ADAFs) are one example in which part of
the gravitational binding energy of the accreted matter is advected with, rather
than radiated from, the accretion flow and, in the case of black holes, ultimately
accreted beyond the horizon. One thus expects that ADAFs will have much lower
luminosities than Shakura–Sunyaev disks.

11.1 Advection-Dominated Accretion Flows (ADAFs)

In ADAFs most of the gravitational energy locally deposited in the disk by viscous
processes is stored as internal energy of the ions. If the energy were transferred to
the electrons rather than to the ions, it would be radiated efficiently, since electrons
radiate much more efficiently than ions. In the accreting plasma, the temperature
of the ions is thus much higher than that of the electrons (by some two orders of
magnitude).

To give some qualitative description of the physics involved, consider a plasma
of surface number density n(r), mean ion temperature T (r) and radial velocity v(r),
accreting in a disk onto a central object.

The number of particles passing through a disk element per unit time is given by
nvdσ ; consequently, the radial flux of particles through the disk is given by nv. The
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145



146 11 Radiation Inefficient Accretion Flows

first law of thermodynamics gives us the change of internal energy per ion du. In the
absence of mechanical work

du = T ds, (11.1)

s being the entropy of the ion. So the change of internal energy per ion with radius
is given by

duadv

dr
= T

ds
dr

. (11.2)

Thus, the total internal energy transfer across r per unit time per unit surface is
given by

dUadv

dt
= nvT

ds
dr

. (11.3)

Using (11.3) we can now write the energy conservation equation as

nvT
ds
dr

= Q+−Q−, (11.4)

where Q+ is the gravitational energy transferred to the plasma by viscous processes
(see 10.54). This can be expressed as

Q+ = D(r) =
3GMṀ

8πr3

[
1− r∗

r

]1/2
, (11.5)

for a Keplerian disk, where Q− is the energy radiated by the plasma by all the
processes that might be relevant (synchrotron, bremsstrahlung, etc.), and where D(r)
is the locally dissipated energy per unit surface. In the standard Shakura–Sunyaev
model, the energy gained by viscosity is fully radiated, so that Q+ = Q−, and there
is no net increase of internal energy locally. In ADAF models, however, Q+ � Q−,
and dUadv

dr cannot be neglected. The mean temperature of the plasma increases inward
faster than in the previous case as a result.

There are different solutions to the accretion flow equations beside the one
in which Q+ is radiated away that leads to the Shakura—Sunyaev disk. They
include the so-called SLE solution (Shapiro et al. 1976), which consists of a two-
temperature plasma accreting at the Eddington rate; or optically-thick ADAFs,
accreting at a super-Eddington rate, but radiating less than the standard disk because
most of the radiation is trapped inside the disk and is carried toward the central
body; and optically-thin ADAFs, which are an optically thin 2-temperature plasma
with a very small, sub-Eddington, accretion rate. This latter solution has been used
extensively to describe the emission of SgrA*, the central source in our Galaxy.
However recent polarisation observations have shown that the region surrounding
the central black hole in our Galaxy emits through synchrotron radiation rather than
via disk processes.

The type of disk that may be expected to surround a compact object depends
critically on the accretion rate. For a given viscosity coefficient α , there exists a
critical accretion rate, Ṁcrit, such that if Ṁ > Ṁcrit, the system is well described by
a standard accretion disk, and if Ṁ < Ṁcrit, the system is in the ADAF regime.
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Fig. 11.1 The logṀ − logL
diagram according to
numerical simulations of the
hydrodynamical equations,
with α = 0.3 (Figure from
Narayan et al. 1998). The
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Figure 11.1 shows the results of numerical simulations of the hydrodynamical
equations for a given α . The figure shows clearly a break in the logṀ − logL
diagram around the critical accretion rate. Hence, if an astrophysical system accretes
matter at a rate that is close to the critical accretion rate, a significant variability is
expected, since in this region the slope of the logṀ − logL function is very high.
This property has been used to describe the variability of several systems, e.g. the
black hole candidate source Cyg X-1.

Unlike the standard solution, the geometrical form of an ADAF is not a disk.
Indeed in these models the height of the plasma is proportional to the radius. The
density profile deduced from the equations has the form ρ ∼ r−3/2.

Optically thin ADAFs provide an interesting solution to the problem of weak
accreting systems. They are, however, unstable on long time scales. The thermal
energy stored in the ions can continue to increase to the point where the flow is
reversed, with a fraction of the accreted matter then flowing outward. This outward
energy flux is not included in most descriptions of the ADAF phenomenon, which
are therefore unphysical. This has led to a wide variety of models in which different
forms of energy transport are considered.

In practice, developing realistic self-consistent models of accretion flows, includ-
ing a full thermodynamic treatment of ions and electrons and a proper treatment of
the radiation from the plasma, is a very complex endeavour that requires substantial
simulations and goes much beyond the scope of the present text.
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Fig. 11.2 Schematic
spectrum of an ADAF
(Narayan et al. 1998). The
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11.2 Spectrum of an ADAF

The discussions of the previous subsection do not include any cooling of the plasma.
However, even if relatively unimportant energetically, the radiation from the source
remains our only means of assessing its properties. Considering a hot optically thin
plasma, the processes to be considered are bremsstrahlung, synchrotron, Compton
and pion related processes. The schematic spectrum deduced by Narayan et al.
(1998) is shown in Fig. 11.2.

In the radio-IR band, the emission is due to synchrotron radiation from different
parts of the plasma, since the velocities are higher closer to the central body (see
Fig. 11.2). In the optical-UV band, the plasma radiates mainly through inverse
Compton processes, the soft synchrotron photons scattering off the hot electrons,
and producing a harder radiation. This effect is highly dependant on the accretion
rate, as shown in Fig. 11.2, so the qualitative analysis is uncertain in this band. In the
X-ray band, the emission is due to bremsstrahlung, and shows a cut-off in hard X-
rays. The model predicts a γ-ray component coming from the decays of π0 produced
in proton-proton collisions, but to the present day there is no evidence for this kind
of emission. Finally, thermal emission from the electrons and the ions needs to be
added to all these processes, which makes the spectrum of an ADAF even harder to
describe quantitatively.

11.3 The Galactic Centre and the Source Sgr A*

The properties of the central source of our Galaxy, Sgr A*, are very peculiar and
point towards a very weakly radiating accretion flow onto a massive black hole.
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Fig. 11.3 The Galactic centre observed with the INTEGRAL satellite between 20 and 60 keV
showing the position of several of the binary sources found in the vicinity of the dynamic centre of
the Galaxy and the weak sgr A∗ source at the dynamical centre. A massive black hole accreting as
efficiently as the solar mass compact objects seen in this figure would outshine the region by many
orders of magnitude. (Belanger et al. 2006, Fig. 1, p. 279, reproduced by permission of the AAS)

Sgr A* is a radio-submm, IR, X- and γ-ray source which is invisible in the
optical-UV band, where the centre of the Galaxy is heavily absorbed. Figure 11.3
shows the galactic centre observed by INTEGRAL in the 20–60 keV band. The
source emits at the rate of some 1036 erg s−1 (for a distance of 8 kpc). The radio
luminosity is larger by three orders of magnitude than the X-ray luminosity (see
Fig. 11.5). Although this luminosity is typical for a moderately powerful stellar mass
compact source in our Galaxy, the spectral energy distribution is very unlike the
binary systems that will be discussed in Chap. 16. The radio source is, furthermore,
located at the dynamical centre of the Galaxy to a very high precision. Whereas
there is no reason a priori to exclude that a stellar mass compact object would lie on
the line-of-sight to the centre of the Galaxy, or even very close to the centre itself,
the probability to have a source of rather peculiar properties at this location that
would not be associated with the Galactic centre itself is very low.

Figure 11.4 gives a VLT image in the K band (near-IR) of the galactic centre
regions with a much better resolution than is achievable in the hard X-rays. Many
years of observations of the velocity dispersion of gas and stars shown in this figure
has led to measurements of the mass encircled within the region probed by the
angular resolution of the telescopes used. As the angular resolution decreased, so
did the mass enclosed, as expected from an extended distribution of stars. However,
this trend stopped at high angular resolutions, when the angle subtended by the point
spread function was such that distances of the order of 1 pc from Sgr A∗ were probed
(see Fig. 11.6). This was the first evidence for the presence of an unresolved massive
object at the dynamical centre of the Galaxy.

Subsequent studies with an ever better angular resolution were achieved through
the use of adaptive optics (see Fig. 11.4). With this technique the atmospheric
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a

b

Fig. 11.4 The Galactic centre as observed at the diffraction limit of the 8 m VLT UT4 NAOS
instrument in the K band (λ = 2.18µm). (Schoedel et al. 2002, Figs. 1 and 2, reprinted with kind
permission of Nature Publishing Group)

blurring of the images is compensated. This allows observers to reach angular
resolutions that are comparable with the geometrical optics limits of the telescopes
used. In this case it allowed observations to resolve individual stars in the central
region of the Galaxy, and in turn to measure their positions with respect to the
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et al. 2010)

107

106

105

E
nc

lo
se

d 
m

as
s 

(M
º)

0.01 0.1

2.61 106 Mº

2.2 1012 Mº pc–3
4106 Mº pc–3

Distance from SgrA∗ (pc)

1

Rcore= 0.38 pc

10

Fig. 11.6 Mass enclosed
with a given radius as a
function of the distance to
Sgr A∗ (credit MPE)

dynamical centre of the Galaxy, as well as their proper motion and their radial
velocity. Repeated measurements have led to the determination of complete orbital
parameters and hence to a very precise measurement of the mass of the object
around which the stars orbit. This mass is about 4.3 · 106M. The closest point
of approach of the stars is also an upper limit to the size of the object. It is
of the order of 125 AU (Genzel et al. 2010). Both of these measurements are
illustrated by Schoedel et al. (2002) who report on 10 years (1992–2002) of NTT-
VLT observations of a seven solar mass star (referred to as S2) close to Sgr A*. Their
results are shown in Fig. 11.7. Since then orbital parameters have become available
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Table 1 Derived orbital parameters for S2

 Astrometric errort†Parameter Value

3.7 1.0 1.1
0.6 0.815.2

2002.30 0.01 0.05
0.030.010.87

36 5
3 3

34

8
+–46

250
4.62 0.39 0.43
0.60 0.07 0.15

Period (years)
Time of pericentre passage (years)
Eccentricity
Angle of line of nodes (degrees)
Inclination (degrees)
Angle of node to pericentre (degrees)
Semi-major axis (mpc)
Separation of pericentre (mpc)

*The 1σ errors result from the orbital fit.

†The errors due to the 10-mas astrometric uncertainty. See Fig. 2 legend for a description of the
angles and of the errors.

Formal error*

Black hole mass (106 × M   )·

Fig. 11.7 The orbit of the S2 star around Sgr A* as determined by Schoedel et al. (2002,
Figs. 1 and 2, reprinted with kind permission of Nature Publishing Group). Below are the orbital
parameters of the best fit to the data. The best fit to their data is a Keplerian orbit around a
point mass, with an orbital period PS2 = (15.2± 0.6) year and a periastron speed of the order
of 5,000 km/s. The derived point mass is of Mcentral = (3.7±1.1) ·106M
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Fig. 11.8 Schematic representation of 20 measured orbits around the black hole at the centre of
the Milky Way (Genzel et al. 2010)

for about 30 stars. This is the best evidence to date for the existence of black holes
(Fig. 11.8).

A long standing argument against the presence of a massive black hole at the
centre of the Milky Way is the low luminosity that is observed from Sgr A∗. The
luminosity one can expect from matter accreting on a �106M black hole at the
Eddington rate is

L = 1.3 ·1038
(

M
M

)
ergs

s
� 1044 ergs

s
, (11.6)

some eight orders of magnitude above the observed luminosity (see Fig. 11.3). With
mounting evidence that the central source of the Galaxy is very compact, and that
no star cluster model could account for the mass distribution, it became evident
that Sgr A∗ includes a black hole. It then became a major problem to understand the
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faintness of the source, because, as we have seen, a black hole emitting at Eddington
luminosity would be much brighter than the observations indicate. This led in the
second half of the 1990s to extensive work on low luminosity accretion and to the
development of the ADAF model. This work has progressed significantly since the
ADAF proposal, prompted by both theoretical difficulties of the model and attempts
to provide detailed fits to the observational data.

In recent years it became apparent that massive black holes reside at the centre
of many galaxies that do not show any prominent sign of activity. This gives a
somewhat schizophrenic aspect to the research dealing with emission from the
surroundings of black holes, as both extremely high and extremely low luminosities
from regions surrounding black holes of similar masses must be understood.

11.4 Bibliography

A detailed discussion of the central regions of our Galaxy can be found in (Eckart
et al. 2005), while recent developments and data are to be found in the extensive
review (Genzel et al. 2010).
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Part II
Astrophysical Objects

In addition to a basic understanding of the underlying physical processes as given
in Part 1 of this book, a clear perspective of high-energy astrophysics requires due
consideration of the observed properties of sources and their ordering in classes.
This is the object of the second part of the book. These considerations are of
particular importance where the observed source properties do not yet give an
unambiguous understanding of the physical processes or conditions met in the
source. Analysis of the source properties is also important where many different
physical processes are at work together leading to the observed characteristics of
sources. The analysis then hopefully allows one to disentangle the different physical
effects, and to gain a clear understanding of the various conditions met in the
observed objects.



Chapter 12
Black Holes and Accretion Efficiency

Deep gravitational wells, themselves implying compact objects, are the most
common energy source for the radiation observed in the X-ray spectral domain. The
most compact of these are black holes and neutron stars. These two types of object
will be discussed in this and the next chapters. While white dwarfs are also compact,
their structure is driven by a degenerate electron gas, they are mostly considered in
stellar physics courses and will not be described further here.

The binding energy of matter at the surface of a neutron star is of the order of
10 % of its rest mass. This indicates that the study of their structure must include
a general relativistic treatment of gravitation. This is not the case for white dwarfs,
which are very much larger and for which general relativistic effects may generally
be neglected. It follows that the hydrostatic equilibrium of neutron stars must be
derived in the framework of general relativity (see Sect. 12.2), while that of white
dwarfs may be derived in a Newtonian framework.

General relativity is central to the study of compact objects. This book is,
however, not a set of lectures on general relativity. I will therefore consider the study
of compact objects, and later the related study of gravitational waves, as applied
general relativity. I will expose the general relativity concepts that are needed and
follow the main physical threads that lead to those results that are necessary to
understand the astrophysical observations and to grasp the nature of the objects.
I will make no attempt to be complete in the mathematical treatment of the subject,
but rather use mathematical descriptions to underline the physical arguments.

We can make a large economy of effort in the study of neutron stars and black
holes by considering together the hydrostatic structure of neutron stars and the
exterior metric of static black holes. Indeed the second of these points is a special
case of the first. We therefore describe first the relativistic hydrostatic equilibrium
concept, and then move to the description of the exterior metrics of spherically
symmetric objects, the Schwarzschild metric.

In this chapter we will mostly use units such that c = G = 1.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
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12.1 Metric and Index Gymnastics

In general relativity one does not discuss a gravitational field, but one considers
instead the way in which matter influences the geometry of space-time. Geometry
is described by a metric, the way of measuring distances between two events in
space-time. The first step is, therefore, to derive the general form of a spherically
symmetric metric that replaces the flat space-time of special relativity and its
Minkowskian metric ds2 =−dt2 + dx2 + dy2 + dz2 in cartesian coordinates.

A metric is a prescription to measure the square of the distance ds2 between two
points given by their coordinates xμ and xμ +dxμ . Here, and in the following, Greek
indices run from 0 to 3, bold quantities are 4-vectors, and sums over the indices are
implied whenever the same index appears twice in an expression. A metric is thus
written in its most general form as

ds2 = gμνdxμdxν . (12.1)

In a simple representation in which the curved space described by the met-
ric (12.1) is embedded in a flat space, such as a 2-dimensional sphere in the common
3-dimensional space, we can write eμ , the unit vector tangent to the coordinate
change dxμ at any given point, so that dxμ = dxμeμ . The metric elements, gμν ,
are then the scalar products of the unit vectors

gμν = eμeν . (12.2)

We can then consider vectors, A, on the curved surface and their components,
Aμ , in terms of the tangent unit vectors: A = Aμeμ . We will make use of a second
representation of the vector A defined by components Aμ such that AμAμ = AA =
AμAνe

¯μe
¯ν = gμνAμAν , from which it follows that

Aμ = gμνAν . (12.3)

We can now introduce gμν through

Aμ = gμνAν . (12.4)

Since Aμ = gμνAν = gμνgμγAγ , it follows that gμνgμγ = δ ν
γ , the unit matrix.

gμν is therefore the inverse of the metric. The indices are raised and lowered using
the metric and its inverse. Note that although the index gymnastics that we have
introduced is based on the existence of a flat space in which the curved space is
embedded, and in which the unit vectors are defined, the results are general and
could be deduced without making use of this representation.

Since space is curved, when a quantity is derived we have to take into account
the change of the quantity as coordinates vary, and the change of space itself as one
moves from one point to the next. The result is called the covariant derivation and is
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indicated with a “;” by opposition to the “,” of the classical derivative in flat space.
The difference is purely geometrical and expressed through the Christoffel symbols
Γ μ

νδ . For a vector Aμ the covariant derivative is

Aμ
;ν =

∂Aμ

∂xν +Γ μ
νδ Aδ (12.5)

Being purely geometrical quantities, the Christoffel symbols are derived from
the metric and its derivatives following an algebraically straightforward prescription
that can lead to rather lengthy developments. We will not go into these derivations
here, but simply quote the results. Readers are directed to the books mentioned in
the bibliographical section at the end of this chapter for concrete examples.

Let us finally introduce the proper time τ , the time that an observer, e.g. you,
measures in the system of coordinates in which he/she is at rest. It is the time you
measure with your wristwatch, since your watch is always at rest with respect to you.
For an observer at rest, i.e. a change of coordinates such that dx1 = dx2 = dx3 = 0,
the proper time, τ , is the metric distance between two events e0 and e1, τ =

∫ e1
e0

dτ =
∫ e1

e0
ds =

∫ e1
e0

dx0. Since you move in your surroundings, however, τ measures your
proper time, it does not measure the proper time of your office which is at rest in
another system of reference.

12.2 Relativistic Hydrostatic Equilibrium

Relativistic spherically symmetric hydrostatic equilibrium describes how the pres-
sure gradient is related to the mass distribution inside a body at rest (i.e. without
rotation). In Sect. 12.3 we will restrict our derivation to the region outside the object,
in the vacuum, and get, as a bonus, the metric that describes space-time outside a
spherically symmetric mass distribution, namely the Schwarzschild metric.

With the tools described in the previous section we can now go back to the
problem of describing gravitation in a spherically symmetric static environment.
We first write the Minkowski metric of flat space time in spherical coordinates

ds2 =−dt2 + dr2 + r2dΩ 2,dΩ 2 = dθ 2 + sin2 θdφ2. (12.6)

Spherical symmetry implies that the generalised metric remains diagonal. We
write the “t” and “r” components in a general form in the following way

ds2 =−e2Φdt2 + e2Λ dr2 + r2dΩ 2, (12.7)

where Φ and Λ are functions of r, but not of t, as we consider only static problems.
The angular part of the metric is left unchanged, so that the circumference of a circle
through the coordinate r and centred on the origin is 2πr.
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Whereas space is described by its metric, matter is described here as a perfect
fluid in its rest system by

• ρ(r), the density of mass energy in the matter rest system
• n(r), the number density in the matter rest system
• p(r), the isotropic pressure in the same system
• uμ(r), the fluid 4-velocity, dxμ

dτ
• And the stress-energy tensor

T μν = (p+ρ)uμuν + pgμν . (12.8)

In a static configuration we have

ur =
dr
dτ

= 0 = uθ = uφ . (12.9)

General relativity implies that there is everywhere, and at all times, a local system
of reference in which the metric is that of flat space-time (Minkowskian). This is the
local inertial system. You can visualise this system as being a local elevator of which
you have just cut the rope. This system is at rest at t = 0, the instant at which you
cut the rope, and all experiments that you can do inside the elevator will indicate
that it is inertial. In this system uμuμ = gμνuμuν = −1. Since the scalar product is
an invariant, uμuμ = −1 is true in all systems. Timelike observers or particles are
such that they live within the light cone, for which uμuμ = −1. You and I are such
observers, so are any physical observers at rest with the fluid. Timelike observers are
in causal relationship. We can therefore deduce for the system in which the metric
is given by Eq. 12.7 that

gμνuμuν = gttu
tut =−e2Φ utut =−1 (12.10)

and that
ut =

dt
dτ

= e−Φ . (12.11)

The diagonal components of the stress energy tensor (the only non-vanishing
terms in a perfect static fluid) are

T 00 = (p+ρ)e−2Φ − pe−2Φ (12.12)

= ρe−2Φ (12.13)

T rr = pgrr = pe−2Λ (12.14)

T θθ = pgθθ =
p
r2 (12.15)

T φφ = pgφφ =
p

r2 sin2 θ
. (12.16)

The energy and momentum conservation equations for the fluid are obtained
from the so-called Bianchi identities which follow from a geometrical property
of the general relativity curved space time. The Einstein equations relate space



12.2 Relativistic Hydrostatic Equilibrium 161

time geometry on the one hand with the stress energy tensor on the other. The
same identity must therefore apply to the stress energy tensor where it reads (see
discussion in Misner et al. 1973):

T μν
;ν = 0 (12.17)

These are the conservation laws. The “0” component of Eq. 12.17, T 0μ
;μ = 0, can

then be derived to obtain

(p+ρ)
dΦ
dr

=−dp
dr

. (12.18)

This is one relation between p, ρ and the function φ that enters in the metric.
We need more relations in order to establish the relation between Λ and Φ , and p
and ρ . We naturally use, in addition to the conservation Eq. 12.18, the Einstein field
equation themselves, Gμν = 8πTμν . This equation relates the geometrical properties
of space (i.e. Φ and Λ ) to the matter content. The left-hand side of the Einstein
equation is the Einstein tensor which describes how the metric changes locally. It is
derived from the metric elements and their derivatives.

We want to write the “00” component of this equation in the system of reference
in which the fluid is at rest. The local metric has the Minkowski form, as this is
the system in which we have defined p and ρ . This is the local elevator from which
you have just cut the rope. The elevator is at rest with respect to the fluid, but freely
falling. We will use “î” on the indices to indicate that the corresponding vector or
tensor is expressed in these coordinates.

In the “x̂” system, we have ur̂ = uφ̂ = uθ̂ = 0 and ut̂ = 1 since the fluid is at rest,
and hence

T 0̂0̂ = (ρ + p)u0̂u0̂ + pg0̂0̂ (12.19)

= ρ + p− p = ρ (12.20)

T îî = (ρ + p)uîuî + pgîî (12.21)

= p, (12.22)

because the metric is the Minkowski metric in this system of reference.
The “0̂0̂” component of the Einstein tensor is (not derived here)

G0̂0̂ =
1
r2

d
dr

[
r(1− e−2Λ)

]
(12.23)

The “0̂0̂” Einstein equation therefore reads in this system

1
r2

d
dr

[
r(1− e−2Λ)

]
= 8πρ . (12.24)

We introduce the function m(r) through the following definition

2m(r) = r(1− e−2Λ), (12.25)
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from which we see that

e2Λ =

(
1− 2m(r)

r

)−1

. (12.26)

We now re-formulate Eq. 12.24 as

2
r2

dm(r)
dr

= 8πρ , (12.27)

which can be integrated to yield

m(r) =
∫ r

0
4πρr2dr, (12.28)

from which one understands that m(r) is the mass within the sphere of radius r.
The “1̂1̂” Einstein equation reads

G1̂1̂ = 8π p (12.29)

and gives in a similar way

− r−2 + r−2e−2Λ + 2r−1e−2Λ dΦ
dr

= 8π p, (12.30)

in which we can introduce m(r) instead of Λ to obtain the following expression
for dΦ

dr
dΦ
dr

=

[
m(r)+ 4πr3p
r(r− 2m(r))

]
. (12.31)

Finally, we introduce this in (12.18) to obtain the result we were seeking

dp
dr

=− (p+ρ)(m+ 4πr3p)

r2(1− 2m(r)
r )

. (12.32)

This is called the Oppenheimer–Volkov equation or the Tolman–Oppenheimer–
Volkov (TOV) equation. It is one of the very few results that was obtained in astro-
physics using general relativity before the discovery of neutron stars in the 1960s.
This equation gives the pressure gradient that is needed to compensate the change in
gravity as one moves radially by dr in a spherically symmetric static matter distri-
bution described by m(r). In other words, this is the general relativistic formulation
of the hydrostatic equation familiar in Newtonian physics. This latter equation reads

dp
dr

=

[
ρm(r)

r2

]
. (12.33)

The general relativistic form of hydrostatic equilibrium differs in a marked way
from its equivalent Newtonian form. The right-hand side of Eq. 12.33 is modified
in that ρ is replaced by ρ + p, in other words pressure contributes to the energy
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density, which is expected as a pressure is an energy density and energy, like mass,
is a source of gravity. Similarly, m(r) is replaced by m(r) + 4π pr3, indicating
that pressure contributes to the energy within the radius r; and 1

r2 is replaced by
1
r2 [

1

1− 2m(r)
r

]. All three modifications tend to increase the pressure gradient in the

relativistic case when compared to the Newtonian approach.
We will make explicit use of this equation when studying the structure of neutron

stars in Chap. 13.

12.3 Schwarzschild Metric

In Sect. 12.2 we considered the relation between the metric, the functions Φ and
Λ , and a spherically symmetrical matter distribution. We now want to move further
out, into the vacuum outside the boundary of matter where ρ = p = 0, to derive the
metric in this portion of space. We can thereby study the properties of space outside
a spherically symmetric static mass. In this case Eq. 12.26 becomes

e2Λ =

(
1− 2M

r

)−1

, (12.34)

where M is the total mass of the object considered, “the star”. Outside the star the
vacuum Einstein equation Gμν = 0 must be used. This equation gives, after some
algebraic transformations

e2Φ · e2Λ = 1. (12.35)

One therefore immediately knows from (12.34) that

e2Φ = 1− 2M
r

(12.36)

and that the metric is written

ds2 =−
(

1− 2M
r

)
dt2 +

1
(
1− 2M

r

)dr2 + r2dΩ 2. (12.37)

This is the so-called Schwarzschild metric, and it describes how a mass M curves
space outside the mass. It is singular at the origin and at r = 2M, the horizon. The
gravitational radius is defined as r = 2M. Whereas the singularity at the origin is a
real one in the sense that the curvature is infinite there, the singularity at r = 2M
is only due to the coordinate system. Four dimensional space is regular there, the
curvature is finite, but the description of the metric in the chosen coordinate system
is singular. This is in some sense the same for the Earth when using longitude and
latitude as coordinates. The coordinate system is singular at the poles, without the
Earth being in any way “special” there.
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The proper time of an observer is given by the distance between two points on a
trajectory with r,θ ,φ constant: dτ2 =−ds2 = (1− 2M

r )dt2, or

dτ =

(
1− 2M

r

)1/2

dt. (12.38)

At large distances from the black hole the coordinate time is the same as the
proper time of an observer at rest. This is as expected since, far away from the mass
distribution, space is nearly flat and is described approximately by the Minkowski
metric. The coordinate time is therefore that measured by a distant observer and
(12.38) shows that it differs from that measured by a close observer which flows
more slowly. The wristwatch of the observer close to the black hole will tick more
slowly than that of the faraway observer. This is the gravitational redshift. Even
though space is not singular at the horizon, Eq. 12.38 shows that the relationship
between proper time and coordinate time is such that coordinate time tends to
infinity for finite proper time intervals. This shows that horizons do have a physical
reality. We will see in Sect. 12.4 what consequences this has for an experimenter
falling into a black hole.

Black holes are objects for which the mass lies within the horizon. These objects
are causally disconnected from the outside world by the presence of the horizon.
At the horizon the escape velocity is the velocity of light or, expressed differently,
all paths of light or matter are bent in such a way that they point along or within
the horizon. No matter how much you push out, you can only go towards the
inside. Notwithstanding this, an observer falling through the horizon would not
note any strange effects, provided that the mass is large enough for the tidal forces,
the difference of gravitational attraction between two points, to be relatively weak
across the observer. The physical existence of objects of this nature was not seriously
considered for many years after the discovery of the Schwarzschild geometry in
1916 by Schwarzschild. It was either thought that they would be impossible to
form, after all, any angular momentum would prevent, in Newtonian gravity, the
formation of a singularity during the collapse of a physical object, or that they would
remain for ever unobservable, being black and small. It is only after the discovery of
bright compact X-ray sources and of pulsars, in the 1960s, that black holes moved
from the realm of the imaginary of a small number of theorists to that of main
stream astrophysics.

Figure 12.1 shows a number of objects in the Universe and how distant they are
from being black holes. The physical existence of matter concentrations that are
such that the object is within its horizon is difficult to “prove”. However, we have
seen in Sect. 11.3 that the compact object at the dynamical centre of our Galaxy
is a black hole beyond any reasonable doubt. Further evidence for the existence of
black holes comes from the study of X-ray binary systems (Chap. 16) and that of
AGN (Chap. 20).

Black holes are not observed directly, but only through the influence of their
strong gravitational fields, or rather through the strong curvature of space time they
induce to their surroundings to speak in the language of general relativity. These
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Fig. 12.1 The mass and radius of a number of objects in the Universe, together with the size of
the horizon for all masses

effects include the bending of light rays in their vicinity, large redshifts of spectral
features originating close to their horizon, and the effects on material particles.
Whereas light bending has been observed around many massive but extended
objects, it is yet to be directly observed from the vicinity of a black hole. We will
discuss the shape of spectral lines originating in accretion disks around black holes
in Sect. 12.6.1. We will concentrate here on the effect that black holes have on their
surrounding matter and, more specifically, ask how much energy may be gained as
matter is accreted and falls through the horizon. This will tell us how much energy
is available for radiation from accretion into a black hole.

12.4 Particle Motion Around Schwarzschild Black Holes

We want to study the motion of massive test particles in the Schwarzschild metric
in order to assess how much energy may be gained in the accretion process. In other
words, we study the orbits of particles around a spherically symmetric non-rotating
mass. We thus leave out the vast majority of the black hole related physics which
might have been the subject of a set of lectures on their own. Our description of
the orbits of massive particles in the Schwarzschild and Kerr geometries follows,
somewhat more explicitly, the formalism of Shapiro and Teukolski (1983).
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We start by explicitly constructing the orthonormal system in which matter is at
rest and which is locally flat, the “x̂” system, that was introduced in Sect. 12.2.

et̂ =

(
1− 2M

r

)−1/2

et , (12.39)

er̂ =

(
1− 2M

r

)1/2

er, (12.40)

eθ̂ =
1
r

eθ , (12.41)

eφ̂ =
1

r sin(θ )
eφ . (12.42)

This is the coordinate system of the lift at rest and for which the rope has just
been cut. In this system the metric is locally flat. It is in this system that we have
a familiar understanding of physical quantities, and in which we will be able to
identify energy and angular momentum.

We then consider the equations of motion that are derived as usual from a
Lagrange function. Using the Lagrange formalism in a force-free environment
means that the trajectories we will find are the shortest paths in the given space-
time geometry. We are therefore describing what is called geodesics. In the absence
of any force, remembering that gravitation in general relativity is not a “force” but
the curvature of space, the Lagrange function is:

2L = gαβ ẋα ẋβ , (12.43)

with

ẋα =
dxα

dλ
. (12.44)

The variable λ is an arbitrary parametrisation of the path xα (λ ). Note the parallel
with the non-relativistic case in which a force-free movement is described by the
Lagrangian L = 1/2 ·mv2.

The Schwarzschild metric (12.37) can be explicitely introduced in (12.43) to
obtain the following expression in the black hole coordinate system (not the “x̂”
system):

2L =−
(

1− 2M
r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2θ̇ 2 + r2 sin2(θ )φ̇2. (12.45)

The equations of motion are the Lagrange equations

d
dλ

(
∂L
∂ ẋα

)
− ∂L

∂xα = 0. (12.46)
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To derive the t equation consider that

∂L
∂ ṫ

=−
(

1− 2M
r

)
ṫ (12.47)

and ∂L
∂ t = 0 because time does not enter the (static) metric. We derive in an analogous

way equations for the angular variables and obtain the following three equations

d
dλ

[(
1− 2M

r

)
ṫ

]
= 0 (12.48)

d
dλ

(r2θ̇ ) = r2 sin(θ )cos(θ )φ̇2 (12.49)

d
dλ

(r2 sin2(θ )φ̇ ) = 0 (12.50)

Instead of using the “r” Lagrange equation we may use the identity

gαβ pα pβ =−m2, (12.51)

where pα is the 4-impulse. Equation 12.51 is satisfied in the rest frame of the particle
and, since it is a scalar product, in all systems of reference. We thus have a system
of four equations for the four components of the particle trajectory.

We can choose the parametrisation λ = τ/m, where τ is the proper time and m
the mass of the particle. We therefore have

ṫ =
dt
dλ

= m
dt
dτ

(12.52)

ṙ =
dr
dλ

= m
dr
dτ

(12.53)

φ̇ =
dφ
dλ

= m
dφ
dτ

. (12.54)

In the Lagrange formalism we have

pα =
∂L
∂ ẋα

. (12.55)

Therefore

pt =
∂L
∂ ṫ

= −
(

1− 2M
r

)
ṫ (12.56)

pt = gtt pt = −
(

1− 2M
r

)−1(
−
(

1− 2M
r

))
ṫ = ṫ (12.57)
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and

pφ =
∂L

∂ φ̇
= r2 sin2(θ )φ̇ (12.58)

pφ = gφφ pφ = (r2 sin2(θ ))−1(r2 sin2(θ )φ̇ ) = φ̇ (12.59)

Similarly, pr = ṙ and pθ = θ̇ .
In a spherically symmetric case, as we have with the Schwarzschild metric, we

may choose any plane through the centre in an arbitrary manner to discuss the orbits.
We therefore use in the following sin(θ ) = 1 and write for the φ component of
motion (12.50)

r2φ̇ = l = constant. (12.60)

Similarly for the t component of the equation of motion (12.48) we find

(
1− 2M

r

)
ṫ = E = constant. (12.61)

Using Eq. 12.56 we finally deduce that E =−pt .
l and E are the constants of motion associated with the symmetries in φ and t.
In order to understand the meaning of E consider the t component of the 4-

impulse p in the local orthonormal system of the observer (the “x̂” system) and use
Eq. 12.39 explicitly. In this system, the 0 component of the momentum is the energy
of the particle which we denote by Elocal. Therefore we have

Elocal =−pet̂ =−p
(

1− 2M
r

)−1/2

et =−
(

1− 2M
r

)−1/2

pt =

(
1− 2M

r

)−1/2

·E.
(12.62)

For r tending towards infinity E tends towards Elocal and E is called the energy
at infinity. Both are related by the redshift factor (1− 2M

r )1/2.
In order to see the meaning of l, we write the constant l in the “x̂” system

l = r2 ˙̂φ = r2m
dφ̂
dτ̂

= r2m
dφ̂
dt̂

dt̂
dτ̂

. (12.63)

dφ̂
dt̂ is the angular velocity Ω and rΩ is the tangential velocity vφ̂ . At the same time
using (12.62) we know that

m
dt̂
dτ̂

= ˙̂t = pt̂ = Elocal. (12.64)

We can then write (12.63) in the following way

l = rvφ̂ Elocal, (12.65)
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which we can compare to the Newtonian expression for the angular momentum,
lNewton = r2 ·m ·Ω . From the analogy of this expression with (12.65) it is evident
that l is the angular momentum.

12.5 Trajectories of Massive Particles in the Schwarzschild
Geometry

We now want to use the formalism developed in Sect. 12.4 to establish how massive
particles move in the Schwarzshild geometry. We limit our approach to massive
particles as our aim is to understand how much energy can be radiated as matter is
accreted.

Using the formalism developed in Sect. 12.4 we can write the identity pp =−m2

in the following way

gαβ pα pβ = gαβ ẋα ẋβ
︸ ︷︷ ︸

2L

=−m2. (12.66)

With the explicit form of the Lagrangian (12.45) this gives

m2 =

(
1− 2M

r

)
ṫ2 −

(
1− 2M

r

)−1

ṙ2 − r2θ̇ 2 − r2φ̇2, (12.67)

where we have set θ = π
2 without loss of generality. We introduce the specific energy

and angular momentum

Ẽ =
E
m
, �̃=

�

m
(12.68)

and obtain after some algebra

(
1− 2M

r

)
=

(
1− 2M

r

)2 ṫ2

m2
︸ ︷︷ ︸

Ẽ2

− ṙ2

m2 −
(

1− 2M
r

)
r2θ̇ 2

m2
︸ ︷︷ ︸

0

−
(

1− 2M
r

)
r2φ̇2

m2
︸ ︷︷ ︸
�̃2/r2

,

(12.69)
where we have used (12.62) and (12.65) to introduce the constants of motion
Ẽ and �̃.

Remembering that ṙ = dr
dλ and λ = τ

m , we can re-arrange the terms of Eq. 12.69
to obtain

(
dr
dτ

)2

=−
(

1− 2M
r

)
+ Ẽ2 − �̃2

r2

(
1− 2M

r

)
= Ẽ2 −

(
1− 2M

r

)(

1+
�̃2

r2

)

.

(12.70)
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The other two equations of motion are deduced from the conservation laws
(12.60) and (12.61) and give

dφ
dτ

=
�̃

r2 (12.71)

dt
dτ

=
Ẽ

(
1− 2M

r

) . (12.72)

There is no fourth equation because the trajectories remain confined to the equatorial
plane.

12.5.1 Radial Geodesics of Massive Particles

Radial trajectories are of no direct relevance to the question of how much energy
can be radiated through accretion. Their study gives, however, some deep insight
into the nature of Schwarzshild geometry. They are therefore discussed here.

In radial geodesics not only θ is constant, but also φ . The specific angular
momentum of the particle �̃ therefore vanishes. In this case Eq. 12.70 becomes

(
dr
dτ

)2

= Ẽ2 −
(

1− 2M
r

)
(12.73)

or (
dr
dτ

)
=−

(
Ẽ2 − 1+

2M
r

)1/2

. (12.74)

In order to proceed further, we must look at three cases

Ẽ < 1 → dr
dτ

= 0 for r < ∞ (12.75)

Ẽ = 1 → dr
dτ

= 0 for r → ∞ (12.76)

Ẽ > 1 → v∞ =− dr
dτ

> 0 for r → ∞. (12.77)

We look further at the first case, that of a particle at rest at some finite distance R
and falling towards the black hole. We introduce R so that dr

dτ |r=R = 0. Therefore

− Ẽ2 + 1 =
2M
R

(12.78)

and
dr
dτ

=−
(

2M
r

− 2M
R

)1/2

. (12.79)
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This may be integrated in the following way

− dr
√

2M
r − 2M

R

= dτ (12.80)

τ =
−1√
2M

∫ r2

r1

dr
√

1
r − 1

R

(12.81)

= −
√

R
2M

[

−
√

rR− r2

∣
∣
∣
∣

r2

r1

+
R
2

∫ r2

r1

dr√
rR− r2

]

(12.82)

=

√
R3

8M

[

2

(
r
R
− r2

R2

)1/2

− sin−1
(

1− 2r
R

)]∣∣∣
∣
∣

r2

r1

(12.83)

Choosing τ = 0 at r = R, the fall begins at the origin of τ and to obtain τ for
all r < R we select the boundaries of the integration so that r1 = R and r2 = r. This
gives the following function τ(r)

τ =

(
R3

8M

)1/2
[

2

(
r
R
− r2

R2

)1/2

− sin−1
(

1− 2r
R

)]

+

(
R3

8M

)1/2

sin−1 (−1)
︸ ︷︷ ︸

−π/2

(12.84)

=

(
R3

8M

)1/2
[

2

(
r
R
− r2

R2

)1/2

− cos−1
(

1− 2r
R

)]

. (12.85)

We can look at the value of τ for r = 2M. In other words, we can calculate the
proper time of the observer falling from R to the horizon:

τ (r = 2M) =

(
R3

8M

)1/2
[

2

(
2M
R

− 4M2

R2

)1/2

− cos−1
(

1− 4M
R

)]

< ∞ (12.86)

This shows explicitly that the proper time when reaching the horizon is finite. In
other words an observer falling onto a black hole will reach the horizon in a finite
proper time. Note that the time required to reach the singularity at the centre of the
black hole (at r = 0) is also finite.

Let us now consider the coordinate time t elapsed during the same fall from R
to 2M.

As before we use τ (r = R) = dr
dτ (r = R) = 0. From the Schwarzschild metric we

know that
dt
dτ

=
Ẽ

1− 2M
r

, (12.87)
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which we may use to calculate the coordinate time with

dt
dτ

=
dt
dr

· dr
dτ

. (12.88)

Using Eqs. 12.78 and 12.79 for dr
dτ , we obtain

dt
dr

=− Ẽ

1− 2M
r

·
(

Ẽ2 − 1+
2M
r

)−1/2

(12.89)

and then

t =−
∫

Ẽdr
(
1− 2M

r

)(
Ẽ2 − 1+ 2M

r

)1/2
(12.90)

for which the solution is the cycloid

t = 2M ln

{(
R

2M − 1
)1/2

+ tan(η
2 )

(
R

2M − 1
)1/2 − tan(η

2 )

}

+ 2M

(
R

2M
− 1

)1/2

·
[

η +
R

4M
(η + sinη)

]
,

(12.91)
where η is the cycloid parameter defined by

r =
R
2
(1+ cosη) . (12.92)

Note that with this parametrisation, the solution of the equation for t(r) can be
expressed as

t =

(
R3

8M

)1/2

(η + sinη) . (12.93)

For r = 2M we obtain

cosη =
4M
R

− 1 (12.94)

tan
η
2

=

(
R

2M
− 1

)1/2

. (12.95)

The behaviour of the function t(r) is given in Fig. 12.2. We see that the first
term of Eq. 12.91 is singular, from which it follows that the coordinate time t tends
towards infinity as r approaches 2M. Therefore, while it takes a finite proper time for
a test particle to fall towards the horizon of the black hole, it takes an infinite coor-
dinate time. Remember that the coordinate time is the time measured by an observer
at large distances from the black hole, where space is approximately flat. It follows
that while it takes a finite particle proper time to fall onto the horizon of a black hole,
an observer at large distances would see the process as one taking an infinite time.

Since space-time is regular at the horizon, the infalling observer would not
notice anything special while crossing the horizon. In particular, in the case of a
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Fig. 12.2 Radial infall into a black hole as observed in the proper time of the falling body, and in
coordinate time at a large distance

very massive black hole for which the tidal forces (the difference of gravitational
attraction between two points) remain comparatively weak at the horizon, as they
depend on the distance to the centre like 1

r3 , the crossing of the horizon would
be rather uneventful. While this may appear very academic, it nonetheless has
important astrophysical consequences. Stars that approach a moderate mass black
hole in the centre of a galaxy, like the one in the centre of our Galaxy, feel tidal
forces strong enough to be torn apart. The disrupted star can then be accreted as
gas (according to the discussion we had in Chap. 10) and be at the origin of a
considerable radiation. On the other hand, stars in the very vicinity of a very massive
black hole like the ones at the centre of luminous quasars are not disrupted, and cross
the horizon unharmed. These stars disappear from the observable universe without
emitting substantial radiation. It follows that while stars may be an important form
of accretion to explain relatively low-luminosity AGN, they cannot be at the origin
of the radiation from luminous quasars.

12.5.2 Non-radial Orbits

Radial orbits are of interest to understand the fate of matter falling into black holes.
Physically, however, non-radial orbits are much more relevant, as they are the ones
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that particles follow in accretion disks. We will discuss them now with the aim of
calculating the amount of energy that can be gained from matter falling into a black
hole. This amount of energy is what we can expect to have radiated from the vicinity
of the black hole.

We can write Eq. (12.70) as

(
dr
dτ

)2

= Ẽ2 −V 2(r), (12.96)

where the specific angular momentum is now non vanishing in V (r)

V (r) =

[(
1− 2M

r

)(

1+
�̃2

r2

)] 1
2

. (12.97)

We give the generic shape of V 2(r) for a given �̃ in Fig. 12.3. The main
characteristics of V 2(r) can be read from (12.97):

• First note that at r = 2M, V 2(r) = 0 and the derivative dV 2

dr

∣∣
r=2M > 0 .

• Then note that the extrema rc of the function V 2(r) can be found from

∂V 2

∂ r
= 0 (12.98)

=
∂
∂ r

[(
1− 2M

r

)(

1+
�̃2

r2

)]∣∣
∣
∣
∣
r=rc

(12.99)

=
2M
r2

c

(

1+
�̃2

r2
c

)

+

(
1− 2M

rc

)
(−2)

�̃2

r3
c

(12.100)

=
2
r2

c

(

M+
M�̃2

r2
c

− �̃2

rc
+

2M�̃2

r2
c

)

. (12.101)
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This leads to the quadratic equation

0 = Mr2
c + 3M�̃2 − �̃2rc, (12.102)

with the solutions

rc =
�̃2 ±

√
�̃4 − 12M2�̃2

2M
. (12.103)

The function V 2(r) has therefore two extrema for �̃4 − 12M2�̃2 > 0, i.e. for
�̃2 > 12M2 or equivalently �̃ > 2

√
3M. There are no local extrema for �̃ < 2

√
3M.

• The asymptotic behaviour of V 2(r) is such that V 2(r)→ 1 for r → ∞ and V 2(r)
tends towards negative infinite values for r → 0.

• Figure 12.3 gives the schematic shape of the potential for �̃ > 2
√

3M on the left
panel together with the classical Newtonian potential in the right panel.

The main difference between the general relativistic case and Newtonian me-
chanics lies in the behaviour of the potential at small radii. In Newtonian mechanics,
orbits in the potential generated by a point mass are not bound for E > 0, they are
bound for E < 0. Bound orbits are ellipses. In Newtonian mechanics test particles
with finite angular momentum never reach the origin.

Orbits of test particles in the Schwarzschild geometry differ from orbits in a
classical Newtonian potential in that:

1. There are bound orbits similar to the Newtonian case for �̃ > 2
√

3M. The general
relativistic orbits are not closed ellipses, the periastron precesses.

2. For �̃ < 2
√

3M all orbits fall inside the hole.
3. All orbits with Ẽ >V 2

max fall inside the hole; they are referred to as capture orbits.
4. For �̃ = 4M, V 2

max = 1. This implies that all test particles with �̃ < 4M coming
from infinity will reach the singularity. These trajectories are all capture orbits.

A more quantitative picture of V 2(r) is given in Fig. 12.4.
The energy that can be radiated by a particle as it spirals down an accretion

disk around a black hole is its binding energy on the last orbit before the final fall.
Consider therefore circular orbits. These are found at the minimum of the potential,
as there the radius r is constant. The minimum of the potential lies at (12.103)

r+c =
�̃2 +

√
�̃4 − 12M2�̃2

2M
, (12.104)

where we have taken the extremum at the larger distance, the one inside being
unstable, as can be seen from the figure. The location of this extremum, and hence
the radius of the circular orbits, depends on �̃ in the following way: r+c → ∞ for
�̃→ ∞ and decreases with �̃ reaching

rc = 6M (= 3Rs) (12.105)
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Fig. 12.4 A quantitative plot of V 2(r). Quasi-elliptical orbits are found where a local minimum
exists (top curve). The second curve shows V 2(r) for �̃ = 2

√
3, where there is no extrema, but an

inflexion point. The bottom curve shows that for �̃ < 2
√

3 all test particles reach the origin

for �̃= 2
√

3M. Since for �̃ < 2
√

3M there is no extremum and thus no circular orbit,
this radius corresponds to the last possible stable circular orbit. It is therefore also
the inner boundary of an accretion disk around a Schwarzschild black hole.

The binding energy of a particle per unit mass on the last stable orbit is

Ẽbinding =
m−E

m
= 1− Ẽ, (12.106)

For a circular orbit dr
dτ = 0 so using Eq. (12.96) we have Ẽ2 = V 2(r), and

considering the last stable orbit we find

Ẽ2 = V 2(rc, �̃= 2
√

3M) (12.107)

=

(
1− 2M

6M

)(
1+

12M2

36M2

)
(12.108)

=
2
3
· 4

3
(12.109)

=
8
9
. (12.110)
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The binding energy per unit mass we were looking for is therefore

Ẽbinding = 1−
√

8
9
= 0.0572. (12.111)

This means that when a particle is on the last stable orbit around a black hole
it has lost an energy equivalent to about 6 % of the mass it had at infinity. This is,
for example, the energy available for the luminosity produced by accretion into an
active galactic nucleus.

The binding energy on the last stable orbit around a black hole is somewhat
less than the binding energy of matter at the surface of a neutron star of similar
mass. This stems from the fact while 3RS is about the size of a neutron star,
particles in rotation around a black hole have a kinematic energy that those at rest
at the surface of a slowly rotating neutron star have lost. The kinetic energy on
the last orbit around a black hole is not available for radiation and will disappear
beyond the horizon with the test particle. One therefore expects that accreting
black holes are less luminous than accreting neutron stars of the same mass. For
accreting black holes to be as luminous as accreting neutron stars, the kinematic
energy of the accreted matter at and within the last stable orbit should be radiated
away. This could take place if the freely falling matter Compton scatters with
ambient photons during the last free fall of the particles towards the horizon. This
effect has been discussed as a possible contribution to the radiation of matter in
the surroundings of black holes by Titarchuk and co-workers in the late 1990s
(Laurent and Titarchuk 1999).

12.6 Kerr Black Holes

“If only it were not so damnably difficult to find rigorous solutions” wrote Einstein
to Born in a 1936 letter about the search for solutions to the Einstein equations.

The “no hair theorem”, a general relativity result that will not be elaborated here,
indicates that only mass M, angular momentum J and charge Q can influence the
geometry outside a mass distribution at large distances. There is no astrophysical
reason that would lead us to think that the charge is meaningful. We therefore do
not consider it in the following.

The metric that is a solution of the Einstein equation for a rotating chargeless
mass was discovered by Kerr as late as 1963. It is called the Kerr metric and reads

ds2 =−
(

1− 2Mr
Σ

)
dt2 − 4a

Mr sin2(θ )
Σ

dtdφ +
Σ
Δ

dr2 +Σdθ 2 (12.112)

+

(
r2 + a2 + 2

Mra2 sin2(θ )
Σ

)
sin2(θ )dφ2
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with

a =
J
M
, (12.113)

Δ = r2 − 2Mr+ a2, (12.114)

and
Σ = r2 + a2 cos2(θ ). (12.115)

In a unit system in which c = G = 1, the unit of a is that of a length (or
equivalently of a mass or time). The metric coefficients are independent of t and
φ . Setting a = 0 leads to the Schwarzschild metric, as it should.

The metric is singular at Σ = 0, which is again a real singularity and at Δ = 0,
which is not. This latter singularity defines the Kerr horizon

r± = M±
√

M2 − a2. (12.116)

Physically this means that the horizon singularity is at the larger of the two radii,
i.e. r+. Equation 12.116 shows that this horizon exists only for a < M. Since in
general relativity one expects that there exists no naked singularity (also a conjecture
that will not be elaborated here), one deduces that a = M is a limit that cannot be
exceeded. Black holes for which a = M are called maximally rotating.

Let’s assume a time-like particle i.e. one for which u · u < 0, where u is the 4-
velocity (remember that you and I belong to this category). We have

u ·u = gttu
tut + 2gtφ utuφ + gφφuφ uφ , (12.117)

which we can write as

u ·u = gttu
tut + 2gtφ ututΩ + gφφututΩ 2, (12.118)

where we have introduced the angular velocity Ω

Ω =
dφ
dt

=
dφ
dτ

· dτ
dt

. (12.119)

The condition u ·u < 0 then reads

gtt + 2gtφ Ω + gφφΩ 2 < 0. (12.120)

Looking at the Kerr metric you will find that gφφ > 0. Expression (12.120)
therefore defines a parabola for Ω which tends towards infinity for very small and
large Ω . The inequality can only be fulfilled for a range Ωmin < Ω < Ωmax, where
Ωmin and Ωmax are the zeros of (12.120). In other words

Ωmin,max =
−gtφ ±

√
g2

tφ − gttgφφ

gφφ
. (12.121)
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Ergosphere

r0

r+

Fig. 12.5 In a Kerr black hole there are two event horizons, the outer and the inner. The region of
space between the two horizons is the ergosphere. Anything inside the ergosphere will be dragged
by the black hole and rotate with it but it can still escape. However, anything inside the inner event
horizon can never escape

You will therefore find non-rotating particles only for Ωmin = 0 (or less), which
occurs for gtt = 0, or looking at Eq. (12.112) 2Mr

Σ = 1 which is satisfied for r0

r0 = M+
√

M2 − a2 cos2(θ ). (12.122)

For r+ < r < r0, there is no solution with Ω = 0, which means that there is
no static solution with φ = constant. The region between r+ and r0 is called the
ergosphere for reasons that will become clear later. Its shape is given in Fig. 12.5.

For a = 0, it is clear that r0 = 2M, i.e. r0 is at the horizon and there is no
ergosphere.

The trajectories of massive particles (to which we limit our discussion of the Kerr
black holes) can be derived, as in the case of the Schwarzschild metric, starting from
the Lagrangian

2L = gαβ ẋα ẋβ , (12.123)

with ẋα = dxα

dλ .
Let’s consider now the case θ = π

2 , here a real limitation of the discussion. For
the Kerr metric we obtain

2L = gtt ṫ
2 + gtφ ṫφ̇ + grrṙ

2 + gφφ φ̇2 (12.124)

= −
(

1− 2M
r

)
ṫ2 − 4aM

r
ṫφ̇ +

r2

Δ
ṙ2 +

(
r2 + a2 +

2Ma2

r

)
φ̇2. (12.125)
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The metric does not include explicitly t and φ . The Lagrange equations 12.46
therefore lead to the following conservation laws

pt =
∂L
∂ ṫ

= −E (12.126)

pφ =
∂L

∂ φ̇
= �, (12.127)

and the third law of conservation is given for the rest mass:

|p2|=−m2 where 2L =−m2. (12.128)

The equations of motion

d
dλ

∂L
∂ ẋα − ∂L

∂xα = 0 (12.129)

give for t and φ

∂L
∂ ṫ

= −(
1− 2M

r

)
ṫ − 2aM

r φ̇ =−E (12.130)

∂L

∂ φ̇
= − 2aM

r ṫ +
(

r2 + a2 + 2Ma2

r

)
φ̇ = �, (12.131)

which can be solved for ṫ and φ̇ , giving the following results

ṫ =
(r3 + a2r+ 2Ma2)E − 2aM�

rΔ
(12.132)

φ̇ =
(r− 2M)�+ 2aME

rΔ
. (12.133)

We can obtain an equation similar to the Eqs. (12.71) and (12.72), using the
relation 2L =−m2 and Eq. (12.133). We find

r3ṙ2 = R(E, �,r) = (12.134)

= E2(r3 + a2 + 2Ma2)− 4aME�− (r− 2M)�2−m2rΔ , (12.135)

which defines R(E, �,r). Note that we do not have an expression of the form (E2 −
V 2(r)) anymore.

Circular orbits are considered as in the Schwarzschild geometry. The extreme
points of the effective potential are given by

R = 0,
∂R
∂ r

= 0, (12.136)
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which gives

E
m

= Ẽ =
r2 − 2Mr± a

√
Mr

r(r2 − 3Mr± 2a
√

Mr)
1
2

(12.137)

�

m
= �̃= ±

√
Mr(r2 ∓ 2a

√
Mr+ a2)

r(r2 − 3Mr± 2a
√

Mr)
1
2

. (12.138)

The sign on the top refers to the case of co-rotation, while the one on the bottom
refers to counter-rotation. We find circular orbits for all r values for which the
denominator is not vanishing. The zeros of the denominator of Eq. (12.138) are

r0 = 2M

[
1+ cos

[
2
3

arccos
(
∓ a

M

)]]
. (12.139)

This is equal to 3M for a = 0 (note that this orbit is not the last stable orbit). In
some cases the orbits correspond to the pseudo-potential maxima. We find circular
bound orbits (Ẽ < 1) by looking at the numerator of (12.138). Equation 12.138, with
the additional condition Ẽ = 1 for the marginally bound orbit (rmb), gives

r > rmb = 2M∓ a+ 2
√

M(M∓ a)
1
2 , (12.140)

and finally
rmb(a = 0) = 4M. (12.141)

All these cases do not necessarily describe stable orbits, which have to satisfy the
following additional condition

∂ 2R
∂ r2 ≤ 0, (12.142)

which we have not considered yet together with the Eq. (12.135)

∂ 2R
∂ r2 = 6E2r−m26r+ 4Mm2 ≤ 0 (12.143)

E2

m2 − 1 ≤ 2
3

M
r

(12.144)

1− Ẽ2 ≥ 2
3

M
r
. (12.145)

Equation 12.138 gives us Ẽ(r) for circular orbits, where we have included
condition (12.145) at the limit of equality

rms = M[3+ z2 ∓ [(3− z1)(3+ z1 + 2z2)]
1
2 ] (12.146)

z1 = 1+

(
1− a2

M2

) 1
3
[(

1+
a
M

) 1
3
+
(

1− a
M

) 1
3
]

(12.147)

z2 =

(
3

a2

M2 + z2
1

) 1
2

. (12.148)
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For a = 0 this leads, as expected, again to rms = 6M, the radius of the last stable
orbit in the Schwarzschild geometry.

For a = M, a black hole in maximal rotation, we find from (12.148):

z1 = 1, z2 = 2. (12.149)

We have for the radius of this orbit from (12.148)

rms = M3+ 2∓ [2.8]
1
2 = M(5∓ 4). (12.150)

This means that the last radius of a stable circular orbit lies at rms =M for a direct
orbit particle and at rms = 9M for a retrograde orbit one. This is much closer to the
central singularity than we had found for the Schwarzschild black holes.

In order to calculate the binding energy associated with this last stable orbit we
have to use the condition in Eqs. (12.138) and (12.145) using Eq. 12.150 for r.

For the marginally stable orbit (= in Eq. 12.145) and extracting a
M , we obtain

a
M

=∓4
√

2(1− Ẽ2)
1
2 − 2Ẽ

3
√

3(1− Ẽ2)
. (12.151)

For a = 0 we find Ẽ2 = 8
9 as in the Schwarzschild case. For a = M we have

Ẽ =
√

1
3 direct orbit

Ẽ =
√

25
27 retrograde orbit

(12.152)

So the binding energy is
1− Ẽ = 42.3% (12.153)

for an orbit around a black hole in maximal rotation.
This energy is much more than that calculated in the case of a Schwarzschild

black hole, which leads to the following remark. Black holes in the centre of
galaxies grow by the accretion of mass, and their luminosity is given by the radiation
efficiency of the accretion process while they shine as AGN. The integrated AGN
luminosity in the Universe is reflected in the total X-ray background radiation
discovered in 1962 (see Chap. 21), while recent studies of galaxies indicate that
most have a central black hole with a mass that is related to that of the bulge of
the host galaxy. One can therefore have some idea of the average mass density of
black holes in the Universe through visible observations of the average properties of
the bulge of galaxies, combined with surveys giving their density in the Universe.
Remembering that the black hole mass is the result of accretion and comparing the
average black hole mass density and the X-ray background level therefore gives
a measure of the average radiation efficiency of accretion onto the massive black
holes in galaxies and AGN (Soltan 1982). This leads to the conclusion that radiation
efficiency is probably generally rather low, and hence that the black holes at the
centre of most galaxies are not maximally rotating (King et al. 2008).
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12.6.1 Relativistically-Broadened Emission Lines

For v � c, the Doppler broadening of a line takes the classical form

Δλ
λ

=
Δv
c
. (12.154)

Consequently, very broad lines indicate that the emitting matter moves with
relativistic velocities. Such velocities in a gravitational context can only be reached
very deep within the potential well of compact objects. This means that the line
profile will not only reflect the Doppler effect and the aberration due to the
relativistic velocities, but also effects due to general relativity.

This subject became important with the discovery in ASCA data of a very broad
Fe line in the AGN MCG 6-30-15 (Fig. 12.6). The line is at a rest energy of 6.4 keV,
and is emitted by cold Fe. The line width is �2.5 keV, clearly indicating relativistic
velocities. The blue “horn” of the line is considerably brighter than the red “horn”,
an effect due to Doppler boosting of the photons emitted towards the observer
(relativistic aberration). The line profile can be calculated if the velocity profile of
the emitting matter is known, along with the emissivity profile and the alignment
of the emitting material with respect to the black hole. Under these conditions the
trajectories of the photons in the curved space around the black hole can all be
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Fig. 12.6 The X-ray spectrum (continuum subtracted) of the Seyfert galaxy MCG 6-30-15
observed by ASCA. (Tanaka et al. 1995, Fig. 2, p. 660, reprinted with kind permission of Nature
Publishing Group)
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Fig. 12.7 Simulated line profile for a 16 ks LOFT observation of the Seyfert galaxy MCG 6-30-15.
The different profiles correspond to different quarters of the disk. In red the emission from the
quarter of the disk where matter moves towards the observer, in green the two quarters where the
disk velocity is perpendicular to the line-of-sight, and in blue the disk section where matter moves
away from the observer (LOFT documentation)

calculated. It is therefore possible to calculate the number of photons from each
element of the emitting matter that reach the observer. From the velocity of the
emitting matter one deduces the observed wavelength of the arriving photons and
deduces then the expected profile of the line. The profile shown in Fig. 12.6 is
that expected for a line emitted by a relativistic accretion disk around a massive
black hole.

These studies have become an industry in the analysis of X-ray lines observed in
the spectra of compact objects. There are, however, many effects that must be kept
in mind when interpreting the observations. First, the line is almost as wide as the
line central energy (Δλ � λ ). This means that the continuum must be known very
well before subtraction in order to measure the line profile. This is often not easy at
all and requires data at energies higher than those observable with focusing X-ray
telescopes. Then, the line may also have a complex structure due to the superposition
of emission from transitions between energy levels of many different ionisation
levels of Fe. Furthermore, the emissivity of the disk (or whatever emission structure)
must be known, as well as the geometry of the emission region with respect to both
the black hole rotation axis and the line-of-sight.

Since the geometry of the space around the black hole depends on its spin, and
since the properties of the accretion flow also depend on the black hole spin, it can
be expected that the line profiles will carry the signature of the black hole spin.
Indeed this is one way in which one may hope to measure the spin of a black hole.
Simulations show that this is a realistic possibility with the next generations of X-ray
instruments (see Fig. 12.7).
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12.7 Energy Gain from a Kerr Black Hole

Misner et al. (1973) tell the story of a civilisation surrounding a Kerr black hole that
would use its rotational energy as a (non-renewable) energy source. Consider a Kerr
black hole of mass M in which a particle of mass m falls from infinity where it was
initially at rest. The end mass of the black hole is m+M. Let’s call the falling object
A and imagine that it explodes close to the black hole in two pieces that we call B
and C. Imagine further that B is accreted while C returns to infinity. The change of
mass of the black hole will be

ΔM = EA −EC, (12.155)

as the part EC of the energy of the first object A has returned to infinity. In the inertial
system in which the explosion is taking place, we have

pA = pB +pC, (12.156)

from which we read that ΔM = EB. Interestingly, there exist orbits with negative E
in the vicinity of Kerr black holes. Solving Eq. 12.135 for E yields

E =
2aMl+

(
l2r2Δ +m2rΔ + r3ṙ2

)1/2

r3 + a2r+ 2Ma2 , (12.157)

which has negative solutions for l < 0 (retrograde orbits) and

4a2M2l2 > l2r2Δ +m2rΔ + r3ṙ2. (12.158)

The region in which such orbits can exist (which does not extend to infinity) is
the same as that described as the ergosphere above.

It is therefore sufficient to organise the explosion converting A into B + C such
that EB < 0 in order to extract energy from the black hole. Indeed in this case ΔM =
EB < 0 and EC > EA. We might imagine a civilisation living around a black hole
which organises its garbage management as suggested by Misner et al. (1973) in the
way depicted in Fig. 12.8.

An astrophysically relevant energy extraction mechanism has been proposed by
Blandford and Znajek (1977) and is described in Blandford (1990). If a rotating
black hole is placed in a magnetic field, an electric potential difference is created
between the poles and the equator of the black hole. This potential can, in principle
be used to extract power from the rotation of the black hole. This Blandford–Znajek
mechanism might play an important role in the luminosity of radio loud AGN
(see Chap. 20). These objects have long radio-emitting jets that require that the jet
direction be “remembered” by the emitting object. The spin of a black hole has such
a stability that could ensure that the jet is emitted in the same direction over very
long periods of time.
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Fig. 12.8 Adaptation of the Misner, Thorne and Wheeler view of a civilisation extracting its
energy from their garbage dump onto a Kerr black hole. The dump at the ejection point must be
organised so that the orbits of the garbage falling into the black hole are characterised by negative
energies. The containers will then return to large distances with energies larger than they had when
dropping (Adapted from Misner et al. (1973))

12.8 Black Hole Radiation

Black holes are not quite as black as one would think. Quantum mechanical effects
lead to the conclusion that black holes must radiate at some level. This radiation is
called the Hawking radiation.
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In a very strong electromagnetic field, particle-antiparticle pairs of are created
when the electric potential energy over a Compton length λC is sufficient:

eEλC > 2mc2, (12.159)

where m is the mass of the corresponding particle and E the electrical field. The
same is expected to be true in a gravitational environment when substituting tidal
effects for the electric field. Remember that tidal forces are the only “true” forces
in a gravitational field in the sense that, contrary to the “gravitational field”, tidal
forces cannot be transformed away through an adequate coordinate transformation.
One therefore expects pair creation for particles when the work exercised by tidal
forces at a distance r of a point mass M exceeds rest mass of particle pairs

GMm
r3 ·λ 2

C > 2mc2. (12.160)

This can be solved for λC to give

λ 2
C � c2r3

GM
� G2M2

c4 , (12.161)

where we have used the fact that we are close to the gravitational radius of a black
hole of mass M, and therefore r � GM

c2 . We therefore see that particles with λC � GM
c2

are created close to the horizon of a black hole. In a fraction of the cases one of
the particles created will fall into the black hole and the other will escape towards
infinity. Thus the black hole will be seen to “radiate”. Hawking has shown that the
radiation field at infinity is that of a black body of temperature T for which the
occupation number density is

< N >=
1

exp( hν
kT )± 1

. (12.162)

The signs correspond to Bose–Einstein or Fermi statistics, depending on the spin
of the particle created. The temperature of the radiation is

T =
h̄

8πkM
� 10−7 K

(
M
M

)
. (12.163)

The luminosity of the black hole will be given by the L ∝ surface ·T 4 law. With
the surface proportional to the square of the horizon size and Eq. 12.163, we have

L ∝ M2 · 1
M4 ∝ M−2. (12.164)

The time it takes for the black hole to emit an energy corresponding to its mass,
the black hole evaporation time, is
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tev =
E
L

∝
M

M−2 ∝ M3. (12.165)

Numerically this gives

tev � 1010 years ·
(

M
1015 g

)3

. (12.166)

We can therefore deduce that any black hole formed at the time of the Big Bang
with a mass �1015 g evaporates now with a luminosity

L � 1020 ergs
s

(
1015 g

M

)
, (12.167)

emitting radiation of characteristic energy

hν � kT � 100MeV ·
(

1015 g
M

)
. (12.168)

The total energy emitted is of the order of Mc2 � 1036 ergs. Since Eq. 12.164
describes a process that behaves explosively, it might appear that black hole
evaporation could be a natural explanation for the gamma ray bursts that are
observed at a daily rate (see Chap. 19). However gamma ray bursts are now known
to lie at cosmological distances and their inferred luminosity is some 15 orders
of magnitude larger than the above estimate, thus ruling out Hawking radiation
as their origin. Nonetheless, although never observed, Hawking radiation is one
of the fascinating links between gravitation and quantum mechanics, all the more
important since a quantum treatment of gravitation is still to be worked out.

12.9 Bibliography

I used the following books in writing this chapter. Readers will find many additional
aspects of the subject in these texts that have not been discussed here.

• Misner et al. (1973). This text, while long, gives a very thorough theoretical
treatment of most aspects of gravitation theory.

• Readers will find in the early chapters of (Hoyng 2006) a fine description
of metric, co- and contra-variant vectors in curved space, along with index
gymnastics.

• Black holes, white dwarfs and neutron stars are described in Shapiro and
Teukolski (1983). The treatment of the motion of particles in the Schwarzschild
and Kerr metrics given here is derived from this text in which readers will find a
more extensive description than the one given here.
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Chapter 13
Neutron Stars

Neutrons were discovered by James Chadwick in 1932. Two years later, in 1934,
Walter Baade and Fritz Zwicky published a paper (Baade and Zwicky 1934;
Fig. 13.1) predicting the existence of neutron stars. The paper already suggested
that neutron stars could be the product of stellar explosions in supernovae, and that
they could be at the origin of cosmic rays. While hardly a theory or a model, this
was a very deep intuition that linked several elements with no obvious connection,
specifically cosmic rays and supernovae, and on which relationships astrophysicists
still work 80 years later. It is interesting to note that while the neutron was known,
and indeed its existence was the reason for Baade and Zwicky’s paper, the neutrino
was not. The authors could therefore not know that most of the gravitational energy
liberated by a core collapse supernova is emitted as neutrinos. Because of this,
Baade and Zwicky overestimated the energy available to produce cosmic rays.
However, they also underestimated the rate of supernovae by a large factor. These
two errors roughly cancelled so that an approximately correct cosmic rays energy
flux was obtained.

Neutron stars are very small, they have no significant energy source, and they
were therefore expected to be cold and dark, and essentially unobservable. They
were then almost completely forgotten for more than 30 years, with the exception
of some work e.g. by Oppenheimer, Tolman and Volkoff in the 1930s and Harrison
and Wheeler in the 1960s. The situation changed drastically with the discovery of
pulsars in 1967 (Chap. 14).

The structure of neutron stars can be calculated to some extent. The major ingre-
dients needed are the equation of hydrostatic equilibrium and an equation of state.

The first of these may be deduced from general relativity (see Chap. 12,
Sect. 12.2). It leads to

dP
dr

=−G(P+ρ)(m(r)+ 4πr3P)

r2(1− 2G m(r)
r )

, (13.1)

where P is the pressure of the fluid at rest and m(r) the mass within the radius r.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 13, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 13.1 The full length of the original physical review 1934 article of (Baade and Zwicky 1934).
Reprinted with permission, Copyright 1934 American Physical Society

In order to know the equation of state of matter inside the neutron star, one must
understand the properties of matter above nuclear density, a topic which is not solved
with any certainty even now. These two elements are then merged to allow us to give
a description of the structure of neutron stars and estimates of their maximum mass.

13.1 Neutron Star Equation of State

The equation of state links pressure and density (and temperature, but see below).
We consider first the simplest case of a mixture of free electrons, protons and
neutrons in beta equilibrium at T = 0. The particles we consider have all half-integer
spin and therefore obey the Fermi statistics. At zero temperature the Fermi statistics
gives an occupation number of one particle per cell of phase space for momentum
less than the Fermi momentum, and zero above.

The equations needed for the number density, the mass-energy density and the
pressure (the elements of the equation of state for zero temperature) are given by the
ideal zero temperature Fermi gas

n =
8π

2π h̄3

∫ pF

0
p2dp (13.2)
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ρ =
8π

2π h̄3

∫ pF

0

√
p2 +m2 p2dp (13.3)

P =
1
3

8π
2π h̄3

∫ pF

0

p2
√

p2 +m2
p2dp, (13.4)

where pF is the Fermi momentum, ρ is the mass energy density, n the number
density and P the pressure. In order to understand the structure of the pressure
equation, remember that the pressure is given by the exchange of momentum per
unit time at the wall of an idealised container. This is proportional to the velocity of
the particles and their momentum, i.e. ∝ p ·v,v = p/

√
p2 +m2, which leads to the

structure of the third equation above. In this first approximation, we consider that
the particles do not interact with one another, there is consequently no contribution
from nuclear forces in the pressure equation.

The neutron star is not made of neutrons only. Free neutrons are unstable,
and they decay in approximately 15 min into protons, electrons and anti-neutrinos.
Matter within the neutron stars will therefore comprise a mixture of these particles.
In order to know what proportion of each kind of particle are found in the neutron
star, consider the β reactions that link them

n → p+ e−+ν (13.5)

e−+ p → n+ν. (13.6)

The neutrino reactions cross sections are so small that neutrinos do not interact
with other particles, and consequently escape from the neutron star in a time that is
short enough for their density to vanish. In order to calculate the relative numbers
of the different kinds of particles we consider the conservation laws for charge and
baryons. Charge conservation and neutrality imply ne = np and baryon conservation
implies nn + np = constant.

Consider ε = ε(n,S,Yi), the free energy density of the gas as a function of density,
entropy and the relative particle abundance. The first law of thermodynamics is
dQ = T dS = dε +PdV + μdN. The first term on the right-hand side gives the free
energy, the second the mechanical work, and the third the chemical energy. μ is the
chemical potential, the energy that is involved when changing the relative numbers
of the particles in the mixture. In a zero temperature Fermi gas this is the Fermi
energy, the energy of particles at the Fermi momentum.

Considering the first law of thermodynamics expressed per particle and solving
for the free energy per particle ε/n, we obtain

d
(ε

n

)
=−Pd

(
1
n

)
+Tds−Σ μidYi, (13.7)
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with

P =−∂
( ε

n

)

∂
(

1
n

) , (13.8)

T =
∂
( ε

n

)

∂S
, (13.9)

μi =
∂
( ε

n

)

∂Yi
. (13.10)

For a constant radius neutron star with no exchange of energy with the external
world, the mechanical work is zero, and so is the entropy change. The only variation
in the state of the gas is that of the relative abundances Yi of the particles. One
therefore obtains

Σ μidYi = 0. (13.11)

μi is the chemical potential of the i-th kind of particle and Yi =
ni
n is its relative

density. This condition expresses the fact that changes in the relative concentration
of the particle sorts may not change the energy of the system as there is no energy
source or sink available (we do not consider any contribution of radiation from the
neutron star).

Charge conservation imposes that as many protons as electrons are produced
or annihilated, dYe = dYp, and baryon number conservation similarly demands that
dYp =−dYn. Equation 13.11 therefore becomes

μedYe + μndYn + μpdYp + μνdYν = 0. (13.12)

The last term vanishes because the neutrinos freely leave the system, such that
their density and their Fermi momentum both vanish. We finally have μn = μp+μe.

In an ideal Fermi gas at T = 0, the chemical potentials are given by the Fermi

energy of the species: μi =
√

p2
F,i +m2

i . This is a function of the density of the

particles, as is seen from (13.2). The rest is algebra and will not be pursued further
here (see e.g. Shapiro and Teukolski 1983, Sect. 2.5). It is clear, however, that we
have enough elements to deduce the composition of the material. Figure 13.2 gives
the resulting proton to neutron ratio. It is important to note that the neutrons are
stable in this configuration because the Fermi energy of the electrons is larger than
the mass difference between neutron and protons. The neutrons cannot, therefore,
decay into a proton an electron and an anti-neutrino as indicated in Eq. 13.5, since
there is simply not enough energy available.

13.1.1 The Harrison–Wheeler Equation of State

At low densities and pressure the most tightly bound nucleus is that of 56Fe. The
lowest energy state of matter that has been given time to settle will therefore be
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Fig. 13.2 The composition of a cold mixture of neutrons, protons and electrons as a function of
density

a collection of 56Fe nuclei. When the density increases, however, the electrons
become degenerate and therefore energetic. In these conditions the equilibrium
mixture of particles is no longer 56Fe nuclei and electrons, but a plasma of free
electrons and nuclei that become richer in neutrons as the density increases. At
densities above about 4 ·1011 g cm−3 the matter is so neutron rich that some neutrons
drip out of the nuclei. The mixture is then made of nuclei of mass A and charge Z,
free neutrons and relativistic electrons. In order to study the composition of this
mixture consider its energy density

ε = nNM(A,Z)+ εene + εn(nn), (13.13)

where ni is the density of a type of particle and M(A,Z) is the mass (energy) of the
(A,Z) nucleus. The function M(A,Z) is given by a model of the nuclear forces.
Harrison and Wheeler used a then known semi-empirical mass formula (due to
Green) based on the liquid drop model of the nucleus. One then has to minimize the
energy density of the mixture while satisfying the conservation laws. This results
in an equation for P(ρ), the equation of state of a (very simplified) neutron star
(Fig. 13.3).

Since then there have been a number of equations of state that have been
developed, based on more sophisticated models of the nucleus and treatments of
the particle interactions.
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Fig. 13.3 The Harrison–Wheeler equation of state (HW) (From Kawaler et al. 1997). Other early
equations of states are also indicated

Using the Harrison–Wheeler equation of state and the relativistic hydrostatic
equation one can deduce the total mass of the star as a function of the central
density. This is shown in Fig. 13.4 for white dwarfs (where the pressure is given
by a degenerate electron gas) and neutron stars. The stable configurations are those
for which the function’s slope is positive, and the limit of stability is found at the
maxima. The maximum mass of a white dwarf is seen to be at about 1.4 solar
masses, the Chandrasekhar mass, while the maximum mass of a Harrison–Wheeler
neutron star is seen to be at around 0.7 solar masses with a maximum radius of
9.6 km and a central density of ρc = 5 · 1015 gcm−3. Clearly, the corresponding
maximum mass of a given configuration is set by the equation of state. Different,
more sophisticated equations of state will therefore lead to different maximum
masses, a point to which we will return.

Realistic equations of state consider additional aspects of the interactions
between neutrons, electrons and protons other than just the beta reactions and the
perfect fluid approximations used by Harrison and Wheeler. Baryon interactions
may, for example, give rise to a population of π mesons that should be included in
the model as a π condensate in the central regions of the neutron star. The baryons
also have an internal structure and may not be considered as point-like particles
even at the very high densities of the central regions of the neutron star. Taking
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these effects and many others into account has led to a number of equation of states
which, along with conditions of relativistic hydrostatic equilibrium, give a number
of mass versus density relations.These lead to somewhat different maximum masses
for neutron stars. This is illustrated in Fig. 13.5 which shows a number of M(ρ)
relations derived in the late 1970s, and which suggest maximum neutron star masses
in the range of 1.5–3 solar masses (Baym and Pethick 1979).
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Fig. 13.6 XMM-Newton spectrum of a burst of EXO 0748-676 (From Cottam et al. 2002).
Identifying the X-ray lines led the authors to estimate the gravitational redshift at the neutron
star surface to be about 0.35 (Cottam et al. 2002, Fig. 1, reprinted with kind permission of Nature
Publishing Group)

In the low mass, low central density region of the generic M(ρ) relation for cold
configurations, there is no unstable region. The curves extend to the left of Fig. 13.4
in such a way that the slope remains positive and the configuration remains stable.
Formally white dwarfs are defined as having a mass larger than 0.1 solar masses,
while below this mass cold objects in which no (or very limited) nuclear energy is
generated are called brown dwarfs and at still lower masses one finds planets. All
these objects are degenerate configurations, even though their formation histories
differ widely.

It should be noted that the density in the inner regions of neutron stars is larger
than the density of normal nuclear matter. This implies that we have very few tools
that can be used to measure the properties of the equation of state in the laboratory.
There remains a large uncertainty in the inner properties of neutron stars, and hence
on their maximum possible mass.

One way of progressing on this issue is to measure the radius and mass of neutron
stars. While the mass can be measured for some neutron stars in binary systems, the
radius is much more elusive. It has recently, however, become possible to measure
the X-ray spectrum of bursting neutron stars with XMM-Newton. Spectral lines
emitted at their surface are shifted towards the red by the gravitational redshift at
the surface of the neutron stars. A measurement of the redshift therefore gives thus
a measure of the ratio M/R for the star. Figure 13.6 gives one such measurement for
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EXO 0748-676 from which one deduces the gravitational redshift at the surface of
the neutron star to be z � 0.35, which for a reasonable mass of 1.4–1.8 solar masses
gives a radius of the order of 9–10 km (Cottam et al. 2002).

13.1.2 Structure of Neutron Stars

Equations of state together with the relativistic hydrostatic equilibrium equation
allow one to calculate the structure of neutron stars. Naturally different equations of
state lead to different structures. This is the result of our ignorance of nuclear matter.
In reality only one description of nuclear matter is “right” and therefore only one of
the equations of state, possibly one that is not yet modeled, will be appropriate to
calculate the structure of the stars. Until this question is solved, however, a number
of possible structures have to be considered.

A qualitative description of the structure of neutron stars starts at the surface
and assumes that, somehow nuclear reactions, either in the formation process or in
the accreted material, have led to the zero pressure most stable nucleus, 56Fe. We
will come back to this issue when we consider X-ray binaries in Sect. 16.4. The
composition of the surface of the neutron star, where the pressure vanishes or is
small, is therefore 56Fe. This is an iron atmosphere.

As one progresses towards the interior, the density increases and, therefore, the
electron Fermi energy increases. At some point, it is energetically more favourable
for the electrons to be associated with the nuclei than outside them. The electrons
are then captured by protons to form more neutrons. The nuclei become more and
more neutron rich, as the Fermi energy of the electrons increases.

The binding energy of neutrons decreases in nuclei that are very neutron rich.
When the density reaches 4 · 1011 g cm−3 free neutrons begin to appear, which is
referred to as the neutron drip point. The composition is then made of neutrons,
electrons and nuclei. Further in, the nuclei loose their identity and the neutron star
is composed of electrons, neutrons and protons in beta equilibrium. As the density
further increases, and this is where our knowledge begins to be less certain, more
exotic forms of matter may appear.

This qualitative view into the configuration of a neutron star is given in Fig. 13.7.
It is also worth mentioning that during the formation of a neutron star by collapse

of a massive star, while the collapse is ongoing, neutrinos are trapped, their density
is finite and their chemical potential is not zero. Studies of the stellar collapse must
therefore take neutrinos and their chemical potentials into account when considering
the structure of the proto-neutron star.

13.1.3 The Maximum Mass of a Neutron Star

The question of the maximum mass that a neutron star can have is of prime
importance in assessing the existence of black holes in our Galaxy. In the absence
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of a direct signature for the presence of a black hole rather than a neutron star in
a binary system (and the question of this signature will be discussed in Chap. 16),
the only evidence for the presence of a black hole rather than a neutron star in the
system is the mass of the compact object. The presence of a black hole is inferred if
the mass of the compact object is larger than the maximum mass of a neutron star.
Since this maximum mass depends on the details of the equation of state and since
this is poorly known, there is some level of uncertainty in this maximum mass, and
therefore in the presence of the black hole.

A physical argument that shows that neutron stars have a finite maximum mass
can be derived in analogy with that of the white dwarfs (Haensel et al. 2007): We
know that at high densities, and hence with small distances between the particles
and at high interaction energies, nuclear forces become small through asymptotic
freedom. A neutron star of Ab baryons and of radius R will therefore ultimately
be composed of free baryons. Equation 13.2 shows that for a Newtonian star the
Fermi energy of relativistic and free particles is εF � pFc � h̄(Ab

R3 )
1/3c. The total free

energy of the star will be Eint � AbεF � h̄c
R A4/3

b . The gravitational energy is Egrav �
−GA2

bm2
b

R and the total energy Etot = Egrav + Eint � (−GA2
bm2

b + h̄cA4/3
b ) 1

R . Stable
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conditions are only possible for Etot ≥ 0. Otherwise the gravitational pull will exceed
the internal energy and the star will collapse. The limiting case of Etot = 0 leads to
a maximum baryon number Ab, max � h̄c

Gm2
b
� 2.2 ·1057. The total energy is negative

for larger baryon numbers. This leads to a maximum mass Mmax � 1.8M. We have
seen in Eq. 13.1 that general relativistic effects increase the pressure gradient when
compared with the Newtonian case. We therefore expect that including relativistic
arguments in this reasoning will not change the existence of an upper bound to the
mass of neutron stars. However, the presence of repulsive terms in the equation of
state at densities where quarks are not free particles implies that the maximum mass
might be larger than the 1.8 solar mass bound we just found, although still finite.

One formal but realistic treatment of the maximum mass, using as much
knowledge of micro physics as possible, is given by the following assumptions:

• The hydrostatic equilibrium is given by (13.1). This pre-supposes that general
relativity is applicable.

• Matter is microscopically stable, i.e. dP
dρ ≥ 0.

• ρ ≥ 0
• The equation of state is known up to some density.
• One may consider also the condition dP

dρ ≤ c2 which states that the speed of sound
must be less than the velocity of light. One should remark, however, that the
speed at which information is transported in a medium is not the phase velocity,
and therefore that it is not clear that this condition is a causality condition.

With these considerations it is widely accepted that the upper limit to the
maximum mass of a neutron star is around three solar masses.

It is highly interesting to compare these considerations with the observed masses
of neutron stars (Fig. 13.8). It is very striking that all these masses are extremely
close to the Chandrasekhar mass. It shows that, however complex core collapse
supernovae that give birth to neutron stars are, there must exist a mechanism that
ensures that the mass of the resulting object is (almost) always the same. This leads
one to speculate, for example, that only insignificant amounts of material fall back
onto the proto neutron star after the explosion. There are, however, some outliers,
like the millisecond pulsar J1614-2230, which mass has been found by Demorest
et al. (2010) to be 1.97 solar masses (see Fig. 13.9). As seen above, this result implies
that the particles are strongly and repulsively interacting. The existence of a neutron
star of such a high mass also excludes many “exotic” neutron star equations of state,
including those invoking hyperon or boson condensates.

13.2 Bibliography

The book of Shapiro and Teukolski (1983), was an essential tool in preparing this
chapter. It includes all of the necessary physics that did not change in the time
since its publication in a very clear way, and I used it to derive the qualitative
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Fig. 13.8 Neutron star masses from observations of radio pulsar systems. Error bars indicate the
central 68 % confidence limits, except that upper limits are one-sided 95 % confidence limits. Five
double neutron star systems are shown at the top of the diagram. In two cases, the average neutron
star mass in each system is known with much better accuracy than the individual masses; these
average masses are indicated by open circles. Eight neutron star–white dwarf binaries are shown
in the centre of the diagram, and one neutron star–main sequence binary is shown at the bottom.
Vertical lines are drawn at m = 1.35± 0.04M . (From Thorsett and Chakrabarty 1999, Fig. 5, p.
297, reproduced by permission of the AAS)

properties of neutron stars. I also made use of unpublished lecture notes by
N. Straumann and of the contributions of G. Srinivasan in Kawaler et al. (1997)
and Srinivasan (2001).

There are numerous texts on neutron stars and their equation of states that will
lead readers into considerably more elaborate developments of the topics introduced
in this chapter.
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Chapter 14
Pulsars

Neutron stars in isolation were first observed as pulsars in 1967, they were
discovered completely unexpectedly. Jocelyn Bell, who was looking for scintillation
in the flux of radio sources caused by the inhomogeneities of the solar wind
plasma, noted the appearance of regular pulses in the light curve she was looking
at. Figure 14.1 shows an early pulsar light curve at radio frequencies like the
one she found. This discovery was a very puzzling result. No phenomenon was
known then that produced a “perfectly” periodic signal with periods of the order
of seconds. It was even envisaged for some time that the regular signal was an
artifact of some alien civilisation. It was, however, soon realised that it must be
a signal that originates in a very compact object, as only those could cause such
rapid periodicities.

In the following sections we will review the basic observational facts. We will
then consider the energetics of pulsars and their evolution, and we will see how
some very deep physical insights can be obtained by using the very high precision
clocks that they are.

14.1 Basic Observational Facts

Some very basic observations of pulsars give clear indications on their nature.

14.1.1 Periods and their Derivatives

Pulsars have been named after the regular pulsation they show primarily in the radio
part of the electromagnetic spectrum. Their light curves, as one calls the observed
flux as a function of time, display periods that range from milliseconds up to a few
seconds. For a long time the Crab pulsar with a period P = 33 ms was the fastest
known. In the 1980s, however, pulsars with P∼ few ms were discovered. They were

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 14, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 14.1 Individual pulses from one of the first known pulsars, the 0.714 s pulsar PSR 0329+54
at 410 MHz (From Manchester and Taylor 1977)

called millisecond pulsars to distinguish them from the “normal” pulsars. We will
come back to these objects when we discuss X-ray binaries in Chap. 21.

Radio pulsars, pulsars in short, must be distinguished from X-ray pulsars, which
also show regular pulses, however in the X-ray part of the electromagnetic spectrum.
The physics of these latter objects is very different from that of the radio pulsars
and will be discussed in Chap. 21. We limit the discussion in this chapter to the
“classical” radio pulsars, which we write simply as pulsars.

Individual pulses from a given pulsar vary greatly in shape, as is already clear
from Fig. 14.1. Averaged over about 1,000 pulses, however, the pulse shape becomes
more precisely defined and characteristic of the pulsar. This opens the possibility
to use pulsars as very accurate clocks (Fig. 14.2). These clocks are so precise
that measurements of pulsar period derivatives Ṗ down to 10−20 are achieved for
millisecond pulsars. Thanks to pulsars, astronomy is thus back in the business of
precise time measurement.

The periods of individual pulsars actually increase slowly with time: Ṗ∼ 10−12−
10−13 (Fig. 14.3). For example ṖCrab = 4.22 · 10−13 (note that Ṗ is a dimensionless
number). The millisecond pulsars have much smaller Ṗ (Ṗ ∼ 10−19).

14.1.2 The Nature of Pulsars

The short periods of pulsars indicates that the objects must be compact. Indeed save
for relativistic aberrations, causality demands that variable objects be smaller than
the velocity of light times some characteristic variability timescale. Pulsars cannot
therefore exceed a size corresponding to a fraction of a light second. This leaves
planets, white dwarfs, neutron stars or black holes as possible candidates. The fol-
lowing simple argument allows us to limit the possible candidates to neutron stars.

The maximum angular velocity Ωmax that an object can have while gravitation-
ally bound is

Ω 2
maxR2 � GM

R
, (14.1)
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which states that the kinetic energy of a particle at the surface of the spinning object
of radius R and mass M cannot exceed the gravitational binding energy of the same
particle at that surface. This may be expressed as:

Ωmax �
√

Gρ , (14.2)



208 14 Pulsars

10−3

−20

−18

−16

−14

−12

0.01 0.1 1 10

Period (s)

Lo
g 1

0(
dP

/d
t)

1012 G

103 yr

105 yr

107 yr

109 yr

108 G

1010 G

Millisecond pulsars

de
at

h 
Iin

e
graveyard
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or

Pmin = 2π/Ωmax � 2π√
Gρ

, (14.3)

which is of the order of 1 s for ρ � 108 gcm−3, the density of a white dwarf. The
existence of periods well below 1 s among pulsars thus clearly excludes rotating
white dwarfs or any less dense object from being at the origin of the pulsar
phenomenology. A similar argument can be made in the case of pulsation rather
than rotation.

We can also rule out orbital periods in binary systems involving black holes or
neutron stars, even though orbital periods of less than a second are expected from
Kepler’s law for objects orbiting around a 1 solar mass object at distances of 100s
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of kilometers. We will show in Chap. 15, however, that such a system looses energy
through gravitational wave radiation. This loss leads to the contraction of the orbit,
and therefore to a period decrease rather than the observed increase.

This leaves black holes and neutron stars as the possible objects at the origin
of the pulsar phenomenology. Black holes do not emit any significant amount
of radiation themselves, rather it is the matter that surrounds them that radiates,
mainly as it is accreted into the black hole. This emission may be influenced by the
rotation of the black hole and does include variability with timescales significantly
less than 1 s. Phenomena of this nature are known as quasi-periodic oscillations.
These oscillations are, as their name indicates, quasi periodic and give rise to
broad structures in the Fourier transform of light curves. This is expected as matter
accreted, be it on neutron stars or black holes, orbits the central object a finite
number of times before being accreted. While this takes place the orbit period
decreases and subsequent events happen at different phases. This phenomenology
is very different to the very regular and periodic variations observed in the averaged
pulses of pulsars. We can therefore eliminate accretion related variability from the
possible origins of pulsar emission.

One concludes from this line of reasoning that pulsars are rotating neutron stars.

14.1.3 Glitches

In some pulsars the period suddenly decreases at irregular intervals typically
separated by a few years. These events are called glitches. Figure 14.4 shows the
pulse period of the Vela pulsar as a function time. This figure shows that the period
increases slowly with time during long periods, interrupted by sudden decreases.
These glitches are unpredictable, and they therefore render the pulsars that are
affected useless as high-precision long-term clocks. Such glitches are unknown in
millisecond pulsars.

The angular momentum of an isolated neutron star is given by IΩ , where I is the
moment of inertia and Ω the angular velocity, a quantity that remains constant in the
absence of external perturbations. Ω will therefore react to changes in the moment
of inertia and will increase, and the period will decrease, when the moment of inertia
decreases. This happens episodically in an abrupt way in the superfluid core of
the neutron stars as the star adapts to its slowing rotation. Glitches are therefore
interpreted as the consequence of “star quakes” in isolated neutron stars.

14.1.4 Distances to Pulsars

The high accuracy achievable on the pulse arrival time measurements allows us
to obtain their distances using the properties of radio wave propagation in the
interstellar medium.
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The propagation of electromagnetic waves in a plasma is described by the
equation of motion of charges in the plasma. For the oscillating electric field of
an electromagnetic wave, this equation reads

m(ẍ+ γ ẋ+ω2
0 x) = eE(x, t) = eE0e−iωt , (14.4)

where x are the coordinates of a charge e, γ is the damping term and h̄ω0 is the
electron binding energy to the ion. In the high-frequency limit (ω � ω0), and when
damping can be neglected, as is the case for waves propagating in a plasma, the
solution to Eq. 14.4 is

x =− e
mω2 E(x, t). (14.5)

The polarisation of the medium P = ex = χeE, from which χe = − e2

mω2 . The

dielectric constant ε = 1 + 4πχe = 1 − 4πe2

mω2 . This was all deduced for a single
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electron. If the density of electrons is ne, then ε = 1− 4πnee2

ω2m
. The phase velocity

of the wave is defined as vph =
ω
k , where k is the wave number. On the other side,

in a medium, vph =
c√
ε . One concludes that

ω
k
=

c√
ε
. (14.6)

Introducing the plasma frequency ω2
p = 4πnee2

m , this leads to the the dispersion
relation of radio waves in a plasma

ω2 = ω2
p + k2c2, (14.7)

where k is the wave number (i.e. amplitude of the wave vector):

ω2
p =

4πnee2

me
. (14.8)

Radio waves with ω < ωp cannot propagate in the plasma, while those for which
ω > ωp propagate with the group velocity given by

vg =
dω(k)

dk
=

k · c2

ω
= c

(

1− ω2
p

ω2

)1/2

� c

(

1− ω2
p

2ω2

)

, (14.9)

for ω � ωp, where we have used Eq. 14.7 for k.
The time of arrival of a wave pulse around the frequency ω is given by

ta(ω) =

∫ D

0

dl
vg

� 1
c

∫ D

0
dl

(

1+
ω2

p

2ω2

)

, (14.10)

where D is the distance to the object.
Writing explicitly the plasma frequency from Eq. 14.10 gives the arrival time as

a function of the integral of the electron density along the path

ta(ω) =
D
c
+

2πe2

mcω2

∫ D

0
nedl. (14.11)

One calls the integral
∫ D

0 nedl the dispersion measure, often written DM. The
arrival time is an explicit function of the wave frequency ω , which can be derived
to obtain

dta
dω

=− 4πe2

mcω3 DM. (14.12)

The quantity dta
dω can be derived from measurements of the pulsar light curves

at different frequencies. The dispersion measure, i.e. the integrated line of sight
electron density, is therefore also known. Assuming, or knowing from some other
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source of information like models of the Galaxy, the density of the interstellar
plasma thus provides the distance to the object. Note that on average < ne >�
0.03 cm−3 in our Galaxy.

14.1.5 Pulsar Distribution in the Galaxy

Many hundred pulsars are known to date, they are broadly concentrated around
the plane of the Galaxy (Fig. 14.5). Neutron stars are expected to be born in the
explosion of massive stars (in supernovae of type II). The observed distribution of
pulsars shown in Fig. 14.5 is, however, much broader than that of massive stars. This
discrepancy is largely due to the high proper motion of pulsars of about 400 km s−1

(e.g. Hobbs et al. 2005) that blurs the distribution of the progenitors. This high
space velocity also leads to the fact that pulsars are not always found at the centre
of the supernova remnant that resulted from the same stellar explosion that gave
birth to them. The high space velocities at birth are considered to originate from
asymmetries in the progenitor star explosions.

14.2 Magnetic Dipole Model

One can gain an excellent understanding of the energy balance in a pulsar by
considering the pulsar as a magnetic dipole in which the magnetic axis is not aligned
with the rotation axis (the same is true for the Earth). While the study of the structure
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of neutron stars must take general relativity into account, this is not necessary when
discussing the primary features of the dipole model, which involves a discussion of
magnetic phenomena taking place at some distance from the surface of the star.

We will consider a neutron star of radius R with a dipolar magnetic field Bp which
is oblique with respect to its rotation axis.

The magnetic moment m of this system is

m =
1
2

BpR3 · (e‖ cosα + e⊥ sinα cosΩ t + e’⊥ sinα sinΩ t
)
, (14.13)

where e‖, e⊥ and e’⊥ are the unit vectors parallel and perpendicular (two) to the
rotation axis respectively.

The magnitude of the magnetic moment is

|m|= BpR3

2
, (14.14)

Since the field and the rotation axis are not aligned, the magnetic moment varies
with time. A variable magnetic dipole radiates electromagnetic waves in a way
similar to the radiation emitted by a variable quadrupole electric moment.

The energy loss of a variable magnetic dipole is

Ė =− 2
3c3 |m̈|2. (14.15)

We find when differenciating (14.13) twice and inserting in (14.15)

|Ė|= B2
pR6Ω 4 sin2 α

6c3 . (14.16)

In a cold and isolated neutron star, the only available energy to power the
radiation of the magnetic dipole is the rotational energy of the star. The neutron
star spin will therefore decrease with time at a rate given by the luminosity of the
pulsar. The kinetic energy of the rotation of the star is given by Erot =

1
2 IΩ 2, while

its first time derivative is

˙Erot = IΩΩ̇ , (14.17)

where Ω is the angular rotation and I the momentum of inertia of the star.
Assuming that the slowing down of the neutron star powers the magnetic dipole

radiation implies that (14.16) and (14.17) represent the same quantity. The magnetic
field can then be expressed from ˙Erot = |Ė| as a function of Ω and Ω̇

B2
p =

IΩΩ̇6c3

R6Ω 4.sin2 α
(14.18)
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In the case of the Crab pulsar P = 33 ms and Ṗ = 4.22 · 10−13. Assuming a
radius of 10 km and a mass 1033 g for the neutron star (in agreement with the
findings of Chap. 13), the moment of inertia (I =

∫
r2dm) of the pulsar is I �

1.4 ·1045g cm2. With sinα ∼ 1, Bnp = 5.2 ·1012 gauss. This value for the magnetic
field is remarkably close to the one found when observing cyclotron emission lines
in X-ray sources (see Chap. 4). This agreement is a powerful argument in favour of
the reasoning developed here.

Expression (14.18) gives the magnetic field of a pulsar as a function of its period
and period derivative. It can therefore be used to express the diagram (14.3) not as
Ṗ versus P, but as B versus P. This equivalent diagram is shown in Fig. 14.6.

The path of young pulsars in this diagram can be understood qualitatively. The
magnetic field of the pulsars is advected from the original star and is locked in the
star material. In the absence of convection in the star no dynamo mechanism is
possible, and the magnetic field can only slowly decrease with time. As the pulsar
slows down, its period therefore increases. The resulting evolutionary path in a B
versus P diagram will therefore be from the upper left corner towards the lower right.
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This reasoning is far from giving us a model of the emission of a pulsar. Indeed,
one would expect that the radiation emitted by the rotating magnetic moment
has a characteristic period given by that of the pulsar, rather than the observed
Megahertz radio frequencies. Understanding how radio waves are generated by
electrons accelerated along the magnetic field lines has a very complex history
that we will touch upon in the next section. It is nonetheless expected that the
geometrical arrangement of the line-of-sight, magnetic axis and rotation axis leads
to a modulation of the emitted radiation with the period of the pulsar. The latter
therefore appears in a sense in the same way as a rotating light house. This model
is sketched in Fig. 14.7. The observed radiation from relativistic electrons that are
accelerated along and following the magnetic field lines will be polarised in the
plane of the field line. As the pulse sweeps over the observer, the observer sees
electrons following subsequent field lines, and will measure a changing polarisation
angle as a result.

14.2.1 Pulsar Ages

We can use these ideas further and calculate the age of the pulsars using Eqs. (14.16)
and (14.17). We introduce

T =

∣
∣
∣
∣
Ω
Ω̇

∣
∣
∣
∣
0
=

6Ic3

B2R6 sin2 αΩ 2
0

, (14.19)
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where the index “0” indicates the present time. Eqs. 14.16 and 14.17 can be
combined to express Ω/Ω̇

Ω̇
Ω

=
B2R6Ω 2 sin2 α

6Ic3 , (14.20)

in which we introduce the constant T in the following way

Ω̇
Ω

=
B2R6 sin2 α

6Ic3

Ω 2

Ω 2
0

Ω 2
0 =− 1

T
Ω 2

Ω 2
0

. (14.21)

Separating the variables leads to

dΩ
Ω 3 =−dt

T
1

Ω 2
0

, (14.22)

which can be integrated to give

− 1
2

Ω−2 =− t
T

1

Ω 2
0

+ c′. (14.23)

With Ω = Ωi, the initial angular velocity at the time of pulsar birth (t = 0),
one can express the integration constant c′ = − 1

2 Ω−2
i . The evolution of the pulsar

angular frequency is therefore

Ω(t) = Ωi

(
1+

2Ω 2
i

Ω 2
0

t
T

)− 1
2

. (14.24)

This can be inverted to give the age of the pulsar at a given angular velocity Ω0

t(Ω0) =
T
2

(
1− Ω 2

0

Ω 2
i

)
. (14.25)

After a significant slowing down, Ω0 �Ωi, the age is no longer a strong function
of the initial rate of rotation, and the age of the pulsar is given by

t � T
2
. (14.26)

Quantitatively we find for the values of the Crab pulsar that TCrab = 2,486 years
and that its age t � 1,263 years. The Crab pulsar was born in a supernova that
was observed by Chinese astronomers in 1054, roughly 1,000 years ago. The
simple arguments developed here therefore yield results that are remarkably close
to observed values.
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14.3 The Aligned Rotator and the Pulsar Magnetosphere

A first approach to the understanding of the magnetosphere of pulsars is given by the
aligned rotator model. We now consider the case of a rapidly rotating magnetised
neutron star with parallel rotation and magnetic axes.

Consider a dipole magnetic field

B = Bp

(
R
r

)3

, (14.27)

where R is the size of the neutron star and r is the distance to the star. Charged
particles moving along the magnetic field lines can only follow them for

r � Rc =
c
Ω

, (14.28)

because at larger distances the rotating magnetic field lines that are each attached
to a point on the surface of the star would move faster than the speed of light. Rc is
called the light cylinder radius. It is located at the distance at which the equatorial
co-rotation velocity equals the velocity of light. At distances large compared to the
light cylinder, the magnetic field will be given by the Poynting flux S = cB2

4π that
characterises the radiation of the star. Close to the light cylinder the dipole field and
the field corresponding to the Poynting flux are expected to match. The energy loss
Ė is then given by the Poynting flux integrated over the sphere. Assuming spherical
symmetry (most probably a rather poor approximation here), the radiated energy is
given by

|Ė| = 4πR2
c ·S (14.29)

= 4πR2
c ·

c
4π

B2
p (Rc) (14.30)

=
( c

Ω

)2 · cB2
p

R6

c6 Ω 6 (14.31)

=
B2

pR6Ω 4

c3 . (14.32)

This corresponds to the expression we had found in the oblique rotator approach
as Eq. 14.16 without the sin2(α) term. The link between the slowing down of
the neutron star and its radiation is therefore identical to what we deduced in the
preceding section.

We can now look for the properties of the magnetosphere of the neutron star
using the dipole magnetic field approximation close to the neutron star. The vector
form of the field outside the star is

B = BpR3
(

cosθ
r3 er +

sinθ
2r3 eθ

)
. (14.33)
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Inside the star we expect the medium to be highly ionised, and the conductivity
consequently very high. In the infinite conductivity limit (which we use) the Lorentz
force vanishes in the medium. Were it not so, the currents j = σ

(
E+ v

c ×B
)

would
be infinite. This means that inside the star we have

Ein +
v
c
×Bin = 0, (14.34)

where Ein is the electric field inside the surface and v is the surface velocity. Using
the star rotation in Eq. 14.34 we have for the fields inside the star

Ein +
Ω × r

c
×Bin = 0. (14.35)

In the absence of currents at the surface of the star the magnetic field B is
continuous at the surface r = R. Using Eq. 14.33, the field is therefore

Bin = Bp

(
cosθer +

sinθ
2

eθ

)
. (14.36)

With Eq. 14.34, we know the electric field inside the star

Ein =
RΩBp

c
sin θ

(
sinθ

2
er − cosθeθ

)
(14.37)

The component of the electric field parallel to the surface is continuous. The
electrical field outside the surface is therefore given by

Eout
θ = −RΩBp

c
sin θ cosθ (14.38)

= − d
dθ

(
RΩBp

2c
sin2 θ

)
(14.39)

This is a quadrupole electric field, with a magnitude given by

E � RΩBp

c
� 2 ·108

P
B12 Vcm−1, (14.40)

for a magnetic field in units of 1012 G and a period P in s.
The electric force generated by this field acting on the elementary charges are

much larger than the gravitational force at the surface of the star. The ratio is
given by

eE
Fg

∼ e
RΩBp

c
GMmp

R2

∼ 109. (14.41)

This means that there will be a region where charges will be dissociated in a
very conducting plasma for which E ·B = 0. Only in this way can the Lorentz force
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vanish (the charges cannot be accelerated along the magnetic field lines). This shows
that the vacuum in the vicinity of a rapidly rotating neutron star is unstable.

One can use these fields to get a first approximation of the energy of the particles
that can be expected around a pulsar by considering the acceleration of particles in
the field

γ̇mc = eE =
eRΩBp

c
, (14.42)

or

γ̇ =
eRΩBp

mc2 , (14.43)

where γ mc is the impulse of the particle. For particles accelerated in the vicinity of
the star and traveling close to the speed of light we have

γ � γ̇Δ t � γ̇
R
c
� eR2ΩBp

mc3
∼= 1011 B12

Ps
, (14.44)

where B12 is the field in units of 1012 G and the period P is given in seconds. This
gives for electrons and protons a maximum possible energy of

γmc2 ∼= 1011 ·500keV = 5 ·1016 B12

Ps
eV. (14.45)

This is a very unrealistic estimate, as it assumes that the field accelerates charges
over distance R, and does not discuss the respective geometries of magnetic and
electric fields. However, it encourages one to look at the neutron star environment
as a source of relativistic particles. These relativistic particles can then be feeding
the supernova remnants that surround some neutron stars (the plerions, or pulsar
wind nebulae, like the Crab nebula) and make it plausible that synchrotron radiation
is observed in these environments. The relativistic particles are also expected to
form one component of cosmic rays, giving substance to the speculation of Baade
and Zwicky in 1934.

14.3.1 Maximum Particle Energy

A somewhat more sophisticated approach to characterising the energy of particles
that can escape from a neutron star (and thus be observable outside the light
cylinder) is as follows. Consider the dipolar magnetic field. The field lines are
described by

sin2 θ
r

= const. (14.46)

The open field lines are those going through the cap of the neutron star. The
last of the open field lines is given by the dipole line that extends just to the light
cylinder, i.e.
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sin2 θ
r

=
1
Rc

. (14.47)

This field line cuts the surface of the star at θp given by

sin2 θp

R�
=

1
Rc

, Rc = c/Ω , (14.48)

R� being the radius of the star. This defines the so-called polar cap (see Fig. 14.8).
We can estimate the potential Φ that corresponds to the electric field, given that

the field is the gradient of the potential

E =−∇Φ. (14.49)

For the quadrupole electrical field that we found in Eq. 14.39, the potential is

Φ (r,θ ) =−1
6

B0ΩR5
�

c
·
(
3cos2 θ

)− 1

r3 . (14.50)
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The maximum potential that we can invoke to accelerate particles in the
magnetosphere of the pulsar is the potential difference between the pole and θp. We
therefore insert the angle that delimits the polar cap that we found in (14.48) and
(14.50) with (14.47) for the potential at θp using cos2 θ = 1− sin2 θ = 1−R�/Rc

and obtain

Φ(R�,θp) =−1
6

B0ΩR2
�

c
·
(

2− 3
R�

Rc

)
. (14.51)

At the pole, θ = 0, the potential is

Φ(R�,0) =−1
6

B0ΩR2
�

c
·2, (14.52)

so that the available potential difference is

Φ(R�,θp)−Φ(R�,0) =
1
2

B0Ω 2R3
�

c2 . (14.53)

For a period of 10 ms and a field of 10 · 1012 G, this gives a maximum available
potential difference of

ΔΦ ≤ 6 ·1017 V. (14.54)

This expression also gives the maximum energy that an elementary charge can
gain when crossing the potential difference in eV. While one could be tempted to
consider faster spinning pulsars, with P ≤ 10msec, to achieve higher maximum
energies, one must note from Fig. 14.6 that the msec pulsars have much weaker
magnetic fields. Note also that this is a very simplified model of a region that
is bound to be very complex, and that the potential difference calculated here is
likely to be an overestimate of the energy that can be gained in the vicinity of a
very powerful pulsar. This energy is, however, still less than the maximum energy
observed in cosmic rays (>1020 eV), which in turn indicates that pulsars cannot be
responsible for these extreme particles.

These results form the basis on which models for the emission of pulsars are
built. Indeed while the oblique dipole model considered in Sect. 14.2 identifies
convincingly the origin of the energy, it does not indicate how the radio emission is
created.

It is thought that the radio emission is produced by relativistic electrons traveling
along the curved open magnetic field lines that emanate from the polar cap. These
electrons are accelerated along the curved field lines, and therefore radiate according
to the Larmor formula. For a trajectory with a radius of curvature ρ and energy γ ,
the frequency of the emitted radiation is

ν ∼ 3
4π

γ3 c
ρ
. (14.55)
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Realistic models rely on configurations in which the charge distribution σ is
related to the quadrupole electric field

σ =−BΩR
4πc

cos2 θ . (14.56)

There must then exist a region in which E ·B �= 0 where charges are accelerated.
This region may be found either in the polar regions (the polar cap model) or in
regions further out in the magnetosphere. Electron acceleration is most probably
not stable, the accelerations happening in sparks. The polar cap interpretation also
explains naturally that the radiation comes bunched in a cone and is therefore
pulsed when seen from the observer far away. The period of pulsation then simply
corresponds to the rotation period of the neutron star. This model also explains the
polarisation structure of the pulses and corresponds to the sketch of Fig. 14.7.

One can also see from this formalism that the potential difference depends on the
pulsar period and the magnetic field as

ΔΦ ∼ B
P2 . (14.57)

Thus at some point the field will have decayed, and the period increased, such
that the sparks will not develop any more, and the pulsar will cease to radiate
radio waves. This is the death line in Fig. 14.6. Neutron stars beyond the death
line are in the so-called graveyard and are most difficult to detect, with only their
thermal radiation being observable in the X-rays. Although very weak and difficult
to measure, this radiation is of prime importance as, linked with the ages of pulsars,
it provides information on the cooling of neutron stars, their heat content, and
therefore on their internal structure. How pulsars are resurrected from the graveyard
and where they re-appear in the P versus Ṗ diagram will be discussed in Chap. 17.

Pulsars are at the origin of a very wide domain of astrophysics, often because
of the very accurate nature of their clocks. Millisecond pulsars are extremely well
behaved in this regard, with Ṗ � 10−18–20. One of the main results that this precision
has led to is the discovery of the binary pulsar PSR 1913+16 by Hulse and Taylor
in 1974. The changes of the orbital period of this pulsar shows very convincingly
that the system is loosing energy through the emission of gravitational waves in
excellent agreement with the predictions of general relativity (see Chap. 15).

14.4 Radio Quiet Pulsars

Pulsars have been discovered through radio observations, and most of what we
know about them comes from radio measurements. A few pulsars, typified by the
Crab pulsar, can be observed not only in the radio domain, but also throughout
the electromagnetic spectrum all the way to the hardest gamma rays. Figure 14.9
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Fig. 14.9 The radio to gamma ray emission of the Crab and B0540-69 pulsars (From Serafimovich
et al. 2004)

shows the radio to gamma ray spectrum of the pulsed emission from two pulsars,
including the Crab. The pulsed emission is that of the pulsar, by opposition to the
unpulsed emission that includes the flux from the nebula surrounding the pulsar. One
is confident that the pulsed emission comes from the same pulsar because the period
measured in the different spectral domain is the same. However, the shape of the
pulse profile changes as the photon energy changes. This shows that the geometry
of the emission region in the pulsar magnetosphere depends on the energy of the
emitting electrons.

In the decades that followed the discovery of pulsars, high-energy instrumenta-
tion continued its development with many successive launches. These instruments
performed surveys of the entire sky and detected an increasing number of sources.
Multi-wavelength studies were then put together to identify the newly-discovered
sources with objects like AGN known to emit across the spectrum. These attempts
were mostly successful. There remained, however a number of “unidentified”
sources. One of the first such sources was called Geminga, discovered already
with the first gamma ray satellites and steadily observed ever since. Geminga was
joined by a number of “unidentified” sources observed by the gamma ray instrument
EGRET of the CGRO satellite in the 1990s, and in very high energy gamma
ray measurements using Cerenkov radiation on the ground at TeV energies in the
2000s. These sources remained a mystery for a long time, until X-ray instruments
allowed observers to measure the position of Geminga with a higher precision and
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measured pulsations with a period of 0.237 s in its emission (Halpern and Holt
1992). It became clear that Geminga and many of the unidentified gamma ray
sources observed up to TeV energies are pulsars or millisecond pulsars.

The fact that these objects emit no or only a very weak radio flux is most probably
due to the geometry of the source with respect to the lines-of-sight. Observations
of the Crab have demonstrated the different geometry of the source at different
energies. It is therefore to be expected that in some instances the line-of-sight
crosses sections of the emission cone in which gamma rays are emitted but not
sections in which radio photons are emitted. The study of these sources thus leads
to constraints on the emission models through the characterisation of the emission
cones observed in the different sources and at different energies. It is expected that
models of the emission, and hence of the acceleration, cooling and paths of the
emitting electrons, will be learned from these measurements.

14.5 Bibliography

This chapter owes much to G. Srinivasan in Kawaler et al. (1997) and in personal
discussions, but also to Shapiro and Teukolski (1983).

Pulsar phenomenology is extensively reviewed in the already cited (Seiradakis
and Wielebinski 2004).
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Chapter 15
The Hulse–Taylor Pulsar and Gravitational
Radiation

Pulsar timing with its very high precision can be used to measure, with correspond-
ingly excellent precision, the orbits of pulsars in binary systems. This is at the origin
of the indirect discovery of gravitational radiation. The discovery is indirect in that
the gravitational waves have, up to now, never been directly measured. The reaction,
however, of the binary system to the emission of gravitational waves, has been
measured on the so-called Hulse–Taylor pulsar, PSR 1913+16 in 1974. This has
earned Hulse and Taylor a Nobel prize in 1993. Gravitational wave emission has
also been detected in the double pulsar PSR J0737-3039A discovered in 2004 by
Lyne et al. (2004). The double system PSR 1913+16 is a system of two neutron
stars in which only one is a pulsar, the companion is not observed. The system
PSR J0737–3039A is a two neutron star system in which both neutron stars are
observed pulsars, thus providing additional information on the parameters of the
binary system.

Gravitational radiation is a quadrupole process. Contrary to electro-magnetic
radiation that is emitted when a dipole charge distribution varies in time (but
not when a spherical charge distribution varies), a time-variable quadrupole mass
distribution (I jk) is necessary to emit gravitational waves. This is to say that
gravitons in a quantum theory of gravitation would be massless spin two particles.
Einstein’s general relativity allows us to calculate the emission of gravitational
waves in the weak field limit, and to obtain the gravitational wave luminosity
of a mass distribution for which the quadrupole moment I jk varies in time (see
e.g. Misner et al. 1971) for a thorough discussion of gravitational waves). It is
found that

LGW ≡ dE
dt

=
1
5

G
c5 .〈

...
I jk

...
I jk〉. (15.1)

This is called the quadrupole formula for the generation of gravitational waves.
The quadrupole moment of a discrete mass distribution is given by

I jk = ∑
A

mA

[
xA

j xA
k −

1
3

δ jk
(
xA)2

]
. (15.2)
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15.1 Binary Pulsar Systems

The quadrupole of a system of two point masses in a binary orbit can (and will) be
calculated and used in the quadrupole formula. Note, however, that since gravitation
is a non linear theory, it is not straightforward to use the quadrupole formula, which
is a weak-field approximation, in the case of two very dense objects. A proper
discussion of the system would require that the strong gravitational field generated
by each object be smoothly merged into that of the binary system, rather than
treating the two masses as point masses and considering the field at large distances.
This notwithstanding, let us describe a binary system consisting of M1 and M2 in
circular orbits around their centre of mass. In this case

M1a1 = M2a2 = μa, (15.3)

where
μ =

M1M2

M1 +M2
(15.4)

is the reduced mass of the system. The “xx” component of the quadrupole moment
of the circular binary system in the x-y plane is

Ixx =
(
M1a2

1 +M2a2
2

)
cos2 φ + constant terms (15.5)

=
1
2

μa2 cos2φ + constant terms, (15.6)

where we have used cos2 φ = 1+cos2φ
2 and similarly, with sin2 φ = 1−cos2φ

2 ,

Iyy =−1
2

μa2 cos2φ + constant terms, (15.7)

while using sinφ cosφ = sin2φ
2 one obtains

Ixy = Iyx =
1
2

μa2 sin2φ + constant terms. (15.8)

There is no z component. Let φ = Ω t, where Ω the orbital angular velocity,
differentiating with respect to time and feeding into the quadropule formula leads to

LGW =
1
5

G
c5 〈

...
I jk

...
I k j〉 (15.9)

=
1
5

G
c5 · (2Ω)6 ·

(
1
2

μa2
)2

(sin2 2Ω t + sin2 2Ω t + 2cos2 2Ω t) (15.10)

=
32
5

G
c5

(GM)3

a9

(
μa2)2

(15.11)

=
32G4

5c5

M3μ2

a5 . (15.12)
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We now study the effect that this energy loss has on the orbital parameters of our
binary system. For this, consider the orbital period P = 2π

Ω which is an observable
in a binary in which one of the components is a pulsar. Kepler’s third law relates the
period P and a in the following way

Ω 2 =
(2π)2

P2 =
GM
a3 , (15.13)

from which we have
Ṗ
P
=

3
2

ȧ
a
. (15.14)

The energy of the binary system is

E =−1
2

GμM
a

, (15.15)

which decreases as a result of the gravitational radiation losses as

− Ė = LGW =
1
2

GμM
a2 ȧ =−E · ȧ

a
. (15.16)

This leads to
ȧ
a
=+

Ė
E
. (15.17)

and therefore to an orbital period change

Ṗ
P
=

3
2

ȧ
a
=+

3
2

Ė
E

=
3
2
· 32

5
G4

c5

M3μ2

a5 · (−2a)
GμM

=−96
5

G3M2μ
c5a4 . (15.18)

The corresponding calculation for an elliptical orbit of eccentricity e leads to

Ṗ
P
=−96

5
G3

c5

M2μ
a4 · f (e) (15.19)

with

f (e) =

(
1+

73
24

e2 +
37
96

e4
)
(
1− e2)−7/2

. (15.20)

Using Eqs. 15.13 and 15.18 leads to Ṗ ∝ P−5/3. The cumulative period shift
measured for PSR 1913+16 is compared to that predicted following the calculation
just performed is shown (including eccentricity effects) in Fig. 15.3.

The binary nature of the pulsar PSR 1913+16 was clear from the irregularities
of the pulse arrival times (Fig. 15.1). This figure also illustrates the precision with
which the orbital parameters can be measured. The main parameters of the pulsar
and orbit are: Ppulsar = 0.059029997929883(7) s, Ṗ = 8.62629(8) ·10−18, Porbit =
27906.98163(2) s and orbit eccentricity e = 0.617127 (Will 2006b).
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Fig. 15.1 The pulse arrival delay as a function of the orbital phase for the binary pulsar PSR
1913+16 (Taylor Nobel lecture, c© The Nobel Foundation 1993)

In a Newtonian system, only the mass function f = (m2 sin i)3(M1 +M2)
−2 of

a binary of this nature could be measured. In a relativistic system, however, more
observables can be measured, first amongst them is the rate of change of the peri-
astron ω̇ = (6πGM2)[a1(1− e2)Pc]−2. In the case of the binary pulsar this is found
to be 4.226 60(4) degrees per year. Figure 15.2 shows how the periastron advance
modifies the pulse arrival delay as a function of phase. This may be compared to the
observed perihelion shift of 43 arcsec/century caused by general relativistic effects
for the orbit of Mercury in our solar system. Gravitational redshift and the transverse
Doppler effect can also be measured, as well as the time delay that photons traveling
through the gravitational field of the companion suffer when compared to photons
emitted at phases in which the companion is far from the line-of-sight. This latter
effect is called the Shapiro delay. These additional observables lead to an over con-
strained system that can therefore be used to test the consistency of general relativity.

The relativistic effects therefore provide a measurement of both masses of the
system: The pulsar mass is 1.386 (3) M and the unseen companion mass is 1.442
(3)M (Weisberg and Taylor 2005). With both masses and the eccentricity known,
it is then possible to calculate the rate of change of the period (from Eq. 16.11) and
to compare it with observations. This is shown in Fig. 15.3.

The different measurements of the system may be shown on a 2-D diagram with
the mass of each member of the binary on each axis as in Fig. 15.4. Each curve
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Fig. 15.2 The observed changes in the pulse arrival delay over a 10 year period. The changes in
the pattern are due to a large variation in the periastron position (From Fowler et al. 1979)

corresponds to a measured effect. All curves are consistent with the quoted masses
of both neutron stars, as expected if general relativity and the quadrupole formula
are adequate descriptions of the physics of these systems. To date, all general
relativity tests made with binary pulsars confirm that general relativity gives a proper
description of gravitation in the parameter space occupied by binary neutron star
systems. This is a considerably larger domain of validity for general relativity than
that accessible through solar system tests.
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15.2 Direct Detection of Gravitational Waves

Gravitational waves are described in the weak-field limit far from the source by
small deviations from a flat metric ημν

hμν = gμν −ημν . (15.21)

Since the metric gives the square of the distance between two neighbouring
points, in this approximation the square of the distance is ds2 = gμνdxμdxν �
(ημν + hμν)dxμdxν . The distance between two points in space will be modified
by the presence of a periodic gravitational wave by a factor of the order of
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Δ l
l � √

1+ h � 1+ 1
2 h, where h is a typical metric deviation. h can be estimated

for characteristic cosmic events at given distances. One obtains, for example that
h � 2 ·10−19 for an asymmetric supernova collapse in the Large Magellanic Cloud;
h� 10−22 for the gravitational waves created by the binary pulsar PSR 1913+16 and
h� 10−21 for an event in which typically 1 solar mass is transformed in gravitational
waves at the distance of the Virgo cluster of galaxies, i.e. for a stellar black hole
merger or core collapse events (Hoyng 2006). These numbers are very small. For a
length of one meter the distance change that must be measured to detect gravitational
waves generated by these events is of the order of 1010 less than the size of an atom.
There are nonetheless a number of efforts underway on the ground, and studies of
space experiments, and a very good hope of directly detecting gravitational waves
in the coming years.



232 15 The Hulse–Taylor Pulsar and Gravitational Radiation

Gravitational waves are transverse and have two possible polarisations. Each
corresponding to the periodic deformation of a circular ring of test particles in an
oblate ellipse back to a circle and then to a prolate ellipse. The major axis of the
ellipses differ by 45◦ between each of the two polarisations.

The first detectors were massive aluminium bars that vibrate as gravitational
waves travel through. These bars are called Weber bars after the pioneer of this
technology. Early bars were operated at room temperature, while modern ones are
cooled to the mK domain to escape thermal vibration noise. Despite some early
claims of detections, the sensitivity of the bars was far from sufficient to realistically
detect gravitational waves caused by cosmic events. Modern bars are far more
sensitive, but still not at the level at which detections may be expected from events
that are frequent enough to occur at least every few years.

On the ground several projects are now underway to build large Michelson in-
terferometers with two arms at 90◦. The waves traveling through the interferometer
will induce a change in the relative length of the arms, and will therefore cause
a shift in the interference pattern observed when the two beams are recombined.
Using very powerful laser beams as light sources, it is possible to reflect the light
many times along each arm before recombining the beams. This increases the
corresponding shift in the interference pattern, as the light crosses the gravitationally
perturbed space many times. Several such interferometers are now being operated
in the US and Europe. The interferometer signals are compared between the
instruments in order to further increase the combined sensitivity by considering
event coincidence in the different detectors. The physics and technology that needs
be applied to the lasers and detectors is impressively rich, in order to overcome as
many noise sources as possible.

In space, projects are being designed to measure gravitational waves of wave-
lengths of 106 km by using three widely located spacecrafts. The measurement
obeys the same principle as that of the interferometers located on the ground:
oscillations in the distances between the spacecrafts caused by waves traveling
through the system of spacecrafts will be measured. The race is on to reach the
sensitivity needed to measure the, very small, ripples of space time caused by
gravitational waves traveling through the solar system.

15.3 Bibliography

Misner et al. (1971) give a very through discussion of gravitation wave theory. This
predates the discovery of the binary pulsar PSR 1913+16 for which Shapiro and
Teukolski (1983) give the calculation of the orbit evolution as the system looses
energy through gravitational radiation used here. Hoyng (2006) gives a very pleasant
treatment of general relativity and gravitation waves. Data on the binary pulsars are
to be found in numerous reviews, some of them cited above.
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Chapter 16
X-Ray Binaries

The very different nature of the emission mechanisms at the origins of X-ray and
visible emission makes it inevitable that the sky looks very different in these two
wavebands. This is illustrated by Fig. 16.1 which shows the bulge of our Galaxy
observed in the hard X-rays by INTEGRAL (top), and in the visible domain
(bottom). This illustrates how essential multi-wavelength observations are. One
simply cannot discover or understand objects that emit the bulk of their luminosity
in the X-rays from optical observations alone. The same line of argument holds for
all wavebands.

There exists a wide range of different X-ray sources, reflecting the variety of
the physical processes that generate X-rays. We describe briefly these populations
here, and then focus in this chapter on the bright X-ray binary sources. Several other
populations will be discussed in the subsequent chapters.

16.1 Populations of X-Ray Sources

The X-ray sky is characterised by different source populations. There is one
population of sources that appears rather weak, and that is isotropically distributed
on the celestial sphere. This population is made of Active Galactic Nuclei (AGN)
and it is (most probably) at the origin of the so-called diffuse X-ray background.
These sources will be discussed in Chap. 20.

Another population of extragalactic sources is given by clusters of galaxies.
These extended sources contain large quantities of hot gas (107 K) that radiates
through bremsstrahlung, as discussed in Chap. 3.

A population of weak galactic sources has emerged since the 1990s, these are
the coronae of “normal” stars. Paradoxically, cool stars in fast rotation have a very
active corona that can be responsible for a substantial X-ray flux. This has been
revealed in particular by the satellite ROSAT. Since then the X-ray properties of
many types of star, both in formation and on the main sequence, have become an
important tool for studying and understanding these objects.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 16, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 16.1 The bulge of our Galaxy as observed in the hard X-rays (20–60 keV) by the INTEGRAL
satellite and in the visible domain (Image R. Walter, A. Bodaghee, ISDC)

There is a population of extended sources in our Galaxy, corresponding to the
supernovae remnants. Their X-ray emission is due to shocks that form as the
supernova ejecta interact with the interstellar medium.

A new category of sources has been recognised in the last few years. These
sources are isolated, at times very bright, and they pulsate. Since they are single
objects, accretion from a companion cannot be at the origin of the emission.
Rather it is thought that the energy source is linked to very strong magnetic
fields (up to1015 G). These sources are called “magnetars”. The category comprises
sources that had been known before as soft gamma repeaters (SGR), a name that
underlines that their observed properties are reminiscent of those of gamma ray
bursts (GRBs, see Chap. 19), although they are physically completely different.
Magnetars also include the so-called anomalous X-ray pulsars (AXP), also because
their observational properties are in several ways similar to those of X-ray pulsars.
In this case also, however, the physics at work is very different.
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Finally, there is a population of bright (up to some 1038 ergs−1) sources, clearly
associated with our Galaxy. These are the sources that were first discovered at X-
ray energies. They are much more luminous than the other galactic sources, and they
display a number of very peculiar properties. In particular, some sources show very
large amplitude variations on many different timescales, from less than a second to
years or longer. These are accretion powered binary systems. They are the so-called
X-ray binaries, the subject of this chapter.

The first of these sources to be discovered was Sco-X1 during a rocket flight
reported in Giacconi et al. (1962). This discovery brought Giacconi a Nobel prize
in 2002. The detection was completely unexpected, as the extrapolation of the then
known X-ray flux of the Sun to stellar distances showed that the resulting flux would
be much below achievable sensitivities. This discovery led to a flurry of activity to
observe the sky in X-rays, an effort that is still going on, and which continues to
lead to new discoveries, also in the field of X-ray binaries. These efforts can either
take the form of surveys or of pointed observations or any combination of both. The
goal is both to discover all types of sources, to measure the distributions of their
properties, and to observe some of them sufficiently to understand the properties
of the sources and the physics at work within them. The first survey of the sky
for X-ray sources was performed by the UHURU satellite launched by NASA in
December 1970.

Another type of observations aims at finding counterparts of X-ray sources in
other spectral domains, mostly the visible. This process is called the identification
of X-ray sources, although this label may convey the false impression that the optical
properties of the sources are easier to understand than their X-ray properties, or that
they will lead to a global understanding of the system. The optical counterpart of
Sco-X1 was thus discovered (“identified”) in 1966. In 1967 Shklovski proposed a
model for the X-ray emission based on the transfer of mass from the companion to
the compact object. This is the paradigm in which we are going to discuss binaries
in the following subsections.

16.2 Classification of X-Ray Binaries

The population of X-ray binaries in our Galaxy is very varied and many subcate-
gories must be distinguished (Fig. 16.2).

When the compact object is a white dwarf one speaks of cataclysmic variables,
also called novae or dwarf novae. In these systems matter is pulled from a
companion whose Roche lobe is filled onto the white dwarf. This process is at
the origin of the X-ray and UV emission of these stars. Until 2010 it was thought
that the white dwarf increases in mass and eventually becomes more massive than
the Chandrasekhar mass and that, when this mass is reached, the dwarf explodes
in a type I supernova. This mechanism naturally leads one to think that type
I supernovae may be standard candles, as they all explode at the same mass.
However Gilfanov and Bogdan (2010) showed that the integrated X-ray flux from
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Fig. 16.2 Schematic view of the different types of X-ray binaries

accreting white dwarfs is largely insufficient to account for the observed rate of
type I supernovae. This leaves broadly open the question of the mass of the type
I supernovae progenitors. Cataclysmic variables will not be discussed in further
detail here.
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Fig. 16.3 Distribution of LMXB (open circles) and HMXB (filled circles) in the Galaxy. A sample
of 86 LMXB and 52 HMXB is shown. Note the significant concentration of HMXB towards the
Galactic plane and the clustering of LMXB in the Galactic bulge (From Grimm et al. 2003)

In X-ray binaries, excluding cataclysmic variables, a second distinction is based
on the mass of the companion. When this mass is large, the companion is an O or
B star. In these systems the X-ray luminosity of the system is less than the optical
luminosity. These systems are called high mass X-ray binaries, abbreviated HMXB.
When, however, the companion mass is low, less than the mass of the Sun, the X-ray
luminosity is larger by about one order of magnitude than the optical luminosity and
the system is called a low-mass X-ray binary, abbreviated as LMXB.

The distributions of both types of systems in the Galaxy are very different.
HMXB are young systems, because high mass stars live only for a short time. They
are found in regions of star formation, and are generally associated with the disk
of our Galaxy. The LMXB are older systems, being associated with long-lived low-
mass stars, and are less concentrated in the disk. They show a broader distribution
in Galactic latitude, but are more concentrated towards the central regions of the
Galaxy (Figs. 16.3 and 16.4).

The magnetic fields around the compact object of both types of systems are also
very different. The B field of HMXB is high, of the order of 1012 G, whereas that
of the LMXB is much smaller, often of the order of 1011 G or less. The accretion
system is also different. The HMXB accrete mass originating from the companion
stellar wind, while the matter accreting from the companion of a LMXB comes from
the surface of a Roche lobe filling companion.

These differences imply a very different phenomenology. The HMXB neutron
stars accrete matter that is tied to the magnetic field lines far from the compact
object. The material is channeled by the magnetic field onto the magnetic poles
of the neutron star, and the radiation intensity is shaped by the accretion column.
Provided that the magnetic and rotation axes are misaligned, the X-ray flux will be
modulated in time as the neutron star spins. These systems appear like X-ray pulsars.
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Note that the energy source in X-ray pulsars is accretion onto a neutron star, rather
than rotational energy from the neutron star as in the case of radio pulsars. Indeed the
periods of the X-ray pulsars are observed to either increase or decrease with time.

A disk forms around the compact object in LMXB as material flows from the
companion through the Lagrangian point. The magnetic field being weak, it does not
channel the material to the poles of the neutron star. The mass is instead accreted in
a more uniform way onto the neutron star. As a result, the flux is not strongly mod-
ulated by the neutron star spin, and the system does not appear like an X-ray pulsar.

The accreting material is mainly in the form of H and He. In LMXB, every few
hours it is ignited in an explosive nuclear fusion reaction that leads to short bursts
of X-ray radiation. These systems are called X-ray bursters.

A further distinction on the type of binary is related to the mass of the compact
object. When this mass exceeds the maximum mass for a neutron star, the system
contains a black hole “candidate”. The observed properties of the system are then
not linked to any magnetic properties of the compact object.

16.3 High-Mass X-Ray Binaries, the X-Ray Pulsars

These binaries are made of a neutron star and a high mass star, mostly either a O
or B giant or a Be system in which the companion is a B star with emission lines.
The strong magnetic field implies that the accretion flux is channeled to the polar
regions of the neutron star. It is within this accretion column that the cyclotron lines
discussed in Chap. 4 form, and these observations therefore confirm the presence of
the very high magnetic fields directly. Figure 16.5 shows how such a system might
appear.
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Fig. 16.5 Schematics of the accretion funnel formed at the surface of a HMXB as accreted matter
is channeled by the magnetic field onto the poles of the neutron star. Radiation escapes from the
sides of the funnel

The orbital periods that one finds are in the range from 1 to 200 days, while the
neutron star spin periods range from a fraction of a second to some 1,000 s. Some
of the orbits are so tight that the compact object orbits the companion at a distance
where there is still a substantial density of matter. This then causes the X-ray source
to be highly absorbed and therefore difficult to observe in the soft X-ray domain, in
which absorption is most marked, but also where most X-ray instruments have been
particularly sensitive. The INTEGRAL satellite was designed with instruments that
are also sensitive in the hard X-rays and with a large field of view. This satellite has
therefore discovered a large number of these absorbed systems. Figure 16.6 shows
the spin period and the orbital period of the X-ray pulsars observed by INTEGRAL.
The nature of the companion, either an early type supergiant or a Be star, has clearly
an influence on the timing properties of the X-ray source.

The light curves of HMXB display a wide set of characteristics. Some HXMB
are persistent, while others are observed only for limited periods of time. These
latter sources are called transient. Clearly the classification of a source as transient
depends on the sensitivity of the instrument with which it is observed. Nonetheless,
transient sources have a wide dynamic range, much wider than that of persistent
ones. The X-ray luminosity of the sources being directly related to the accretion rate,
the large amplitude variability of transient sources is related to the correspondingly
large accretion rate variations. In Be binaries, for example, the companion at times
expels material that forms a broad equatorial belt. The compact object only accretes,
and shines, when the belt is there and when it crosses this belt. This gives a periodic
appearance and disappearance of the sources with the orbital period and long spells
of time when no emission at all is observed, when the companion is not shedding any
mass. Some sources are observed only for very short periods of the order of several
hours to a day that may be recurrent with long intervals. These are called supergiant
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fast X-Ray transients (SFXT). The peculiar behaviour of these sources is possibly
related to the very clumpy nature of the wind that surrounds the companion. In
contrast, the more classical supergiant HMXBs (abbreviated SGXBs) are persistent
sources. There is a rapidly growing body of data, and papers, on these sources, in
part due to the numerous discoveries of INTEGRAL in this field.

Rather than providing a very descriptive development of the many types of light
curves of HMXB we will now focus on the properties of X-ray pulsars and their
physical understanding acquired over the years.

In X-ray pulsars the neutron star spin period decreases at some epochs, i.e. the
angular velocity and the angular momentum of the neutron star increase. Figure 16.7
shows a long-term frequency history for a number of pulsars. The presence of spin-
up periods shows that any slowing down of the pulsar cannot be the energy source
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at the origin of the high energy radiation, which is, in these systems, accretion onto
the compact object. In a binary system the source of angular momentum is to be
found in the orbital motion of the system. We can understand the spin up or the spin
down of the neutron star by looking at the distance at which the accreted matter is
locked to the pulsar magnetic field lines and calculating the Kepler angular velocity
at this distance.
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The distance at which the magnetic field dominates the geometry of the accretion
flow is called the Alfven radius rA. This radius is given by the equality of the B field
energy density and that of the accretion flow. Assuming that the thermal energy
density of the accreted fluid is small compared to the kinetic energy density of the
flow, this condition is

B2(rA)

8π
=

1
2

ρ(rA)v
2(rA), (16.1)

where B(r) is the magnetic field, ρ(r) is the accretion flow density as a function of
the distance to the neutron star, and v(r) is its velocity. Consider a dipole field

B(r) = B0(
Rstar

r
)3 (16.2)

with B(rstar) of the order of 1012 G and a free fall accretion for which the velocity is
the escape velocity

v(r) = vff(r) =

√
2GM

r
(16.3)

ρ(r) = ρff(r) =
Ṁ

4πr2vff(r)
,

where we have used the continuity equation and a constant mass accretion rate Ṁ to
calculate ρ(r). After some algebra one obtains

r7/2
A =

√
2B2

0R6
star

Ṁ
√

GM
(16.4)

rA � 3.2 ·108Ṁ−2/7
17 B4/7

0,12R12/7
star,6(

M
M

)−1/7 cm.

In realistic cases the accretion is unlikely to be free fall, but a significant amount
of angular momentum is likely to be present and the radius to consider is likely to
be somewhat less than the Alfven radius. We will use r0 � 1

2 rA in the following.
For matter in Keplerian rotation at r0, as is expected if the flow at larger distances is
organised in an accretion disk, the accreting flux has a specific angular momentum
(defined as the angular momentum per unit mass)

�̃(r) =
√

GMr0. (16.5)

At r0 the accreted matter becomes solidly linked to the magnetic field lines that
are corotating with the neutron star. The specific angular momentum of the accreted
flow is, therefore, transferred to the star, thus creating a change in its angular
momentum and velocity. This can be expressed as



16.3 High-Mass X-Ray Binaries, the X-Ray Pulsars 245

d
dt
(IΩstar)� Ṁ�̃(r0). (16.6)

As matter is accreted onto the neutron star, its moment of inertia I changes
with time. The variation of the neutron star angular momentum therefore has
two terms

d
dt
(IΩstar) =

dI
dt

Ωstar + I
dΩstar

dt
. (16.7)

The first term may be expressed as

dI
dM

ṀΩstar � I
M

ṀΩstar = �̃starṀ, (16.8)

which defines the specific angular momentum of the neutron star. The second term is

I
dΩstar

dt
=−IΩstar

Ṗ
P
. (16.9)

Assembling the two terms of (16.7) and using (16.6) leads to the following
expression for the spin period variation

Ṗ
P
� Ṁ

IΩstar
(�̃star − �̃(r0)). (16.10)

This explains naturally how the sign of the period derivative can change. When
the specific angular momentum of the accreted matter is larger than that of the star,
the latter will be spun up, while if the accreted specific angular momentum is smaller
than that of the neutron star the pulsar will be slowed down. When the corotating
angular velocity at r0 is much larger than the Kepler velocity at this distance to the
neutron star, when it actually exceeds the escape velocity from the system, then the
accretion flow will be stopped and the mass expelled from the binary. This leads to
a strong decrease in the X-ray luminosity of the object. This is referred to as the
propeller effect.

When the neutron star angular momentum can be neglected in comparaison with
that of the accretion flow, Ṗ in (16.10) depends only on �̃(r0) which we know from
(16.5). We also know from (16.4) that r0 ∝ Ṁ2/7. We can then express the pulsar
spin period derivative as

Ṗ ∝ − P
IΩstar

ṀL−1/7 ∝ −(PL3/7)2, (16.11)

where we have used that Ṁ ∝ L. Both terms being observable, we can test this result
with observations. This is done in Fig. 16.8 for a number of X-ray pulsars.
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16.4 Low-Mass X-Ray Binaries (LMXB)

In LMXB the magnetic field is generally weak. It has had time to decay as these
systems are old, and does not influence the accretion flow markedly. The matter
accreted onto the compact object flows from the Lagrangian point of the binary
system when this point is located at the surface of the low-mass companion. The
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flow than arranges itself in an accretion disk (see Sect. 10.3) and finally either falls
into the black hole horizon or settles at the surface of the neutron star, depending
on the nature of the compact object. The main components of the spectrum of these
objects are the accretion disk (described in Chap. 10), a hot corona that Comptonises
a fraction of the disk photons (see the discussion on Compton processes in Chap. 6)
and a layer of material cooling on or near the surface of the neutron star. The last
component is absent when the compact object is a black hole. In essence the soft
X-ray emission around 1 keV originates on the surface of the accretion disk while
the hard emission is due to the hot Comptonising corona. The relative importance
of these components can be very variable, also within one object. This has led
to the concept of “states” of sources, a classification that was originally purely
observational and related to the brightness of a source. A source was said to be
in a high state when it was bright and in a low state otherwise. The concept had to
be refined when it was discovered that sources can be bright in soft X-rays and weak
at hard X-rays or the contrary.

The evolution of the X-ray spectra of LMXB is illustrated in Fig. 16.9 which
shows the spectral energy distribution of the black hole system GRO J1655–40
measured at several different epochs. The relative importance of disk and corona
changes dramatically. At certain epochs the corona even seems to be evaporating
the inner parts of the disk. This description is phenomenologically driven rather
than based on first principles, since the interplay between corona and disk, and even
the very existence of the corona itself, follow neither from first principles nor from
the structure of the disk (as described in Sect. 10.3). Note, however, that even if
this scenario does not convey the whole truth, whatever the model of the source it
will have to include elements that have similar phenomenological components and
behaviours.
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LMXB vary in time in a very rich way, both in the components already
mentioned, and sometimes also including a jet (see Sect. 16.5.3). This is illustrated
in Figs. 16.10 and 16.11 that show the X-ray light curves of GRS 1915+105
observed by the all sky monitor (ASM) of RXTE over a period of somewhat less
than a year, combined with a detail from the X-ray monitor on board INTEGRAL
covering 4 days.

The characteristics of the source variability depend on the source state. This
observational fact is natural in the picture just elaborated, as one does not expect
disk, corona or interface layer to have the same characteristic time constants. When
different components dominate the emission of the system, the variability properties
of the X-ray light curve will therefore change.

The spectral energy distributions of the sources do not change randomly in
parameter space, but follow more or less well defined paths in (X-ray) colour–
colour or colour–intensity diagrams (see Fig. 16.12 for two examples). These paths
have been called “Z” or “atoll” depending on their shape. The existence of paths
linking different states indicate that successions of states are not random, but instead
follow well-defined causality relationships between one state and the next, most
probably based on instabilities that develop in the different components, in particular
in the disk.

In a binary system in which the companion has a very slow evolution, as is the
case in LMXB, the only variable parameter that can influence the properties of the
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Fig. 16.11 The X-ray light curve of GRS 1915+105 over 4 days as observed by the X-ray monitor
of INTEGRAL (From Hannikainen et al. 2005)

X-ray emission is the mass accretion rate onto the compact object. The relative
importance of the components must therefore ultimately depend on this crucial
parameter. This dependence may not be simple, as components of the system may
respond non-linearly to the accretion rate. The accretion rate itself is not a free
parameter in a binary system, being the result of the interplay between the position
of the inner Lagrangian point L1 and the properties of the companion star surface
at this point. A complete theory of LMXB would start from this point and follow
with no additional parameter, as all subsequent steps in the evolution of the matter
flowing from the companion to the compact object are fully dictated by micro and
macro physics, the laws of which are known. The sheer complexity of the systems
has, however, not allowed us to reach this level of understanding.

16.4.1 Bursters

A large fraction of LMXB emit more-or-less regularly, every few hours, bursts of X-
rays in addition to their persistent X-ray emission. These X-ray bursts are sometimes
referred to as type 1 X-ray bursts to distinguish them from bursts due to accretion
rate instabilities in a few sources, themselves called type 2 X-ray bursts. Sources
of (type 1) X-ray bursts are called X-ray bursters. Figures 16.13 and 16.14 show
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a single burst observed by the EXOSAT satellite, and a long observation of the
burster 4U 1636–536 also by EXOSAT. EXOSAT, an X-ray observatory of ESA
operational between 1983 and 1986, had been designed to make observations of
sources occulted by the Moon in order to measure accurate positions of the sources
on the sky. This aim led to a design that included a large area proportional counter
and a long (80 h) period orbit. Although no observations of a Moon occultation ever
took place, as X-ray telescopes had overtaken this location technology by the time of
the EXOSAT launch, the combination of instruments and orbit allowed, for the very
first time, long observations that were not interrupted by the occultation of sources
by the Earth. This led to the first long light curves, a particularly important tool in
the study of variable X-ray sources. The measurement of the time interval between
bursts in LMXB is one example.
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Fig. 16.14 The EXOSAT light curve for the X-ray burster 4U 1636–536 (Breedon et al. 1986)

Individual X-ray bursts are characterised by a fast rise (seconds) followed by
an approximately exponential decay. The very rough ratio of the time-averaged
persistent emission to time averaged burst fluxes is
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∫
dtLpersistent∫

dtLbursts
� 100. (16.12)

This is interpreted as originating from the ratio of gravitational binding energy
on the surface of a neutron star to that of nuclear energy liberated when the accreted
material, in the form of H and He, is transformed into Fe, the equilibrium nucleus in
the external layers of a neutron star. The persistent flux is emitted continuously as the
mass is accreted onto the surface of the neutron star and settles. The available energy
is therefore the gravitational binding energy at the surface. The bursts are the result
of the nuclear energy release in the fusion reactions. The nuclear reactions take place
in an explosive way, as the electron degeneracy in the surface layer of a neutron star
is very high. The conditions at the surface of a neutron star are indeed close to those
met in white dwarfs. Degenerate electrons imply therefore that the temperature and
pressure do not change at the onset of the nuclear reaction. The medium does not
react thermodynamically, which would decrease the density and thus the reaction
rate, and the reaction proceeds unchecked until the degeneracy is lifted.

We have seen when discussing neutron stars that the binding energy of particles
at their surface is of order 10 % of the particle rest mass. On the other hand, the
nuclear energy available in fusion reactions is of few parts per thousand of the rest
mass, leading to a theoretical ratio close to the observed ratio of persistent to burst
energies.

Spectra of X-ray bursts are well approximated by black body emission with
temperatures of some 107 K. The properties of the black body emission can therefore
be used to gain some deep insight into the properties of neutron stars.

The observed flux per unit frequency from a spherical black body is given by

fν =
4πR2

star

4πD2 πBν(T ), (16.13)

where D is the distance to the source and Bν is the black body emissivity. The
luminosity of the source is given by

L = 4πR2
starσT 4, (16.14)

where σ is the Stefan–Boltzmann constant. The integrated flux which is measured at
the Earth is L/(4πD2). Most of the sources are observed in the direction of the centre
of the Galaxy. Thus, on average, the distance to the sources is the distance to the
Galactic centre. This distance is known with tolerable accuracy, and is of the order
of 8 kpc. The temperature is given by the spectral shape, and is measured by fitting
the observed spectra. The flux is observed and the distance known. It is therefore
possible to deduce the radius of the neutron star. It is found (see Fig. 16.15) that the
resulting radii are of the order of 10 km, as expected from the structure of the neutron
stars. Although not particularly precise, and insufficient to gain insight into the
nature of the neutron star equation of state, this result is a powerful demonstration
of the existence of neutron stars.
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Fig. 16.15 Variation of the black body temperature, black body radius and luminosity for a
composite of four bursts observed with EXOSAT from 4U 1636-536, as obtained from time-
resolved black body fitting of burst spectra (Turner and Breedon 1984)
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It is not only possible to measure the radius of a neutron star using X-ray
burst data, but it is also possible to follow the evolution of the burst with time.
Figure 16.15 shows how the temperature and the luminosity of the composite of
several bursts from 4U 1636–536 change as the burst proceeds, along with the
resulting variation of the radius of the photosphere. The radius increases as the
photon pressure on the surface of the star reaches the Eddington value, the radiation
pressure becoming then higher than the gravitational pull and causing the observed
expansion. Absorption features have also been observed in burst spectra, thus giving
a gravitational redshift at the surface of the neutron stars, and consequently a
measurement of the M/R ratio.

Timing information can also be gathered during bursts. In addition to the
burst evolution, flux modulations with periods of several milliseconds have been
measured. This provides clues on the evolution of binary systems and will be
discussed in Sect. 17.1.

The phenomenology of bursters is not limited to bursts. In several LMXB,
including sources like 4U 1254–69, Fig. 16.16, dips in the light curves are observed
at regular intervals. These periodic dips are highly dynamical, with soft X-ray flux
variations on time scales as short as seconds. They are thought to occur in systems
that are seen close to the plane of the disk. When matter flows onto the accretion
disk, the pressure at the point of impact increases, leading to a thickening of the disk
at this place. This thickening comes once per revolution of the binary system across
the line-of-sight to the observer and causes a decrease in the source flux through
absorption in the matter along the line-of-sight. This interpretation is confirmed by



16.5 Black Hole Candidates 255

the observation of a spectral hardening at the time of the dip. This is shown in the
ratio of observed counts in different energy bands in Fig. 16.16. This hardening is
compatible with the spectral change induced by an increased column density of
cold matter along the line-of-sight. The very structured light curve at the time of the
dips visible in Fig. 16.16, which includes several substructures, is also expected if
matter impacts on the disk, and creates a highly dynamical and irregular flow at this
phase. This is, however, still the subject of many investigations, not all the observed
features fitting with this simple model.

16.5 Black Hole Candidates

We showed in Chap. 13 that neutron stars have a maximum mass beyond which
degenerate neutrons cannot resist their own gravitational attraction. This mass is
about 3 M, the exact value depending on the poorly-known equation of state at
densities beyond the nuclear density. Beyond this mass, the structure of the object
must be that of a black hole.

There are systems in which the mass of the compact object is inferred to be larger
than the mass limit for neutron stars. These systems are binaries in our Galaxy, but
also the massive black hole in the centre of our Galaxy or the supermassive black
holes that power the phenomenology of AGN.

We discuss in this section both the dynamical evidence for compact objects of
masses beyond 3 M within our Galaxy (excluding the central black hole) and also
some direct evidence for the presence of black holes in X-ray binaries.

16.5.1 Dynamical Evidence in X-Ray Binaries

In binary systems it is possible to measure the radial velocity of the companion
object from wavelength variations of the absorption lines of the companion optical
spectra. From the velocity amplitude it is possible to deduce the mass function of
the binary

f (M) =
(MX sin i)3

(MX +MC)2 , (16.15)

where MX is the mass of the compact X-ray source and MC the mass of the
companion. sin i gives the inclination of the orbital plane on the sky. The mass
function is a lower limit for the mass of the compact objet. It is equal to the mass of
the compact object in the limiting case of an orbital plane perpendicular to the plane
of the celestial sphere (sin i = 1) and a zero mass companion.

The first system in which it was suspected that the mass of the compact object
is larger than 3 M is Cygnus X-1, a HMXB. Cygnus X-1 is a bright X-ray source
that was discovered shortly after the discovery of X-ray sources outside the solar
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system. It was then associated with a B supergiant star of nineth magnitude (HDE
226868) which was found to be in a binary of period 5.6 d. Analysis of the radial
velocity of the optical companion gives a mass function f (M) = 0.25± 0.01 M

M .
The absence of an eclipse implies that i is less than about 65◦ with a most probable
value of about 30◦. Taking into account the optical properties of the companion and
the orbital constraints, the masses have most likely values of MC = 33± 9M and
MX = 16±5M. Further analysis yields a lower mass limit of 9 M for the compact
object. Uncertainties in the analysis arise from the fact that the properties of the
companion may be influenced by the binary nature of the system, the strong X-ray
flux from the compact object that may influence the companion’s surface properties,
and also from the unknown orbit inclination. Nonetheless this remains a very strong
black hole candidate.

LMC X-3 is a HMXB in the Large Magellanic Cloud. The optical identification
of the companion leads to a 17th magnitude star in a binary of period 1.7 d with
a velocity amplitude of 235 km s−1. This in turn leads to a mass function f (M) =
2.3M. Optical observations of the variations of the companion indicate that it is an
ellipsioidally distorted B star. The analysis of the distortions indicate that the mass
ratio must be MC

MX
� 0.6−0.8 leading to estimates of MX � 4−7M. The rotation of

the companion allows us to gain some idea on the inclination of the system which is
found to be i = 50− 70◦, leading to a lower mass estimate of 6M for the compact
object. In this case, the mass of the compact object is such that if it were a normal
star it would outshine the optical companion, leading directly, even without knowing
the X-ray flux of the system, to the very peculiar nature of the compact object.

There are other black hole candidates in HMXB. It is, however, important to look
also at LMXB. Indeed, since the mass function is a lower limit for the mass of the
compact object, high values of the mass function imply a large mass for the compact
object independently of any assumption or model for the companion.

An extreme system is A0620–00 (= Nova Mon 1975, 1917). This is a tran-
sient source. The binary period of this system is 7.8 h with orbital velocities of
470 km s−1. This leads to a mass function f (m) = 3.18± 0.16M, already larger
than the maximum mass of a neutron star. A reliable estimate for the mass of the
companion (0.7M) and a limit of 50◦ for the inclination lead to a lower mass limit
for the compact object of 7.3M.

Another transient system, GS1124-68 (= Nova Muscae 1991) has been found to
have a period of 10.5 h and a mass function f (M) = 3.1± 0.5M. This system has
become famous for the observation by the SIGMA telescope of a bright 511 keV line
which appeared for a few hours during the outburst (Fig. 16.17). This observation, if
confirmed in this or other systems, implies that black hole (candidate) systems may
be the source of positrons in our Galaxy, an observation that may have implications
in understanding the diffuse 511 keV flux observed in the central regions of the
Galaxy. This line feature has, however, not since been observed again despite many
years of observations of X-ray binaries with the INTEGRAL satellite.

These last two systems show unambiguously that some reliable and model
independent compact object mass estimates are higher than the maximum possible
mass of a neutron star. One therefore concludes reliably that stellar evolution does
lead to the formation of black holes.
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Fig. 16.17 The 511 keV electron–positron annihilation line observed by SIGMA in 1991.
(Sunyaev et al. (1992, Fig. 1, p. L76), reproduced by permission of the AAS). See also Goldwurm
et al. (1992)

16.5.2 Intrinsic Signatures

It is very difficult to “prove” that an object is a black hole based on its emis-
sion signature. The main reason for this is that a neutron star is only slightly
larger than the same mass black hole horizon. Additionally the last stable orbit
around a Schwarzschild black hole is at 3RS. Since in a black hole system
we observe matter further than the last stable orbit, we observe matter in the
same region in both neutron star and black hole systems. In fact proving the
existence of a black hole in these terms means proving the absence of a surface
to the object.

The contrary, proving that an object is a neutron star, is a much easier task and is
readily made as soon as an X-ray burst is observed, as these bursts explicitly depend
on the presence of a surface. It thus happened in the course of the past years that
some objects that were originally believed to be black holes showed a burst, and
were thus immediately re-classified as neutron stars.

This difficulty is nicely expressed in Fig. 16.18 in which one shows the hard X-
ray luminosity and the soft X-ray luminosity of a number of objects. It was believed
for a long time that neutron stars live in the so called X-ray burster box, but a
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Fig. 16.18 Hard and soft X-ray luminosities from a number of X-ray binaries. (From di Salvo
et al. (2001, Fig. 5, p. 54), reproduced by permission of the AAS)

number of them have been shown to lie on the right side of the box, leaving only the
top part of the diagram for black hole systems. This shows that accreting neutron
stars can have bright hard emission tails. These hard tails are thought to originate
from thermal Comptonisation of soft photons by electrons with temperatures above
100 keV.

An interesting argument is brought by Tanaka and Lewin (1995) who argued that
the inner radius of accretion disks can be deduced from the spectral shape of the X-
ray emission. (Remember that the highest temperature of an accretion disk is found
at its innermost radius and is a function of this radius.) Tanaka and Lewin (1995)
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performed this analysis for a number of black hole candidates obtaining inner radii
of 18–40 km and for a number of neutron stars, for which they obtained inner radii
of 4–10 km, see Fig. 16.19. The lower inner radii of the neutron star systems can
then be interpreted as showing that the central object is indeed less massive than the
black holes for which the inner radius has to be at about 3RS.

Paradoxically, the luminosity of the neutron stars can also be expected to be
larger than that of the black holes. This results from the fact that the kinetic energy
of the accreting material on the last orbit of the accretion disk is radiated when this
material hits the (slowly rotating) surface of the neutron star while it is advected into
the black hole in the last free fall towards the horizon. This leads to the existence of
a bright boundary layer in neutron star systems that is not observed in black holes.

High frequency variability with timescales of the order of few RS/(0.5c) �
O(1)ms is expected when an irregular mass distribution reaches the last stable
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orbits around a black hole. This variability is expected to have a quasi periodic-
behavior, hence the name Quasi Periodic Oscillation (QPO), rather than a strictly
periodic behaviour, as the “clumps” will soon disappear beyond the last stable orbit.
This phenomenon has given rise to a large body of literature. Figure 16.20 gives an
example of a study of QPOs in two black hole candidates.

The study of matter close to the horizon of black holes is of considerable
importance, not only to demonstrate the presence of black holes, but more generally
as the only available tool to test general relativity in strong fields. Until the
detection and measurement of gravitational waves, X-ray astronomy provides the
only possibility to probe the metric in deep gravitational fields. Variability and
spectral shape provide the possibility of testing the Einstein theory of gravitation
in the strong field limit that is not accessible in the solar system.

16.5.3 Micro-quasars

A number of LMXB emit relativistic jets in a way very similar to those of
quasars (see Chap. 20). These systems have been called micro-quasars. Their
phenomenology includes emission that spans the electromagnetic spectrum from
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Fig. 16.21 The micro-quasar GRS 1915+105 observed at several epochs in the radio domain.
Blobs extending on both sides of the central object are seen to move out with relativistic velocities
(0.92 c), from Mirabel and Rodriguez (1998, Fig. 3), reprinted with kind permission of Nature
Publishing Group

radio to gamma rays and a marked variability in time. Some of this variability is
that typical of LMXB including a black hole rather than a neutron star, while some
is linked with the emission of the jets. Micro-quasars are of interest because they
exhibit in a matter of hours a phenomenology that is observed to take place over
years in quasars. Figure 16.21 shows the expanding radio jet of the micro-quasar
GRS 1915+105.

Simultaneous observations in micro-quasars across the electromagnetic spectrum
have shown the link between the accretion disk and the emission of blobs in the
jet. Figure 16.22 shows X-ray, infrared and radio light curves of the micro-quasar
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Fig. 16.22 Light curves of the micro-quasar GRS 1915+105 illustrating the link between the
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GRS 1915+105. The interpretation of these light curves is that the X-ray emission
is coming from a corona surrounding the disk and the compact object. This corona
disappears, the X-ray flux decreases in a few minutes, at the same time as a compact
blob is ejected. The blob emits synchrotron radiation. It is at first self absorbed and
emits in the infrared and then expands, becomes optically thin, and radiates in the
radio domain as it moves away from the central object. This model describes well
the light curves shown in Fig. 16.22, where the X-ray flux decreases first, after which
the X-ray variability looses its short time fast variability as the relative importance
of the corona decreases. This is followed by the onset of the infrared flux as the
blob starts its expansion. It is still very compact and self absorbed in the radio.
As the blob continues to expand the self absorption frequency decreases and the
blob becomes transparent also in the radio domain. While this phenomenology
is well described and coherent, note that the “blob” emission, acceleration and
collimation are not further described. The phenomena giving birth to the blobs and
their acceleration are likely due to magneto-hydrodynamical processes taking place
within the accretion disk.
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16.6 Bibliography

Some of the physical basis of binaries including a compact object can be found
in Shapiro and Teukolski (1983).

All the subjects discussed in this chapter are the object of a large body of
literature. A number of reviews are found in Lewin et al. (1995).

An excellent summary of the compact object mass measurement in X-ray
binaries can be found in Cowley (1992). This was extensively used in Sect. 16.5.1.

Many aspects of the accretion flow in X-ray binaries are described in the already
mentioned review (Done et al. 2007), while the very fast time variability of these
objects is reviewed in van der Klis (2000).

A recent review of binary systems including a black hole candidate can be found
in Remillard and McClintock (2006).

References

Bildsten L., Chakrabarty D., Chiu J., et al. 1997, ApJS 113, 367
Bodaghee A., Courvoisier T. J.-L., Rodriguez J., et al. 2007, A&A 467, 585
Breedon L.M., Turner M.J.L., King A.R. and Courvoisier T.J.-L., 1986, MNRAS 218, 487
Brusa M., Comastri A. and Vignali C., 2001, in Proceedings of XXI Moriond Conference “Galaxy

Clusters and the High Redshift Universe Observed in X-rays”, eds by D. Neumann, F. Durret,
and J. Tran Thanh Van

Courvoisier T.J.-L., Parmar A., N., Peacock A. and Pakull M., 1986, ApJ 309, 265
Cowley A.P., 1992, ARA&A 30, 287
Done C., Gierlinski M. and Kubota A., 2007, AARv 15, 1
Eggleton P.P., 1983, ApJ 268, 368
Giacconi R., Gursky H. and Paolini R., 1962 Phys. Rev. Let 9, 439
Gilfanov M. and Bogdan A., 2010, Nature 463, 924
Ghosh P. and Lamb F. K., 1979, ApJ 234, 296
Goldwurm A., Ballet J., Cordier B. et al. 1992, ApJ 389, L79
Grimm H.-J., Gilfanov M. and Sunyaev R., 2003, ChJAA 3S, 257
Hannikainen D.C., Rodriguez J., Vilhu O., et al. 2005, A&A 435, 995
Lewin W. H. G., van Paradijs J. and Taam, R. E., 1993, Space Science Reviews, Volume 62, Issue

3-4, pp. 223
Lewin W. H. G., van Paradijs J. and van den Heuvel, 1995, in X-ray binaries, Eds Lewin, van

Paradijs and van den Heuvel, Cambridge University Press
Lin D., Remillard R.A. and Homan J., 2009, ApJ 696, 1257
Remillard R.A. and McClintock J.E., 2006, ARA&A 44, 49
Mirabel I.F. and Rodriguez L.F., 1998, Nature 392, 673
Shapiro S.L. and Teukolsky S.A., John Wiley and Sons, 1983
Sunyaev R., Churazof E., Gilfanov M. et al. 1992, ApJ 389, L75
Tanaka Y and Lewin W. H. G., 1995, in X-ray binaries, Eds Lewin, van Paradijs and van den

Heuvel, Cambridge University Press
Turner M.J.L. and Breedon L.M., 1984, MNRAS 208, 29
van der Klis M., 2000, ARA&A 38, 717



Chapter 17
X-Ray Binaries Evolution

Like all other objects in the Universe, X-ray binary systems change with time, and
the state in which we observe them now is the result of their evolution. The history
of these systems can be short as in HMXB or long as in LMXB. In all cases it is
the result of the evolution of both components of the system. This evolution has
undergone at least one violent event, as the compact object in the binary is the result
of a core collapse supernova. This explosion, during which a significant part of the
mass of the star is expelled, takes place in such a way that the binary nature of the
system is maintained.

The scenarios of X-ray binary evolution are governed by stellar evolution and by
angular momentum conservation. In all cases the story begins with a binary system
comprising two normal stars. The stellar evolution models give the size of the stars
and the properties of their stellar wind as a function of their mass and age. The stars
evolve, shed mass and finally leave a remnant, either a white dwarf, a neutron star
or a black hole. Those systems that evolve to become X-ray binaries are those in
which the more massive star evolves to a supernova of type II and settles as a black
hole or neutron star while the second star, that evolves in a slower manner, because
of its smaller mass, remains at first on the main sequence. The binary system orbital
parameters prior to the type II supernova that gives birth to a compact object, and the
supernova explosion itself, must also be such that the system remains bound. When
the companion is also massive, the system becomes a HMXB during the remaining,
short, life of the companion. When the companion is less massive than the Sun the
resulting system will be long lived as a LMXB. There are some systems where the
companion has an intermediate mass.

The subsequent evolution of the X-ray binary system is determined by mass
transfer and by angular momentum losses and transfer. Angular momentum is
lost from the system when wind from the companion escapes to infinity. Angular
momentum is also transferred from the companion to the compact object as matter
is accreted. These mass and angular momentum shifts modify the orbital parameters
of the binary system.

One can estimate the mass increase of the compact object by considering the
Eddington luminosity

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 17, © Springer-Verlag Berlin Heidelberg 2013
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Ṁ =
L

ηc2 � 1017gs−1 (17.1)

for a solar mass compact object accreting at the Eddington luminosity with an
efficiency η = 0.1. This corresponds to about 0.001M per million years. This
shows that the mass of the compact object in HMXB that have short lives will not
increase significantly over their active period. Only compact objects in LMXB that
would shine at their Eddington luminosity for hundreds of millions of years would
see their mass increase substantially.

In a binary system, the size of the companion at times exceeds the Roche lobe.
In this situation mass freely falls onto the compact object, leading to a persistent
and bright emission. Orbital angular momentum is transferred to the companion
together with mass, which leads to changes in the binary parameters, and therefore
to the size of the Roche lobe. While the total angular momentum is conserved, that
of the binary is not when mass escapes the system, for example through stellar
winds. When all the mass lost by the companion is captured by the compact object
the evolution is called conservative. In this case the compact object accretes orbital
angular momentum and spins up. The binary orbit shrinks correspondingly.

Thus depending on the parameters of the original binary system and the masses
of both stars, the binary will evolve on time scales dictated by stellar evolution and
mass transfer. If the companion mass is high enough, it may eventually also explode
as a core collapse supernova leaving a second relativistic remnant. Depending on
the explosion asymmetry and the binary orbit just before the explosion, the system
may remain gravitationally bound leading to a double neutron star system as in
PSR 1913+16. The subsequent evolution of this type of binary is governed by the
loss of gravitational waves that ultimately leads to the merging of the two compact
objects in a burst of gravitational radiation.

These general ideas can be followed in a number of cases to illustrate the different
phases through which the X-ray binaries can evolve. Rather than following this path
(for which an excellent review is mentioned in the bibliography at the end of the
chapter) we will discuss two subjects that lead to the understanding of the properties
of the millisecond pulsars we met in Chap. 14.

17.1 Millisecond Pulsars

There are a number of radio pulsars that do not fit the general discussion we had
in Sect. 14.2. These have very short periods, a few milliseconds, and very small
period derivatives, which, as we have seen, indicates weak magnetic fields, of the
order of 108 G.

These properties do not match those of young pulsars discussed in Chap. 14.
Young pulsars are indeed expected to have rather short periods (less then or of the
order of 1 s) and large magnetic fields. They therefore slow down rapidly. They
move towards the right and the bottom in the Fig. 17.1 during their “lives” as normal
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pulsars as they slow down and as their magnetic fields decay. They eventually cross
the “death line” when magnetic field and spin have reached values which are too
weak to sustain radio emission. They then cross the pulsar death line, become radio
silent, and enter the pulsar graveyard in the lower right corner of Fig. 17.1.
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Millisecond pulsars are found in the lower left area in Fig. 17.1, where the
evolution of single pulsars does not lead.

If the pulsar is in a binary system with a low mass normal star companion, the
companion will eventually evolve to the red giant stage and fill its Roche lobe.
The binary system then becomes a LMXB with a neutron star that radiates through
accretion (and nuclear reactions). As the neutron star accretes material it will also
accrete angular momentum, as discussed in Sect. 16.3. Since the magnetic field is
weak, matter is locked to the magnetic field close to the neutron star, and the neutron
star rotation will spin up.

As we have seen, the neutron star neither spins up or down when the Alfven
radius rA (the radius where the accreting material becomes locked to the magnetic
field lines anchored in the neutron star) is equal to the radius where the Keplerian
rotating accretion disk rotates with the neutron star spin period. In other words, the
limit between spin up and spin down is

Ωstar = ΩK(rA). (17.2)

The distance to the star where the solid rotation angular velocity equals the
Kepler angular velocity is

rK =

(
GM

Ω 2
star

)1/3

∝ (MP2)
1
3 (17.3)

Equating this with the Alfven radius given in (16.4) gives the equilibrium period
Peq. When including the appropriate numerical factors, this is found to be

Peq = 1.9msec ·B6/7
9

(
M

1.5M

)−5/7( Ṁ

ṀEddington

)−3/7

R18/7
6 , (17.4)

where B9 is the magnetic field in units of 109 G and R6 is the radius in units of
106 cm.

Clearly the radius cannot be less than the radius of the neutron star, which leads
to minimum periods of the order of 1–2 ms. The minimum period is a constraint
for the equation of state, as the radius cannot be such that the Kepler period at this
radius is less than the observed period.

In summary the evolution of millisecond pulsars can be seen in Fig. 17.2. In
a binary system the pulsar evolves as in an isolated system to the graveyard, but
when the companion evolves to the point when it fills its Roche lobe, binary angular
momentum is tranferred to the neutron star, whose period decreases until it again
crosses the “death line” towards radio life this time.

This scenario is very nicely confirmed by observations. Indeed, one has found in
LMXB signatures of fast pulsars. This was first detected in the X-ray emission of
bursters in which periodicities of a few milliseconds were found during the bursts,
indicating that the neutron star is in very rapid rotation. A further piece of evidence



17.2 The Eclipsing Pulsar 269

Log P

Log P

Millisecond pulsars

Radio pulsars

Graveyard

D
ea

th
 li

ne
·
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graveyard, and its subsequent acceleration in a binary system to form a millisecond pulsar

for this scenario was found in the system IGR J00291+5934, a transient source
discovered by INTEGRAL in December 2004. Detailed RXTE timing observations
of the source showed that the pulsar phase was decreasing during the outburst that
lasted for a few weeks (see Fig. 17.3). This is as expected if the pulse period is
decreasing, albeit at a rate that is too slow to be directly measured.

17.2 The Eclipsing Pulsar

The model we have just described implies that millisecond pulsars are to be found in
binary systems. However, it is apparent from Fig. 17.1 (in which binary systems are
indicated by a specific symbol) that there are such objects that are single. For those
that are found in clusters of stars, the stellar density is such that collisions between
stars are relatively frequent. When a binary system is involved in such a collision,
the gravitational energy exchange can lead to the disruption of the binary, and to the
presence of isolated millisecond pulsars.

A further possible scenario to explain the presence of isolated millisecond pulsars
is suggested by the eclipsing pulsar PSR 1957+20. In this system eclipses are
observed, as shown in Fig. 17.4, indicating that the pulsar is in a binary system.
The orbital period is 9.2 h and the eclipse lasts a surprisingly long 8 % of the period.
The mass function of the system can be used to give an estimate of the mass of the
companion
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(MC sin i)3

(MP +MC)
2 = 5.2 ·10−6 M, (17.5)

from which it is evident that the companion is a low-mass star (remember that in
an eclipsing system sin i � 1 and the mass of the pulsar, MP, is most likely around
1.4 M). Indeed with these parameters Eq. 17.5 gives MC = 0.02M for the mass of
the companion.

In a binary system the size of the Roche lobe RL is given by Eggleton (1983)

RL

a
� 0.49q2/3

0.6q2/3 + ln
(
1+ q1/3

) , (17.6)

where, in our system, a = 1.7 ·1011 cm is the semi-major axis and q = 0.014 is the
mass ratio. The size of the Roche lobe is thus found to be RL � 2.8 ·1010 cm.



17.2 The Eclipsing Pulsar 271

1.60742

1.6074

1.60738

P
er

io
d 

(m
s)

0 0.2 0.4 0.6 0.8 1.0
Orbital phase
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pulse between phases 0.2 and 0.3 (From Fruchter et al. (1988, Figs. 2 and 3, p. 238), reprinted with
kind permission of Nature Publishing Group)

The size of the eclipse can be estimated as

Recl ∼ πa · Δ tecl

P
∼ 4 ·1010 cm, (17.7)

larger in extent than the size of the Roche lobe. In a binary the Roche lobe radius
is the largest extent any object gravitationally bound to one of the stars can have,
since any mass outside the Roche lobe is not bound to any of the two stars, but to the
binary system as a whole. It is therefore not possible that the eclipse in PSR 1957+20
is caused by a gravitationally bound object. Instead it is proposed that the companion
is being evaporated by the energy radiated by the pulsar, and that the eclipse is
caused by the “cometary” tail of the material escaping from the companion. This
interpretation is substantiated by the observation that the trailing end of the eclipse
is characterised by long lags in the arrival time of the pulses (see Fig. 17.5). These
lags indicate the presence of a dense plasma that slows the radio waves (see the
discussion of the measurement of distances to pulsars in Chap. 14).

We can estimate whether it is energetically possible to evaporate a substantial
fraction of the companion with energy radiated by the pulsar by comparing the
rotational energy of the pulsar

Erot =
1
2

IΩ 2 � 2 ·1052P−2
ms erg, (17.8)

the energy that is available for radiation, with the binding energy of the companion,
which we estimate at first simply as a uniform sphere

Ebin =
GM2

RC
� 1048

(
MC

M

)2(RC

R

)−1

, (17.9)
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Fig. 17.5 Residuals of the period of the pulsar PSR 1957+20 as a function of the phase around the
eclipse. The delay observed after the eclipse when taking the orbit into account indicates that the
pulses arrive later than expected from the binary parameters. This is due to the fact that the radio
waves are slowed down in the plasma that emanates from the companion in a form of “cometary
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where RC is the radius of the companion. Provided that the efficiency of the energy
transfer from the radiating compact object to the companion, η , is such that

ηErot ≥ Ebin, (17.10)

enough energy will be available to disrupt the companion. The efficiency η has
a geometrical bound (provided that the pulsar energy is isotropically radiated)
given by

ηgeom =

(
RC

2a

)2

. (17.11)

Assuming that the companion fills its Roche lobe, ηgeom < 7 ·10−3. Since Erot >
Ebin/ηgeom, it is in principle energetically possible to evaporate the companion.

The time that this process might take can be estimated by comparing the energy
loss by the pulsar LP = Ėrot which we calculated in Chap. 14

LP = Ėrot =
2
3

R6
NS

c3 B2
(

2π
P

)4

(17.12)
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with the energy that must be acquired by companion star matter in order to escape
its gravitational attraction at velocity v

1
2

Ṁv2 = ηĖrot. (17.13)

We parametrize the efficiency as

η = f ·
(

RC

2a

)2

, (17.14)

with f < 1. The velocity of the escaping material has to be of the order of the escape
velocity

v ∼ vesc =

(
2GMC

RC

)1/2

. (17.15)

Combining Eqs. 17.12–17.15, one obtains an expression for the evaporation time
τevap

τevap =
MC

ṀC
=

3c3

2R6
NS

· 2GM2
c

R3
C

a2

8π4 f
P4

B2 , (17.16)

which has to be compared to the age of the pulsar τpulsar, given by its slow-down
rate

τpulsar =
P

2Ṗ
(17.17)

=
P2

B2 · 3c3

16π2R6
NS

I. (17.18)

It is then clear that
τevap

τpulsar
=

1
η

Ebin

Erot
. (17.19)

For a low-mass star like the companion, the structure is that of a degenerate gas
for which the mass-radius relation is

RC

R
= 0.013(1+X)5/3

(
M

M

)−1/3

, (17.20)

where X is the hydrogen mass abundance. Inserting this in Eq. 17.16, one sees that
the evaporation time is proportional to M3

c :

τevap ∼ M2
C

R3
C

∼ M2
C

M−1
C

∼ M3
C. (17.21)
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When all numerical parameters are included one obtains

τevap

τpulsar
= 0.01

(
0.1
f

)( a
2R

)2
(

P
1.55ms

)2( Mc

M

)2( Rc

R

)−1

. (17.22)

With the properties of the companion of PSR 1957+20 (MC = 0.02M,RC =
0.166R,a = 2.5R) one obtains

τevap

τpulsar
= 4 ·10−3. (17.23)

This shows that it is indeed quite possible, even with a modest efficiency, that
the pulsar evaporates completely its companion in a time short compared to its
age. Since the age of the pulsar is of the order of 109 years, one also sees that
the companion is evaporated in a time of the order 107 years. It is therefore quite
possible that isolated millisecond pulsars have indeed undergone an evolution in
which the pulsar has been accelerated in a phase in which it acquired angular
momentum from the binary system in which it lived during a LMXB period, before
it evaporated the companion.

17.3 Bibliography

The evolution of binary systems including relativistic stars can be found in van den
Heuvel (2009).

The story of the eclipsing pulsar is told in Fruchter et al. (1988) and Phinney
et al. (1988) and in the contribution of G. Srinivasan in Kawaler et al. (1997).

References

Burderi L., Di Salvo T., Lavagetto G. et al., 2007, Ap.J. 657, 961
Fruchter A.S., Stinebring D.R. and Taylor J.H., 1988, Nature 333, 237
van den Heuvel 2009, in Physics of Relativistic Objects in Compact Binaries: From Birth to

Coalescence, Astrophysics and Space Science Library, 2009, Volume 359, 125–198, Springer
Verlag

Kramer M., 2004, IAUS 218, 13 Eds Camilo F. and Gaensler B.M., Astronomical Society of the
Pacific

Phinney, E.S., Evans, C.R., Blandford R.D., Kulkarni S.R., 1988, Nature 333, 832
Kawaler S.D., Novikov, I. and Srinivasan, G., 1997, 1995 Saas-Fee Advanced Course 25 Eds

Meynet G. and Schaerer D., Springer



Chapter 18
Relativistic Jets

The simple fact that stars and galaxies have structures that are markedly influenced
by rotation shows that spherical symmetry is not the rule in the Universe. We have
seen in Chap. 9 that accretion onto compact objects takes predominantly a disk
geometry, due to the angular momentum of the matter being accreted. Another
departure from spherical symmetry in many types of objects is the presence of jets.
These almost one dimensional structures extend from stars in their early phases and
from many types of compact objects like black holes of stellar mass or much more
massive, as seen in the cores of AGN. They extend over many times the size of the
object from which they originate. In radio galaxies, they are observed over hundreds
of kpc, while the central object is less than a light day. Jets seem to be predominantly
associated with the accretion process. This is true of stars in formation but also in
compact objects. But there are also many accreting systems in which no jets have
been observed. The link between jets and accretion is, therefore, a complex one. Jets
have a variety of properties, some being relatively slow (thousands of km s−1), while
others are highly relativistic. Their properties cover a large volume in parameter
space, but in general they are very structured and collimated (Figs. 18.1 and 18.2).

We will not enter a discussion of the jet acceleration and collimation which are
complex magneto-hydrodynamic processes. They are most probably related to the
accretion disk, but possibly sometimes also directly related to the physics of rotating
black holes (see Sect. 12.7 where it can be seen that energy can be extracted from
rotating black holes).

The emission from jets is due to either synchrotron radiation or Compton
processes or both. The seed photons in the latter case are either synchrotron photons
from the jet itself, one speaks then of synchrotron self Compton process, or external
photons, either from the surroundings of the jet or from the cosmic microwave
background. Jets are very structured and made up of brighter and darker patches.
This shows that constituent electrons radiate locally and/or are locally accelerated,
for example in shocks within the jet. This patchy structure is observed in AGN down
to the smallest sizes accessible with Very Long Baseline Interferometry (VLBI)
radio observations (see e.g. Fig. 18.5). Jets being often very structured, they include
brighter spots (commonly referred to as blobs or knots). It is often difficult to

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 18, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 18.1 The jet of the galaxy M87 in the radio, optical and X-rays (From http://www.utahskies.
org/deepsky/constellations/virgo.html)

Fig. 18.2 A VLA image of SS 433, a microquasar with a precessing 26,000 km/s jet (Credit
Blundell and Bowler NRAO/AUI/NSF)

describe the emission of the complete jet with one set of parameters describing
single blobs. Typically a different set of parameters applies to each of the major
constituent elements. While this may lead to an acceptable description of the jets, it
lacks predictive power, and shows that the properties of the different blobs or knots
depend on a number of local conditions and escape a generic description.

The tools developed in Chaps. 5 and 6 allow you to follow the essentials of the
literature on jet emission. What is still lacking, and which will be described in the
next section, is how to relate the jet properties as measured in the observer frame to
the intrinsic physical conditions in the jet reference frame.

http://www.utahskies.org/deepsky/constellations/virgo.html
http://www.utahskies.org/deepsky/constellations/virgo.html
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18.1 Relating the Observed Jet Properties to the Intrinsic
Conditions

In order to relate the observed properties of the radiation emitted by the jets to
the physical conditions of the jet, one has first to relate both reference systems,
as seen in Sect. 2.3. Let us recall that relativistic electrons emit in a cone of half
opening angle 1/γ centred around the direction of the velocity (see Sect. 2.4). Since
the emitted photons are beamed in the forward direction, the jets will appear much
brighter when viewed along their axis than from the side. The second effect to take
into account is the Doppler effect that relates the emitted and observed frequencies
(see e.g. Lang 2006)

ν =
ν ′

γ(1−β cosθ )
, (18.1)

which takes into account time dilatation (the factor γ = 1/
√

1−β 2, β = v/c)
and the fact that the source moves while radiating. Subsequent photons therefore
travel along paths that differ in length by a factor (1−β cosθ ). Here the unprimed
quantities refer to the observer reference frame and the primed quantities to those in
the rest frame of the jet.

The factor (γ(1−β cosθ ))−1 = D is called the Doppler factor.
Next we consider the transformation of the fluxes. To do this we consider phase

space density n, the number of particles (photons here, but the argument is general)
per phase space element d3xd3 p. This density is a Lorentz invariant, because the
number of particles is an invariant, and because

d3x =
1
γ

d3x′ (18.2)

and
d3 p = γd3 p′. (18.3)

Thus

n =
number of particles

d3xd3 p
(18.4)

is an invariant. The intensity Iν (= energy per frequency interval per solid angle per
cm2 and per second) is related to the phase space density in the following way

Iνc−1 dν dΩ︸ ︷︷ ︸
energy density

= n ·hν ·d3 p = nhν p2 dpdΩ . (18.5)

Since p ∝ ν , Iν
ν3 ∝ n (for an isotropic distribution) is therefore also an invariant

under Lorentz transformations. We then know how the intensity transforms:

Iν =
ν3

ν ′3 I′ν = D3I′ν(ν
′). (18.6)



278 18 Relativistic Jets
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Fig. 18.3 Geometric considerations needed to understand the transformation of the absorption
coefficient from the observer frame to a moving medium

With these tools we can now relate the observed flux density (flux in short) fν
to the intrinsic source emissivity. For an optically thin source the observed flux is
given by

fν =
1

4πR2

∫

source

jν dV, (18.7)

where the source function is jν . The source function is not of particular inter-
est in the observer frame, because we are interested in the physical conditions
existing in the jet. The function jν must therefore be replaced by the source
function j′ν ′ in the jet frame. To see how jν transforms, consider the radiation
transfer equation

dIν
dτ

=−Iν +
jν
μ
, (18.8)

where τ is the optical depth and μ the absorption coefficient per unit length, such
that dτ = μdx. τ gives the fraction of photons absorbed and is thus an invariant. Call
Δ the path through the jet (see Fig. 18.3) and � its thickness.

The optical depth along Δ is

τ = μΔ =
μ�

sinθ
=

μν�
ν sinθ

. (18.9)

The term ν sinθ ∝ py, the y component of the momentum. This is unchanged by
the transformation since the frames have a relative motion along the x axis. The same
applies to � (the thickness of the jet), and hence also perpendicular to the x-axis.
Since τ is an invariant, we conclude that μν is also unaffected by the transformation,
and hence μ = D−1μ ′.
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From Eq. 18.8 we see that jν/μ transforms like Iν

jν
μ

18.6
== D3 j′ν

μ ′ = D2 j′ν
μ

⇒ jν = D2 j′ν (ν
′). (18.10)

The observed flux can now be expressed as a function of the jet source function

fν =
1

4πR2

∫

source

jν dV =
1

4πR2

∫

source

D2 j′ν (ν
′)dV (18.11)

Knowing the conditions within a jet and how the emissivity depends on these
conditions, Eq. 18.11 allows us to calculate the observed flux. Note that from our
vantage point it is rather the reverse procedure that is important, as we want to
deduce from the observations the physical conditions within the jet.

In the special case in which the emissivity is a power law of the frequency
( j′ν(ν ′) ∝ ν ′−α ), as we have seen to be the case in synchrotron or in Compton
radiation when the electron population is itself a power law, gives

j′ν (ν) =
( ν

ν ′
)−α

j′ν (ν
′)⇒ j′ν (ν

′) = Dα j′ν (ν). (18.12)

It follows that the observed flux at the observed frequency ν is

fν (ν) =
D2+α

4πR2

∫
j′ν (ν)dV, (18.13)

where we consider the emissivity at the observed frequency.
A direct consequence of this result is that we can calculate the ratio of the

observed flux of a jet and an identical counter jet emitted at 180◦ from the first
one to be

fjet

fcounterjet

=

(
Djet

Dcounterjet

)2+α
=

(
1+β cosθ
1−β cosθ

)2+α
, (18.14)

because for identical jets and counter jets the integrals are identical. For small
angles, one can develop the expansion of cosθ and obtain for typical jet parameters

fjet

fcounterjet

=

[
1+(1− θ 2

2 )

1− (1− θ 2

2 )

]2+α

≈
(

2
θ

)2(2+α)

∼
(

2
θ

)5

(18.15)

This ratio is shown in Fig. 18.4. The large factor between the fluxes observed
from the jet and its possible counter jet explains why in most cases only one jet is
observed from a radio source.
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the direction of the observer for a number of jet velocities

18.2 Superluminal Motion

Jets are not static in space. Very Large Baseline Intereferometry (VLBI, a system
that links radio dishes over the whole surface of the Earth to provide radio images
of very high angular resolution) observations at different epochs have shown that
bright spots within the jets, blobs, are moving from epoch to epoch away from the
“core” of the source. VLBI observations of the quasar 3C 273 (see Fig. 18.5) have
shown for example that the jet elements move away from the core at about 1 mas
per year (1 mas is a milli arcsecond). At the distance of 3C 273, 1 Gpc, this angular
velocity corresponds to a linear velocity on the plane of the sky perpendicular to the
line of sight of some ten times the velocity of light. These at first sight surprising
velocities are called super-luminal velocities. They may be understood without any
contradiction with relativistic kinematics if one considers jets moving at angles close
to the line of sight at relativistic velocities (see left panel in Fig. 18.6). Consider two
photons emitted in the jet, the first at a distance d to the observer at time t0 and the
second from the same jet element at time t1 = t0 +Δ t. Since the jet element moved
between t0 and t1, the second photon travels a shorter distance than the first one. The
arrival times at the observer of the two photons differ by
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Fig. 18.6 Left: An electron moving from 0 to 1 along the jet emits two photons γ0 and γ1 at t0 and
t1, respectively. If the jet velocity is close to c and the angle θ between the jet direction and the
line of sight is small, the apparent transverse velocity seen by the observer can exceed the speed
of light

Δ ta = −
(

t0 +
d
c

)
+

[
t1 +

d− vΔ t cosθ
c

]
(18.16)

= −t0 + t1 − vΔ t cosθ
c

(18.17)

= Δ t

(
1− vcosθ

c

)
. (18.18)

The apparent jet velocity on the plane of the sky is therefore

v⊥ =
vΔ t sinθ

Δ ta
=

vsinθ
1− vcosθ

c

, (18.19)

which can clearly exceed the speed of light for jet velocities close to c and small
angles θ , as shown in Fig. 18.7.

The viewing angle at which a jet appears to have a maximal v⊥ is found from
dv⊥
dθ = 0 which gives cosθ = β . Replacing in (18.19) gives

v⊥,max = γv. (18.20)

This result together with the observation that the jet of 3C 273 moves with v⊥ �
10c leads directly to the conclusion that the emitting blobs move with a bulk gamma
factor of at least 10. The jet of 3C 273 is in this respect very similar to that observed
in a large number of radio-loud AGN (see Chap. 20).
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18.3 Bibliography

The relativistic treatment of the transformation of jet to observer reference frames
is described in Rybicki and Lightman (2004). Jets in galactic objects are reviewed
in Mirabel and Rodriguez (1999), while X-ray jets in active galaxies are reviewed
in Worrall (2009).
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Chapter 19
Gamma Ray Bursts

Gamma Ray Bursts (GRBs) are short bursts of gamma rays lasting from a small
fraction of a second to a few hundred seconds that are observed from random
directions of the sky at a frequency of roughly once per day. A small sample
of gamma ray burst light curves is shown in Fig. 19.1. Bursts are identified as
“GRB yymmdd”, where yy stands for the year, mm the month, and dd the day of
the event. When more than one burst occurs at any given date a letter is added to
distinguish between them. Bursts show a wide variety of light curve shapes and
structure. Clearly this variety does not provide much in terms of clue as to the
physical origin of the GRBs, excepting the fact that the sources are small, a small
fraction of a light second, with some proviso for relativistic effects.

The distribution of burst duration (Fig. 19.2) shows two maxima, one at about 1 s
and the other at 100 s referred to as short bursts, and long bursts respectively. Peak
photon fluxes (the maximum measured flux during a burst, a quantity depending
on the time resolution of the instruments) are typically measured in a few photons
per square centimeter per second. The corresponding energy fluxes are of the
order of a few 10−8 erg s−1 cm−2 and the fluences (flux integrated over time)
of a few 10−7 erg cm−2. In the absence of distance measurements or estimates,
these quantities cannot be translated into absolute properties of the source such as
luminosity or energy loss.

19.1 Short History

GRBs were discovered serendipitously by US military satellites (VELA) carrying
X-ray, gamma ray and neutron detectors in order to monitor possible atmospheric
nuclear test explosions (specifically from the Soviet Union). While no special
nuclear activity was observed from the Earth, the first GRBs were observed in 1967.
It soon became apparent that the origin of these GRBs was “cosmic”, a result that
was first published in 1973, when the information was finally declassified.

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
DOI 10.1007/978-3-642-30970-0 19, © Springer-Verlag Berlin Heidelberg 2013
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Fig. 19.1 A sample of 12 GRB lightcurves from the BATSE detector on board the CGRO satellite
(Wikipedia image created by D. Perley in 2009 using the public BATSE archive (http://gammaray.
msfc.nasa.gov/batse/grb/catalog/))

The question of the origin of these bursts was then on the table. Efforts were
made to localise them as best as possible. For this purpose, a series of gamma
ray detectors on a variety of spacecraft in the solar system were used to measure
the burst arrival time at each spacecraft and then to use triangulation techniques
to locate the origin of the bursts. This is the so-called interplanetary network
(IPN) that has been functioning since 1976. In 1991 NASA launched the Compton
Gamma Ray Observatory (CGRO) that included one instrument (BATSE) capable
of roughly localising the GRBs. Over 3,000 GRBs were measured. All these
efforts notwithstanding, the bursts identification remained elusive. No counterpart
in other wavebands was localised. The available information (light curves, fluxes,
approximate positions) gave no clue as to the distances of the sources. Their
luminosities were therefore not known, and would be very different if the origin
of the GRBs was to be found within the solar system or at extragalactic distances.

http://gammaray.msfc.nasa.gov/batse/grb/catalog/
http://gammaray.msfc.nasa.gov/batse/grb/catalog/
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Fig. 19.2 Distribution of the duration of GRBs measured by BATSE. The duration is defined as
the time interval during which 90 % of the GRB counts have been detected, leaving off the first and
the last 5 % of the counts (Meegan et al. 1997)

Most astrophysicists would have expected that GRBs are of Galactic origin.
Indeed, neutron stars are natural objects to produce phenomena that vary on
timescales as short as tens of milliseconds, as observed in many gamma ray bursts.
In addition, deduced luminosities from the observed fluxes and the distance to the
sources, assumed to be of the order of several kpc for Galactic sources, would lead
one to conclude that the luminosity of the bursts is of the order of 1038 erg s−1,
close to the Eddington luminosity for a neutron star. This provides a “natural”
framework in which the origins of gamma ray bursts could be developed. This
approach predicted that the burst distribution on the celestial sphere would carry
some signature of their Galactic origin. Contrary to this expectation, however,
the GRB distribution measured by BATSE was found to be isotropic, with no
measurable deviation from isotropy (Fig. 19.3).

The isotropy of the burst distribution implies that, if the bursts are indeed of
Galactic origin, they must be distributed in such a way that the offset of the position
of the Sun with respect to the centre of the Galaxy is unnoticeable, thus placing the
origin of the GRBs in the far halo of the Galaxy. This brings difficulties of its own.At
these halo distances the brightest bursts would have properties such that those taking
place in nearby galaxies ought to be observable, which was not the case.
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Fig. 19.3 Sky distribution of the BATSE (triggered and non-triggered) GRBs. 3,906 bursts are
shown on the figure, and no deviation from isotropy can be found (From Stern et al. (2001, Fig. 11,
p. 87), reproduced by permission of the AAS)

The story became even more puzzling when the burst fluence or, equivalently,
the peak flux distributions, were considered. Figure 19.4 shows the log(N)-log(P)
peak flux distribution. This gives the logarithm of the number of bursts for which
the peak flux is brighter than the logarithm of the flux P. This representation of the
distribution of source flux is a widely used one in many domains of astrophysics.
Note that this is a cumulative distribution in which sources of flux P1 appear in all
bins with P > P1. This distribution has a slope of −3/2 for a homogeneous space
distribution of sources in three dimensional Euclidean space (see Sect. 19.2). The
deviations from the −3/2 slope seen in Fig. 19.4 indicate that there is a dearth of
weak bursts. The effect was carefully shown not to be due to systematic effects
in the measurements. This is as if we were at the centre of a distribution in which
the density of GRBs was fading away with distance. This might be understood if the
bursts are associated with the Galaxy, but again the offset of the Sun’s location
within the Galaxy would have to be accommodated in such a model.

The mystery was solved in 1997 when observations with the BeppoSAX satellite
were able to locate the position of a GRB with a precision that was sufficient to
point firstly an X-ray telescope also on board the satellite in the burst direction,
shortly followed by optical telescopes on Earth. A source was then found that faded
rapidly with time, clearly the counterpart of the burst. The optical spectrum of this
“afterglow” could be measured, absorption lines were found, and their redshift could
be measured and found to be 0.695 (Costa et al. 1997; Djorgovski et al. 1997). This
immediately implied that the distance to GRBs is cosmological. The isotropy is then
easily understood, the dearth of weak bursts also. The latter is inferred to be either
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Fig. 19.4 The number of GRBs whose peak flux is brighter than flux P. A homogeneous
distribution of bursts in space would imply a slope of −3/2 (see text) (Data from BATSE, figure
from P. Meszaros (http://www2.astro.psu.edu/users/nnp/cosm.html))

a signature of the evolution of the burst parent population with cosmic time, or as
a cosmological geometrical effect, or a combination of both. A more problematic
consequence of the cosmological distances to GRBs, however, is that taking the
measured fluence of the bursts and assuming that the sources emit isotropically
immediately leads to the conclusion that the energy radiated by the bursts are of the
order of 1054–1055 erg, a significant fraction of the energy equivalent of the mass of
the Sun. The question then became: how is it possible to transform �1M of mass
into gamma rays in a fraction of a second?

19.2 Homogeneous Distribution of Events

We can show that the expected integral flux distribution of a homogeneous source
distribution in Euclidean space is a power law of slope −3/2 with the following
argument. Consider a density n of sources of luminosity L0. There are ΔN =
4πr2Δrn sources in a shell of width Δr at a distance r from any observer. The
sources in the shell are observed to have a flux s = L0

4πr2 . They are observed in a
flux interval

http://www2.astro.psu.edu/users/nnp/cosm.html
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Δs =
dL
dr

Δr =
−2L0

4πr3 Δr. (19.1)

Using r =
√

L0
4πs , one finds

ΔN = 4πr2Δrn = 4π
L0

4πs
n

4π(
√

L0
4πs)

3

2L0
Δs. (19.2)

The number of sources brighter than a given flux s is then given by

N(s) =
∫ ΔN

Δs
ds ∝

∫
s−5/2ds ∝ s−3/2, (19.3)

which explains the slope −3/2 in the log-log plot of Fig. 19.4. This argument is
trivially extended to any distribution of intrinsic source luminosities, as long as the
source luminosity distribution does not depend on the distance to the observer.

19.3 Interpretation

Some of the physical conditions of the burst emitting matter can be deduced from
their implied luminosities and variability timescale. Consider first the optical depth
of the emission region. In Sect. 8.1, we have seen that the optical depth for photon–
photon e+− e− pair creation close to the threshold is

τ � L
4πmec4Δ t

σT , (19.4)

where we have assumed spherical symmetry, and where we approximate the size
of the source by cΔ t, Δ t being the variability timescale. For a typical isotropic
burst luminosity of 1050 erg s−1 and for a variability timescale of 0.001 s the optical
depth for e+−e− pair creation is τ � 6 ·1012. This is in clear contradiction with the
mere fact that gamma rays are observed. Relativistic aberration effects can, however,
bring relief. Imagine that the source is moving towards the observer with relativistic
velocities characterised by a factor γ . The observed flux will be increased by a
factor γ2 when compared with the flux that would be measured from a source at
rest. The variability timescale would also differ by a factor γ . The pair production
rate is reduced by a further factor γ , because the threshold for pair production is to
be considered in the moving reference frame (Meszaros 2002). The optical depth
that we would deduce from a source moving towards us would therefore be γ4 less
than that deduced for a source at rest. We therefore conclude that for a source with
the observed properties of gamma ray bursts to be optically thin in the gamma ray
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domain, a condition necessary for this source to radiate efficiently, the bulk γ factor
must be at least of order several hundred.

Furthermore, the bursts need not be isotropically emitted but may rather be
emitted in a jet geometry. The jet must necessarily be directed towards the observer,
and it must cover only a small fraction of the sphere as seen from the object at the
origin of the jet. This would reduce the intrinsic luminosity of the source by a factor
corresponding to the ratio of the jet solid angle to 4π .

The very high gamma factor deduced from the optical depth argument implies
that the material that emits the burst must be very thinly populated by hadrons.
Indeed the photon and lepton flux associated with the moving material (for which
the optical depth argument is valid) will accelerate hadrons in the flow to about
the same bulk Lorentz factor. If, as can be expected, the kinetic energy luminosity
of the jet is similar to the observed photon luminosity, than only a mass of some
m � LΔ t

γjetc2 � 10−6 M can be accelerated.

The model that results from these considerations is that some very energetic
event, such as the core collapse of a massive star or the merger of two neutron
stars or black holes, liberates in a very short time an energy �1050 erg. This
energy generates a very powerful jet in which the bulk γ factor reaches �1,000.
Powerful shocks are created in this jet, for example when a faster element follows
a slower one. Electrons and positrons are then accelerated in these shocks to very
high energies and radiate through synchrotron and Compton processes. This is the
radiation that is at the origin of the prompt emission of the burst. The jet then
reaches the interstellar matter that surrounds the original explosion and creates new
shocks there. The shocks between the jet material and the surrounding circumstellar
material are thought to be at the origin of the afterglow emission.

19.4 Afterglows

The GRB afterglow observations allow us to gain very significant insight into the
nature of GRBs. The optical afterglows give measurements of the redshifts of the
GRBs, and allow us to get very precise positions from which is possible to find the
environment of the bursts. It is found that they occur in galaxies, and are associated
in particular with star formation regions. Figure 19.5 shows the host galaxy of the
GRB 990507. The structure of the face-on spiral galaxy is clearly seen, as is the fact
that the gamma ray burst occurred in a spiral arm, a zone of high star formation,
rather than being associated with the nucleus of the galaxy.

In a few cases a supernova has been associated with the burst position and epoch.
This association is based on the coincidence between a GRB and the detection of a
supernova that seems to have exploded at the same epoch and in the same location
of the sky. In some cases the optical spectrum of the burst afterglow emission has
also been found to be similar to that of some categories of supernovae. Figure 19.6
compares the spectrum of the afterglow of GRB 030329 obtained on April 8
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Fig. 19.5 HST image of the region surrounding the gamma ray burst GRB 990705 (From Le Floch
et al. (2002, Fig. 2, p. L83), reproduced by permission of the AAS)

from which a scaled down version of the April 4 spectrum has been subtracted
(the burst designation indicating that the event occurred on March 21). Since the
GRB afterglow decreases steeply with time, the residual highlights the underlying
emission, which is found to be very similar to the spectrum of the supernova 1998bw
just a few days prior to its maximum. These observations suggest that at least some
GRBs are associated with core collapse supernovae. Only long GRBs have so far
been associated one way or another with supernovae. However, such an association
has to date not been possible for short GRBs. One may therefore conjecture that long
GRBs are associated with core collapse events, and that short GRBs are associated
with the merger of two neutron stars. One knows from the observation of neutron
star binary systems in our Galaxy that these systems exist. Since the orbits of these
binaries shrink with time through the emission of gravitational waves (see Chap. 15),
they must eventually result in a catastrophic merging event.

Not all GRBs have optical afterglow emission. Burst for which optical emission
has been looked for but not observed are referred to as “dark”. This may be due to the
fact that the progenitor resides in a gas and dust rich medium that is optically thick
to optical radiation, and only transparent in the hard X-rays. At the other extreme,
some GRBs are very bright, having reached optical magnitudes accessible with the
naked eye.

The observation of the light curve of the afterglows offers the interesting
possibility of measuring the opening angle of the jet that underlies the GRB. The
behaviour of the gamma factor in the jet as a function of time can be estimated
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Fig. 19.6 MMT spectrum of GRB 030329 from which the early afterglow emission has been
subtracted. The resulting spectrum is very similar to that of SN 1998bw just a few days prior to
maximum (From Stanek et al. (2003, Fig. 2, p. L19), reproduced by permission of the AAS)

assuming an adiabatic expansion (van Paradijs et al. 2000). It is found that γ ∝
t−3/8. Relativistic aberration confines the angle in which the radiation from an
accelerated charge is observable to a cone of opening angle 1/γ . Assuming a
spherical relativistically moving photosphere, only a fraction 1/γ2 of the sphere
surface emits radiation observable by a distant observer. Thus as time proceeds
and γ decreases, a larger and larger fraction of the photosphere contributes to the
observed flux. This increasing surface is proportional to 1/γ2 ∝ t3/4. At some
time the whole jet is encompassed by the visibility cone. This happens for an
observer on the axis of the jet when the jet opening angle θc � 1/γ . For subsequent
times, the area from which the flux reaches the observer does no longer increase.
The slope of the light curve will, therefore, steepen by −3/4. The behaviour
of the light curve will then reflect the emissivity of the whole jet rather than
that of the jet fraction which increasingly contributes to the observed flux. A
direct exploitation of this fact is made difficult by the complex behaviour of the
intrinsic emission of the GRB afterglow. A clear detection of this effect is, however,
seen in the afterglow light curves of GRB 070125 3.8 days after the prompt
emission (Fig. 19.7).
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19.5 GRBs as Cosmological Probes

Since GRBs are very bright, they offer a unique cosmological probe. The brightness
of some of the afterglows allows observers to obtain high signal-to-noise optical
spectra in a short time. Since the GRBs are located at cosmological distances, the
light emitted crosses a large fraction of the Universe on its way to the telescope.
Matter along the line-of-sight absorbs a fraction of the GRB light, particularly in
discrete absorption lines redshifted with respect to the observer by the cosmological
expansion velocity at its location. These lines convey information in a narrow beam
on all the matter located between the burst and the observer. The same type of
information can, in principle, be obtained from the optical spectra of distant quasars.
The latter objects are, however, much weaker than bright GRB afterglows observed
shortly after the prompt emission of the burst has been detected. This has led to the
implementation of observation modes at large telescopes that provide a very rapid
reaction to events.

A further important cosmological contribution of the observation of GRBs is that,
since some of them are related to supernovae, they are related to the star formation
activity. GRBs thus offer a measure of star formation activity in very distant regions
of the Universe and, therefore, at epochs that were close to the big bang. They have
become a tool in the study of the cosmic history of stellar formation, an important
part of the history of the Universe.

19.6 Bibliography

The theory of gamma ray bursts is reviewed in Meszaros (2002) while more
recent results are described in Gehrels et al. (2009). The afterglows are extensively
discussed in van Paradijs et al. (2000).
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Chapter 20
Active Galactic Nuclei

Active Galactic Nuclei (AGN) are a large population of galaxies, mostly at high
redshift, that exhibit a very rich palette of phenomena not seen in “normal” galaxies.
The physics of these objects is fascinating and includes many of the phenomena
discussed in the first part of this text.

20.1 Introduction to Active Galactic Nuclei (AGN)

Unusual activity in galaxies has been observed for a long time. In the 1940s Carl
Seyfert noted that a number of galaxies have bright nuclei, and that these nuclei
show both broad and narrow emission lines (Seyfert 1941). These galaxies are
called Seyfert galaxies. The presence of emission lines in the spectra of the galaxy
nucleus was unusual, since “normal” galaxies simply emit the integrated light of
their constituent stars. The corresponding spectra are made of the sum of the stellar
spectra, and therefore have no emission lines, but rather only absorption lines. In
some of the Seyfert galaxies the lines were found to be surprisingly broad, indicating
that the line-emitting material has large velocities of several tens of thousands of
km s−1. Other objects showed narrower lines indicating velocities of the order of
1,000 km s−1. The first were called Seyfert 1 galaxies, the second Seyfert 2 galaxies.

Completely independently, in the 1960s, it became possible to localise radio
sources and to identify them with optical objects. It was found that several bright
radio sources were coincident on the sky with star-like objects, i.e. having no angular
extent or structure. These objects were often found to vary in time with amplitudes
of a few tenths of a magnitude over months. They were also observed to have bright
emission lines of unknown origin, and were called quasi-stellar objects (QSOs) or
quasars. In 1963 (Schmidt 1963) Maarteen Schmidt identified the emission lines of
two of these objects, including the 273rd object of the 3rd Cambridge catalogue of
radio sources (3C 273), as highly redshifted lines of the hydrogen Balmer series
(see Fig. 20.1). The redshift of 3C 273 was found to be 0.158, the largest ever
observed redshift at the time. This immediately indicated that these objects were at
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Fig. 20.1 Early optical spectrum of 3C 273 showing the redshifted Balmer series

“cosmological” distances, and therefore that their luminosities must be very large,
typically much larger than that of whole galaxies.

It took a long time to see that the two types of objects, Seyfert galaxies and
quasars, were of the same underlying nature. In Seyfert galaxies one sees a galaxy
with a bright core, while in quasars the core dominates to such an extent that it
is difficult to observe the underlying host galaxy in the wings of the point spread
function of the telescopes. Today the difference between the two classes of objects
is considered as largely semantic, so that below a luminosity of about 1044 erg s−1

one speaks of Seyfert galaxies and of quasars above that limiting luminosity.
The family of active galactic nuclei has many more members with properties that

can vary greatly but are all charaterised by large luminosities, very rapid variability
(see Fig. 20.2) and spectral energy distributions that span a much larger part of the
electromagnetic spectrum than stars or galaxies (see Fig. 20.4). A fraction of quasars
also emit jets, first seen as radio structures, and subsequently also in the optical (see
Fig. 20.3) and later in the X-rays.

20.2 Basic Physical Properties of AGN

The basics of AGN physics and the order of magnitude of the main parameters can
be understood very simply. The fact that AGN vary significantly on time scales
of months (and even much less) indicated very early on that the objects must
be smaller than light-months, i.e. much smaller than the typical distance between
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Fig. 20.2 One century of photographic observations of 3C 273 showing large-amplitude varia-
tions on many time scales (Angione and Smith 1985)

Fig. 20.3 An early observation of the jet of 3C 273 with the Kitt Peak telescope (From wikipedia)

stars in a galaxy. The energy source cannot be due to anything but gravity, as
the luminosities are extremely large and we have seen that the energy that can be
gained from accretion in a deep gravitational well greatly exceeds that which can
be obtained from nuclear reactions. Knowing this, the mass of the compact object
may be estimated from the Eddington luminosity. Remember that the Eddington
luminosity is

LEdd =
4πGMmpc

σT
� 1.3 ·1038 M

M
ergs−1. (20.1)
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Assuming that the flux we measure is isotropically emitted by the quasar, and
knowing the distance from the redshift of the object, one sees that quasars have
luminosities all the way up to some 1048 erg s−1. This implies that the compact
object onto which matter is accreted can have masses up to some 1010 M. These
compact objects are black holes, since their masses are many orders of magnitude
above the maximum mass of neutron stars. They are referred to as supermassive
black holes. Because of their very high masses they reside at the dynamical centre
of their host galaxies.

The mass accretion rate Ṁ can also be estimated in a very straightforward way,
assuming that a fraction η of the accreted rest mass is emitted as electromagnetic
radiation. In this case the luminosity of the object is

L = ηṀc2. (20.2)

For accretion onto a black hole η is of the order of 10 % (remember that we
calculated in Chap. 12 that the binding energy of matter on the last stable orbit
around a Schwarzschild black hole is 6 % of the accreted rest mass, while this
fraction is 42 % for a maximally rotating Kerr black hole). The corresponding
accretion rates for luminous quasars (L � 1048 erg s−1) are therefore of the order
of Ṁ � 1028g s−1 � 100M year−1.

20.3 Categories of Active Galactic Nuclei

There are many types of AGN that differ so greatly in their properties that one may
question whether it is appropriate to use a single concept for all of them. However,
all these objects share the fact that they reside in the centre of galaxies and that they
show emission properties that differ from those of a collection of stars. The common
name of Active Galactic Nuclei therefore seems appropriate for all of them. The
following broad distinctions are generally made

Radio Loud Quasars are luminous AGN that are bright radio sources: the ratio
of the radio flux density (observed flux per Hz) at 5 GHz to the flux density
at 440 nm exceeds 10 in radio loud quasars. Radio loud quasars have bright
emission lines. They are sometimes abbreviated as RLQ.

Radio Quiet Quasars are luminous AGN that are faint radio sources: the ratio
of the radio flux density at 5 GHz to the flux density at 440 nm is less than 10
in radio quiet quasars. They also show bright emission lines. About 90 % of the
quasars are radio quiet. They are sometimes written RQQ. Whereas it seemed
early on that there was a very clear bimodal distribution of the radio loudness
(the ratio of radio to optical fluxes) of quasars, this is less evident now. This led
to the introduction of “intermediate objects” as a new category of AGN. There
could be a continuous distribution in the radio loudness of AGN.

BL Lac Objects are luminous AGN that show very weak or no emission lines.
BL Lac objects vary with large amplitudes and short time scales. They are bright
radio sources.
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Optically Violent Variable (OVV) Quasar show rapid high-amplitude variabil-
ity. OVV quasars have emission lines.

Blazars include OVV quasars and BL Lac objects.
Seyfert 1 galaxies are less luminous than quasars and show broad and narrow

emission lines. They are radio quiet. Often abbreviated as Sy 1.
Seyfert 2 galaxies are similar to Seyfert 1 galaxies except that they have no broad

emission lines. Often abbreviated as Sy 2.
Radio galaxies are very prominent in the radio domain, but weaker overall than

radio loud quasars. They are in some sense the radio loud Seyfert galaxies.
Liners are weak AGN. They are objects that make the transition between

“normal” galaxies and AGN.

As an extension of the Seyfert galaxy classification, one speaks of type 1 AGN
when the object has both broad and narrow emission lines and of type 2 AGN when
only narrow lines are present in the spectrum.

These categories were defined based on radio and optical properties of the objects
as they were discovered in early observations. The categories therefore do not
necessarily reflect fundamental differences between the types of object, as is clear
from the link between Seyfert 1 galaxies and radio-quiet quasars. When observations
were subsequently made with instruments of increased sensitivity or better angular
resolution or in other spectral domains, the properties that emerged were sometimes
related to the definitions of the categories, some times less so. In the X-rays, for
example, most, but not all Seyfert 2 galaxies were found to be highly absorbed,
while Seyfert 1 galaxies were found to be less absorbed. This led to denominations
of the type “X-ray Seyfert 2 galaxies” and the like. Similarly some AGN were found
to have many characteristics of Seyfert 1 galaxies, but did not show very broad
emission lines, and these were called Narrow Line Seyfert 1 (NLS1)galaxies.

We will not expand on these categories, nor attempt much more in terms of
clarification of the zoology of AGN. Rather we will in the next sections discuss
a number of subjects that illuminate various aspects of the physics of AGN.

20.4 The Emission Components

20.4.1 Continuum Emission

The emission of AGN spans many orders of magnitude in frequency, from radio
waves to gamma rays (Fig. 20.4). Clearly this is not the result of thermal radiation at
a single temperature, but the combination of a number of emission mechanisms. We
take the bright and well-studied quasar 3C 273 as an example to guide us through
the emission mechanisms at work in AGN. 3C 273 has the properties of both a
radio-loud quasar and an OVV, and it therefore covers most of the phenomenology
met in these objects.
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Fig. 20.4 Spectral energy distribution of 3C 273 as collected over four decades using a variety
of instruments on ground and in space (Adapted from Türler et al. 1999). The major emission
component are colour coded: synchrotron, green; dust emission, red; big blue bump, blue and X-
ray, purple. In 3C 273, contrary to what is observed in most AGN, the flux extends as a power law
to the highest energy gamma rays

We already came across the compact radio emitting jet of 3C 273 when
discussing superluminal motion in jets (see Chap. 18). We saw that the jet is made
of a number of blobs that fly away from the unresolved core of the quasar. The
radio to millimeter emission of the object can be seen as the superposition of a
number of components that appear at some epoch, radiate as synchrotron emitters,
and move away. Flares in the radio emission are most probably associated with
the appearance of new jet components. While this model describes well the radio to
millimeter emission of 3C 273 and other radio-loud objects it is not a self-consistent
model, as we do not know how and why discreet new jet components appear and
are accelerated away from the core.
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Also when studying synchrotron emission we came across the discovery of dust
emission in 3C 273 and in radio quiet AGN (see Sect. 5.4.1). We concluded from
the frequency dependence of the variability that the infrared emission of radio loud
objects is due to thermally emitting dust. We also concluded from the spectral shape
of the far infrared emission of radio-quiet quasars that this emission is also of
thermal dust origin in radio quiet objects. In both cases the dust is heated by the
central UV and X-ray source. Dust sublimates at 2,000–3,000K (see e.g. Phinney
1989). Dust emission will therefore not extend shortward of the near infrared
domain in wavelength.

The visible and UV region of the spectrum is where one finds a local maximum
in the emission of quasars and Seyfert galaxies. This is called the blue bump or
the big blue bump. It is this component that gives quasars a very blue appearance
when compared with stars, a property that was extensively used to detect quasars
in large (photographic) surveys of the sky. Since the late 1970s this component is
considered as being due to an accretion disk. Indeed, the temperature range expected
from accretion onto a supermassive black hole is such that an emission peak is
expected in the UV domain. However, perturbations in accretion disks are expected
to propagate on time scales that are either given by the sound speed and the size of
the disk, or on the even longer viscosity time scale. One therefore expects that the
cool and hot regions of an accretion disk will vary at different epochs separated by
these time scales. In the quasar 3C 273 this corresponds to delays of thousands of
years between the UV and visible light curves, much longer than the measured delay
of a few days. One concludes from the short observed delays that the perturbations
travel with the speed of light. One possible scheme for this is that the disk does not
dissipate the gravitational energy from within, as discussed in Sect. 10.3, but rather
outside in an optically-thin corona. The corona needs to be patchy, otherwise the
X-ray flux it emits would be considerably larger than that observed. These and other
difficulties make the origin of the visible and UV emission of AGN the subject of
an ongoing debate.

While the X-ray emission of AGN appeared simple enough in the context of the
early observations, and well described by a single power law, more sophisticated
instruments soon showed that much more structure was present in the observed
continuum spectral energy distributions. Figure 20.5 gives the different X-ray
continuum components of a typical Seyfert galaxy. The same components are
found in quasars (blazars are dominated by jet emission and have a rather different
continuum; see below). Figure 20.6 shows the spectrum of NGC 4151 in which one
sees several components: the soft excess, the primary power law and the Fe lines.
The reflection hump starts at energies higher than those observable with XMM-
Newton and shown there. At low energies, around 0.1–1 keV there is an excess
emission compared to the underlying power law emission. This feature was called
the soft excess. Rather than being a real emission component, this feature is possibly
formed by a very structured absorbing medium along the line-of-sight to the primary
X-ray source. X-rays are absorbed by this medium, with the corresponding effective
cross section as given in Chap. 1 for a cold neutral medium of cosmic abundances.
This effective cross section is normally used to fit X-ray spectra, including those of
AGN. However, the medium can be very inhomogeneous, with dense and much less
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dense patches, such absorbers are called “leaky”. Furthermore some of the absorbing
gas may be hot or photoionised, in which case the absorption edges that appear at
the ionisation energies of the different elements are absent or weakened. It seems
that these complex absorption media can lead to spectral features that appear as an
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“excess” over a power law component absorbed by a cold homogeneous medium.
The soft excess may, therefore, not be an additional emission component, but an
artifact that appears when neglecting the spatial and ionisation structures of the
absorbing medium.

The underlying “primary” power law is seen only in a small range of the X-
ray domain. The most probable origin for this power law is Comptonisation of soft
photons in a hot medium. The medium can be either a patchy corona outside an
accretion disk, or material that is heated in shocks, as suggested by Ishibashi and
Courvoisier (2010). The emission departs again from a power law around 10 keV,
with a further excess compared to the primary power law. This excess is thought
to be due to the presence of cold gas and dust some distance from the central X-
ray source that reflects a fraction of the primary flux into the line-of-sight. This is
called the reflection hump. It reaches a maximum around 30–40 keV and decreases
at higher energies due to the transition between the Compton and Klein–Nishina
cross sections. Another signature of reflection by cold material of a “primary” hard
X-ray source is the emission line at 6.4 keV. This is a fluorescence line of neutral or
relatively low-ionisation Fe.

At very high energies the emission then drops off in most AGN, as the power law
is cut off, as expected from Compton scattering in a medium of finite temperature
(as described in Chap. 6).

The continuum emission of BL Lac objects and blazars in general is different in
that it is dominated by two humps, one having its maximum in the mm-optical range,
and one peaking in the X-ray or gamma ray regimes (see Fig. 20.7). The nature
of these two components are synchrotron emission at low energy and Compton
processes at high energy. The emission originates in powerful jets that are directed
close to our line-of-sight, and which are therefore strongly boosted by relativistic
effects (see Chap. 18). The low-frequency hump is caused by synchrotron emission
from relativistic electrons in the jet. The high-frequency hump, the Compton hump,
is due to high-energy electrons, the same that produce the synchrotron emission,
that scatter soft photons that originate either in the synchrotron process (one speaks
then of the synchrotron self-Compton process) or in local (accretion disk, line
emission clouds etc.) or cosmological sources (one speaks then of external Compton
processes). When the soft photon density is large, the cooling is more efficient, and
the electrons therefore have less energy on average. This explains why the maximum
is at lower photon energies for both humps when the sources are brighter.

20.4.2 Line Emission

Emission lines are prominent in several classes of AGN. They were therefore one
of the main tools in the study of quasars and Seyfert galaxies for a long period after
their discovery. The studies concentrated on the observed properties of the lines:
line intensities and their ratios, line profiles, and the relative intensity of line and
continuum as expressed through the equivalent width of the lines. Line intensity
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ratios were used to define categories of AGN, and in particular to distinguish
Seyfert 2 galaxies and LINERS.

The most prominent broad lines are the Balmer and Lyman series of hydrogen
as well as the C IV line. Since Lyα and C IV are in the UV part of the spectrum at
redshift 0, extensive use of the IUE satellite was made for the early line studies. The
width of the broad lines are larger than 1,000–2,000km/s. These are the lines used
in the reverberation mapping technique described below.

Whereas only allowed transition lines are broad, narrow lines include forbidden
lines such as [O III], [Ne II], [Ne III] etc.

The observation that the line flux variations follows the variations of the contin-
uum with some delay shows convincingly that the lines are due to photoionisation
processes, and that the ionisation source is the UV continuum at the core of the
objects. This is confirmed by most of the line ratios observed. Some line excitation,
is, however, most probably due to shock heating of the gas. The main parameter used
for the description of the relation between the ionisation source and the responding
gas is the ionisation parameter U defined by
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U =
ionisation photon flux

c · electron density
=

∫ Lν dν
hν

4πr2cne
, (20.3)

where the integral extends from the ionisation energy upward, and ne is the electron
density. The ionisation parameter defined in this way is dimensionless. While some
other definitions can be found in the literature, they all give a measure of photon-to-
electron density.

A proper description of the line profiles and intensities should include a complete
radiation transfer calculation for each line individually. The “clouds” each have a
given column density given by their density and size. Since the atomic transition
cross sections are different for every line, the lines have different optical depths
in the same geometrical configuration. Additional complications are due to the
possible presence of dust in the cloud regions, which can modify the continuum
emission incident on the individual clouds.

Rather than getting into this discussion one can still conclude a few very
fundamental facts from the line analysis. First, the presence of heavy elements
implies that the gas is not primordial but enriched through nuclear processes taking
place in stars. The heavy element abundances are large, even if a detailed discussion
is model dependent. This indicates that AGN activity evolves in a medium that
has been efficiently reprocessed by stellar activity. Second, the presence of high
ionisation species indicates that the ionisation continuum extends well above the
ionisation energy of H in the part of the spectrum between this energy and the soft
X-rays, i.e. in the spectral region where no direct measurement can be performed
due to H I absorption.

A further set of lines that play a prominent role in the physics of AGN are the Fe
lines observed in the X-ray domain. The Fe Kα line is a fluorescence line emitted
when a K-shell electron of Fe (i.e. an electron in the lowest n = 1 energy level of Fe)
is ejected from the atom following the absorption of a hard X-ray photon. An L-shell
electron (n = 2 level) jumps down to fill the gap in the K shell. This line is at 6.4 keV
in low or moderately ionised Fe. One speaks then of “cold” Fe. At high ionisation
levels, He-like Fe (i.e. Fe XXV) shows a complex emission spectrum at slightly
higher energies, while H-like Fe (Fe XXVI) shows the known Lyman series with Lyα
at 6.7 keV. The photoionisation edge of H-like Fe is at 7.1 keV. Observation of a line
at 6.4 keV thus shows the presence of cold Fe, while observation of features around
6.7 keV indicates that the gas containing the Fe is very highly ionised. Both lines are
found in AGN. The X-ray Fe features provide a rich and complex set of diagnostics.
However, they also make the interpretation of some observations more difficult. We
discussed, for example, in Chap. 1 the existence of a broad Fe feature in the spectrum
of AGN and showed that the very broad nature of the line is a powerful argument
showing that the emitting gas moves in the very deep gravitational potential of a
supermassive black hole. That interpretation is based on the hypothesis that the
emission is a Fe Kα line at a rest energy of 6.4 keV. While this interpretation remains
plausible, the rich nature of Fe X-ray spectroscopy makes the analysis considerably
more complex. A review of this topic can be found in Miller (2009).



308 20 Active Galactic Nuclei

20.5 Seyfert 1 and Seyfert 2 Galaxies

Figure 20.8 shows the optical spectrum of a Seyfert 1 and a Seyfert 2 galaxy. From
the line ratios one can deduce the properties of the line emitting gas. Broad lines
include permitted H lines, while narrow lines are forbidden transitions. The gas
temperatures implied by the line ratios are of the order of 104 K. The density of the
broad line emitting clouds is of the order of 1010 cm−3 while that of the narrow
line-emitting gas is of the order of 107 cm−3, as expected from the presence of
forbidden lines. It is also found from line ratios that the gas must be predominantly
photoionised. This means that the photon density in the emitting medium is larger
than that expected from the bremsstrahlung continuum at the temperature and
density of the gas. The ionisation source is the central nucleus that is bright in UV
photons. The line widths are much larger than that expected from a 104 K gas. The
widths therefore arise from the bulk velocity of the line emitting gas. Assuming that
the velocity of the gas is given by the characteristic gravitational velocities (Kepler
orbital or free fall velocity), one concludes that the narrow lines are emitted further
out (by a factor around 10) than the broad lines. Accordingly, one speaks of the
narrow line region (NLR) and the broad line region (BLR).

The size of the line-emitting regions can be measured from the delay between
variations in the ionising continuum assumed to be close to the central black hole

Type ΙΙ seyfert

Type Ι seyfert

600050004000

Fig. 20.8 Type 1 and type 2 Seyfert galaxies optical spectra. Type 1 have broad permitted lines,
while those of type 2 galaxies are narrow (From http://gtn.sonoma.edu/resources/active galaxies/
seyfert galaxies.php)

http://gtn.sonoma.edu/resources/active_galaxies/seyfert_galaxies.php
http://gtn.sonoma.edu/resources/active_galaxies/seyfert_galaxies.php
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and the response of the line-emitting gas. This method, called line reverberation
mapping, led to sizes of the order of few light days for the BLR of bright Seyfert 1
galaxies. The measured flux and the known emissivity of the gas gives the volume
that is filled by line-emitting gas. This is found to be considerably less than the
volume suggested by the overall size of the BLR and NLR. The filling factor, as
the ratio of the line-emitting gas volume to the volume of the region is called, is of
the order of 10−6 for the BLR. This has led to a model in which the line-emitting
gas is in the form of clouds in the BLR, and similarly for the NLR. If this were so,
however, these clouds should be in pressure equilibrium with a medium that has not
yet been detected. It is also noteworthy that no evidence for the discrete nature of
the clouds has been found in high resolution high signal-to-noise spectra (Dietrich
et al. 1999). The nature of the NLR and BLR is therefore still elusive.

Using Kepler’s law and the distance to the central source at which the emission
gas is located as deduced from line reverberation mapping, one can infer the mass
of the central object. Figure 20.9 gives the resulting mass for a sample of objects as
a function of their luminosity. From the masses and the luminosities one sees that
the Eddington ratio, the ratio of the object luminosity to the Eddington luminosity,
is of the order of 1/100.

Observations of Seyfert galaxies in polarised light led to the discovery that
Seyfert 2 galaxies display polarised broad lines that are not observable in the total
flux observations (see Fig. 20.10). One concludes from this observation that high
velocity BLR gas exists in these objects, but that this gas is hidden when viewing
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the object in unpolarised light. This led to the so-called unified model of Seyfert
galaxies. In this model, the central massive object is surrounded in all Seyfert
galaxies by the BLR and the NLR. In addition, both types of Seyfert galaxies seem
to have a cold and thick torus of material outside the BLR. When viewed in the
plane of the torus, the BLR is therefore hidden, while when viewed from directions
in which the torus is not intercepted by the line-of-sight the BLR can be directly
observed. The BLR light is scattered by dust and electrons at the distance of the
NLR, and thus appears as reflected light when the direct line-of-sight is obscured.
This reflected light is polarised, as expected from scattering. This model unifies both
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types of Seyfert galaxies, the difference between the two categories being solely
geometrical. If our line-of-sight intersects the torus the object appears as Seyfert 2,
while if it does not and the object appears as a Seyfert 1.

X-ray observations have confirmed this view to a certain degree. Seyfert 2
galaxies are indeed, in general, heavily absorbed, while Seyfert 1 galaxies are much
less so, as is expected from the presence of a cold and thick torus in the line-of-sight
to the nucleus of Seyfert 2 galaxies. The presence of cold material surrounding the
AGN is also evident from the presence of a strong Fe emission line at 6.4 keV and
an excess of emission around 30 keV, the reflection hump, compared to a power
law. Both effects are signatures of the reflection of hard X-rays on cold material.
Nonetheless, observations in hard X-rays, where absorption plays no role, do show
significant differences in the emission of both classes of Seyfert galaxies (Ricci et al.
2011) that cannot be accounted for only by geometrical effects. It is probable that,
while the primary emission mechanisms and structures are the same in the two types
of Seyfert galaxies, the amount and possibly the organisation of the cold material
that surrounds the central black hole are different in both types of objects. Such
differences induce different responses in the cold matter that reprocesses the primary
emission, and are therefore observed as differences between the AGN classes in the
strength of the reflection hump.

20.6 Radio Galaxies

Radio galaxies are, evidently, prominent radio sources. They exist with broad and
narrow or only with narrow emission lines, and are thus either of type 1 or 2, like
other types of AGN. The radio emission is always related to the presence of jets.
In blazars the jets are oriented towards the observer, and their emission therefore
overshadows all other emission components. Radio galaxies are, however, oriented
in such a way that the jet lies close to the plane of the sky, perpendicular to the
line-of-sight. Radio loud quasars are, in some sense, intermediate in the orientation
of their jet. In some sources, the so-called Gigahertz Peak Sources (GPS), jets seem
to be absent, and it is speculated that the jets are quenched close to the source and
cannot, therefore, be observed as extended features. The details of the arguments
and the finer classification of sources is of little concern here. The main point is
that the orientation of these sources with respect to the line-of-sight is an important
factor that shapes, through relativistic effects, the observed emission in a major way.

Whereas the nature of the radio emission in jets, namely synchrotron emission,
is not in doubt, and the association of jets with the radio loud nature of the objects
is also undisputed, the reason why some objects have jets and are radio loud while
others do not is not understood, at least by the author of these lines.

Another puzzle lies in the fact that radio loud sources tend to be in elliptical
galaxies while radio quiet sources tend to be at the centre of spiral galaxies.



312 20 Active Galactic Nuclei

20.6.1 Extended Lobes of Radio Galaxies

The jets of radio-loud sources that lie at a large angle to the line-of-sight end in “hot
spots” within very large radio lobes. Orientation effects are expected to hide these
structures when the jets are oriented close to the line-of-sight. The presence of jets
and hotspots shows convincingly that energy is carried from the core of the radio
galaxy to the extended lobes. Figure 20.11 shows a Very Large Array (VLA, a radio
telescope made of an array of dishes in Arizona) image of the radio source Cygnus
A, one of the brightest radio sources in the sky. One sees two very large lobes of
emission. The size of the source is about 120 kpc, very much larger than the optical
size of the galaxy. The emission is a power law (Fig. 20.12) and is polarised. This
emission can therefore best be explained in terms of synchrotron emission.

We can estimate the energy that is contained in the radio emitting lobes using the
tools developed in Chap. 5. The energy density of the synchrotron emitting electron
population is

ue− = u0

∫ ∞

γmin

(γmec2)γ−p dγ =
N0mec2

2− p
γ−(p−2)

min , (20.4)

where u0 and N0 give the normalisation of the energy density and the number density
energy distributions of the electrons. For the integration boundary γmin one may use
the lower observed frequency of the radio emission (10 MHz) to provide at least a
lower bound to the electron energy density. The magnetic field energy density is

Fig. 20.11 A radio map of the source Cygnus A at 5 GHz made with the VLA. Its features include
the compact core in the centre of the galaxy, the jets emanating from the core and carrying energy
and particles to the lobes, and the radio lobes themselves. Barely visible in the overexposed lobes
are the hot spots where the jets are terminated (Courtesy of Richard A. Perley, John W. Dreher, and
the National Radio Astronomy Observatory)
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Fig. 20.12 Radio to optical spectrum of Cygnus A (Hobbs et al. 1978, Fig. 1 p. L79, reproduced
by permission of the AAS). The radio lobe spectrum shows a turnover near 20 MHz, then follows
a power law with index −0.8 up to 1 GHz and −1.2 up to 100 GHz. The radio data of the central
source are consistent with a rising spectrum (index 1/3), although a flat spectrum is not excluded

uB =
1

8π
B2 (20.5)

The electron energy density is proportional to the normalisation of the electron
distribution N0. For a given emissivity this is proportional to B−(p+1)/2 as one can
deduce from Eq. 5.30. Thus

ue− =C0N0 =C1 ·B−(p+1)/2, (20.6)

C0 and C1 being constants. If we seek a lower limit to the energy contained in
the lobes, we can look for the magnetic field that would minimise the total energy
density. This is done by looking for the minimum of ue + uB
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due−

dB
= C1

(
− p+ 1

2

)
B−(p−1)/2 (20.7)

= − p+ 1
2

ue−

B
. (20.8)

Therefore at the minimum we have

d
dB

(uB + ue−)|B=B0 = 0 =− (p+ 1)ue−

2B0
+

2uB

B0
. (20.9)

that is ue � uB for the observed spectral slope

fν ∼ ν−0.7 ⇒ 0.7
(5.29)
==

p− 1
2

⇒ p ≈ 2.5. (20.10)

The total energy density is therefore about 2uB. The magnetic field can be
estimated in the lobes to be about 10−4 G, leading to

∫
uB dV =

B2

8π
4π
3

R3 ≈ 1060 erg. (20.11)

This is a considerable amount of energy. It would, for example, require some
109 supernovae to provide it. In the absence of any observable stellar activity in the
lobes, stellar processes cannot give rise to this energy density.

It should also be noted that the cooling time for the electrons is rather short. From
Sect. 5.2 we know that the cooling time of the electrons is

tcool =
E
P
≈ 5 ·108 ·B−2γ−1s, (20.12)

which gives �105 years for magnetic fields of �10−4 G and γ factors of about 1,000.
For structures that can be as large as hundreds of kpc, this time is less than the

light travel time across the structure. The electrons therefore need to be accelerated
in situ. The conclusion is that the jet energy is dissipated within the lobes in shocks
in which electrons are accelerated. They then radiate and cool through synchrotron
emission.

The extended lobes of radio galaxies are not only interesting objects in them-
selves, but they also play an important role in the physics of the inner regions of
galaxy clusters in which they may be embedded. In this case the energy provided
by the AGN to the cluster plays a major role in the thermodynamics of the inner
cluster gas, and prevents it from cooling via bremsstrahlung (see Chap. 3.5). It is
interesting, for example, to consider the X-ray emission of the area surrounding
Cygnus A. Figure 20.13 shows the complex interactions between the lobes and the
surrounding medium. It illustrates how the nuclear activity contributes energy to the
central regions of the cluster.
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Fig. 20.13 X-ray image of Cygnus A obtained with Chandra on 21, May 2000 (Credit:
NASA/UMD/A.Wilson et al.)

20.7 AGN Statistics and Evolution

The space density of objects is described by their luminosity function which gives
the number of objects per unit volume in a given interval of flux (or, in integral
form, the total number of sources brighter than that flux). The process of deriving
this information from observations is fraught with difficulties, particularly when
studying extragalactic objects. In this case the volume changes with redshift, and the
dependence of the volume element on redshift depends on the cosmological model
used. The luminosity function is therefore given per co-moving volume, defined as
the volume equivalent of the region considered at redshift 0.

The sample of objects is also crucial and must be complete to the limiting flux
considered, or the data must be corrected for the fact that weaker objects are more
difficult to observe than brighter ones. The luminosity function of AGN furthermore
depends on the spectral domain considered. AGN that are bright in one spectral
domain are not necessarily bright in another. All these difficulties can, however, be
overcome and reliable luminosity functions can be established for various redshift
intervals. Figure 20.14 shows, for example, luminosity functions obtained from X-
ray measurements of a sample of type 1 AGN. It illustrates that the luminosity
function, i.e. the density of objects of a given brightness, is not the same in different
redshift intervals. This shows that the population of AGN evolves with cosmic time.
This evolution can be interpreted in different ways. Either the number of objects is
constant but their intrinsic luminosity changes with time (luminosity evolution), or
the density of objects changes with time (density evolution), or any combination of
both effects.

It is already apparent from Fig. 20.14 that AGN activity is more important at
z � 2 than it is now. This is expressed even more forcefully in Fig. 20.15, where
the integrated X-ray emissivity of type 1 AGN is shown as a function of redshift
(right panel). The AGN X-ray luminosity originates from energy released from
the accretion onto the central black hole. The AGN integrated X-ray emissivity is,
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refer to different population evolution models

therefore, a measure of the total accretion power in the Universe at a given epoch.
It is seen that this peaks at redshifts 2–3 and steeply decreases from then to the
present time, and also towards the early Universe. This shows that at z � 2 much
more energy was released in the Universe by accretion processes than is the case
either now or much earlier on. The accretion power history displayed in the right
panel of Fig. 20.15 can be compared with the star formation history in the Universe
shown in the top panel of Fig. 20.16. The similarities of both curves are striking.
Accretion power and star formation followed the same rise, reached a maximum
at roughly the same cosmological time and subsequently decreased together as the
Universe evolved. These similarities naturally lead one to think that both phenomena
may be deeply linked, even though black holes grow and reside in the very centre
of galaxies, while star formation involves the interstellar medium across the entire
galaxy.
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20.8 Link of AGN with Host Galaxies

That the Seyfert galaxy and radio galaxy phenomena lie at the centre of galaxies
is clear from the history of their discoveries and is reflected in their names. It has
taken much longer to establish that bright quasars also lie in galaxies. Bright quasars
outshine galaxies and were found to be “point like” with the instruments of the
1960s, hence their name of Quasi-Stellar Objects (QSOs) or QuasiStars (quasars).
It is only with the high angular resolution of HST, and with other very high signal-
to-noise measurements, that it became possible to detect the faint light of the host
galaxies from the wings of the telescope point spread function. BL Lac objects were
also found to reside in galaxies when observed with high angular resolution and
high signal-to-noise. This established firmly that all AGN related activity is taking
place in the centre of galaxies. AGN host galaxies are nevertheless of different types
(elliptical or spiral), and they are either isolated or in interacting pairs.

In AGN the material that is accreted by the central black hole originates in
the interstellar medium of the host galaxy. This material is at first at very large
distances from the black hole, and has a large angular momentum that prevents it
from falling into the central regions of the galaxy. The mechanisms through which
this matter looses enough angular momentum to reach the central regions are not
clear. They most probably involve non spherical properties of the galaxies, possibly
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related to the presence of bars, or interactions between galaxies that also distort the
gravitational potential.

The relationship between the star formation history in the Universe and the
accretion history as shown by the AGN emissivity as a function of redshift
(described in the preceding section) is a second close link between host galaxies
and AGN activity.

A third deep link between the AGN and their host galaxies was revealed when it
was noted that the mass of quiescent black holes in the centre of “normal” galaxies
is related to the mass of the galaxy bulges. The presence of a central black hole
in our own Galaxy is well documented (see Sect. 11.3). In external galaxies, the
presence of a compact central mass is revealed by the velocity of the surrounding
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material (gas and stars). The star velocities and distances to the centre of the galaxy
also give an estimate of the mass of the galaxy bulge. It is found that the compact
central mass is about 0.6 % of the mass of the bulge of the galaxy (Magorrian et
al. 1998; note that although this relation goes under the name of the Magorrian
relation, the correlation was already pointed out by Kormendy and Richstone 1995).
The certainty with which the nature of the compact central mass in our own galaxy
could be established to be a black hole leads one naturally to expect that the central
mass in other quiescent galaxies are black holes, although this cannot be claimed
with the same confidence.

Measurements of the central mass of black holes, using for example reverberation
mapping, could also be used to measure the correlation between the compact central
mass (known here to be a black hole from the AGN activity) and the mass of
the bulge component of the host galaxies. A relation similar to that obtained for
quiescent galaxies is found (McLure and Dunlop 2001).

Central black holes dominate the gravitational field of their host galaxies only
out to radii where the stellar mass is less than or comparable to the compact central
mass. Beyond this region the dynamics of the galaxy largely ignores the presence of
the central object. It is therefore surprising to find a tight linear correlation between
the black hole mass in active and quiescent galaxies with that of the bulge. Like the
global correlation between star formation and accretion histories, this points towards
deep links in the evolution of galaxies between their nuclear component and their
stellar components. This is the subject of very active research at the present time.

20.9 Bibliography

Several aspects of the history of the discovery of quasars mentioned in Sect. 20.1
are recalled in the autobiography of Don Lynden-Bell (2010).

A description of the continuum components as observed in 3C 273 can be
obtained from Courvoisier (1998). A recent review of the X-ray properties of AGN
can be found in Turner and Miller (2009). The physics of the AGN line can be found
in Blandford et al. (1990).

Relativistic X-ray lines are discussed in Miller (2009).
A recent book describing AGN physics is Robson (2004).
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Chapter 21
The Diffuse X-Ray Background
and Other Cosmic Backgrounds

Cosmologists are familiar with the cosmic microwave background. This is, however,
not the only source of radiation that cannot be immediately identified with individual
sources. A population of weak sources observed with an instrument of limited
angular resolution and low sensitivity will look like a diffuse source covering an
extended region of the sky. The instrument observing this population will indeed
register a very small number of photons from each source, and will not allow
the observer to distinguish the individual sources. Since at some limit, all our
instruments have or had a low sensitivity and a limited angular resolution, we
meet this case in several wavebands, and in particular in the X-rays where early
instruments had no focusing systems beyond collimators.

21.1 The Diffuse X-Ray Background

The first rocket flight with the objective of observing the sky beyond the Sun in
the X-ray domain led to the discovery of a very bright source, Sco X-1. This
was the start of the very intense study of high energy sources within our Galaxy
and in the extra-galactic sky as discussed in the previous chapters of this book.
During this same rocket flight a diffuse emission component was also discovered
and soon found to originate outside the Galaxy. This has been called the diffuse X-
ray background. A ROSAT observation of the Moon shows a very vivid illustration
of this background. One immediately sees from Fig. 21.1 that the dark side of the
Moon is “darker” in soft X-rays than the outside regions. This shows that the Moon
projects a shadow of the X-ray sky beyond onto the detector, and thus that the diffuse
emission comes at least from beyond the Moon. Furthermore, the sunlit fraction of
the Moon is bright in X-rays as a result of the interaction of the solar wind with
its surface.

A similar method to that shown in Fig. 21.1 has been used with ESA’s gamma
ray satellite INTEGRAL to measure the diffuse extragalactic hard X-ray spectrum.
As INTEGRAL moved away from the Earth at the beginning of some of its 3-day

T.J.-L. Courvoisier, High Energy Astrophysics, Astronomy and Astrophysics Library,
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Fig. 21.1 This image of the Moon was taken by the ROSAT PSPC on 29 June 1990. Black pixels
denote no counts. The sunlit portion of the Moon is visible. In addition a distinct X-ray shadow in
the diffuse X-ray background is cast by the dark side of the Moon (Schmitt et al. 1991, reprinted
with kind permission of Nature Publishing Group)

revolutions around the Earth, the instruments were pointed so that the Earth crossed
the field of view of the main instruments. The Earth thus shadowed in a time
dependent manner the different background and source components. As the Earth
was close to the plane of the Galaxy, several components had to be taken into
account: the diffuse Galactic emission, those sources present in the field of view,
the extragalactic background emission, but also emission due to charged particles in
the magnetosphere of the Earth and interacting with its atmosphere. The movement
of the Earth allowed observers to deconvolve the different components and the
background intrinsic to the instruments. The results are shown in Fig. 21.2 which
shows the spectrum of all components. The best fit to the diffuse extragalactic X-
ray emission is given by a broken power law with a break at 29 keV. Very early
spectral descriptions of this component had suggested that the measurement of this
component could be relatively well represented by the bremsstrahlung emission of
a 45 keV plasma. But it had soon become clear that it would be very difficult to
understand how a gas of this temperature could be heated and distributed throughout
extragalactic space. This is an interesting example of an acceptable fit to data, that
leads to erroneous physical conclusions.

The interpretation of this bright and apparently diffuse emission had been
difficult until the suggestion by Setti and Woltjer (1970) that the diffuse extragalactic
X-ray emission might not be diffuse at all, but rather could be the sum of many very
weak sources. Subsequent very long observations in the Lockman hole, a region in
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Fig. 21.2 The different components of the hard X-ray emission deconvolved from INTEGRAL
observations. The orange crosses give the integrated emission from point sources in the field of
view, the blue squares indicate hard X-ray emission from a ridge near the Galactic plane, the green
triangles indicate the emission from the Earth, and the extragalactic X-ray emission is shown as
red circles (From Türler et al. (2010))

the sky of very low absorption perpendicular to the plane of the Galaxy, first with
ROSAT (Fig. 21.3, left panel) and then with XMM-Newton (Fig. 21.3, right panel),
have shown that indeed the “diffuse” background is the superposition of many
very weak soft X-ray sources. Most of the sources have been found to be AGN.
Approximately 80 % of the background has thus been resolved into point sources in
the soft X-ray region. While this solves the question of the origin of the “diffuse”
soft X-ray emission, it does not yet solve it at the harder energies where the diffuse
emission is strongest. Indeed taking the spectral energy distribution of different
types of active galaxies as observed in the nearby Universe, and superposing them
according to the proportion of sources found in the low redshift Universe, leads to a
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a b

Fig. 21.3 The Lockman Hole region seen by ROSAT (left panel, (Hasinger G. et al. 1998)) and
XMM-Newton (right panel, credit ESA). Several diffuse sources with red colours in XMM image
are X-ray clusters of galaxies already identified by ROSAT data. But XMM-Newton clearly reveals
a number of green and blue objects and these correspond to obscured faint sources

combined spectrum that gives a very poor representation of the X-ray background.
In general, the mix of sources we observe do not have a sufficient hard X-ray
flux to account for the hard X-ray background. This implies that in general weak
AGN probably have a stronger reflection component (see Chap. 20) than observed
in nearby bright sources. That this emission has escaped detection is likely, as the
sensitivity of hard X-ray instruments, which are devoid of focusing optics, is much
less than that of imaging soft X-ray telescopes. INTEGRAL is, however, slowly
changing this state of affairs. Observationally, very long INTEGRAL observations
in the field of the quasar 3C 273 have now resolved few percent of the hard X-ray
background into individual sources. The INTEGRAL findings on the hard X-ray
emission of different classes of AGN have also shown that simply extrapolating soft
X-ray measurements to higher energies may lead to inadequate results, giving hope
that the hard X-ray “diffuse” extragalactic background can indeed be understood as
the sum of weak AGN populations.

21.2 The Different Diffuse Extragalactic Backgrounds

The X-ray background is only one of the extragalactic backgrounds observed over
the electromagnetic spectrum.1 Figure 21.4 shows a compilation of the background
emission as observed over the entire electromagnetic spectrum. The origin of the

1The discussion presented in this section is the result of discussions with G. Meynet and A.
Neronov.
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Fig. 21.4 The overall cosmic energy density spectrum (νIν vs ν): a compilation of most recent
datasets, from microwave to high energy gamma rays (Brusa et al. 2001)

emission in the different wavebands is very diverse. In the microwave region the
light is the relict of the hot big bang. It carries the signature of the early history of the
Universe as it was cast in the optically thick medium, and subsequently imprinted in
the radiation that escaped freely at the epoch of the hydrogen recombination. In the
infrared and optical domains, the background is the superposition of the light of faint
galaxies. It encapsulates the integrated cosmic history of starlight and its component
reprocessed by dust. This light therefore emanates from nuclear fusion reactions
taking place as stars evolve. In the hard X-rays, the photons were generated by AGN,
i.e. by matter falling onto black holes. This emission is therefore the integral of the
gravitational potential energy released in accretion processes. The three background
components each tell the story of an important part of the history of the Universe,
the big bang, nuclear reactions, and accretion onto supermassive black holes.

The electromagnetic backgrounds are not the only ones. There is also a cosmic
ray background resulting from particle acceleration (see Chap. 9), and a (as of
yet undetected) neutrino background that results, like the cosmic microwave back-
ground, from the early Universe and a further (also undetected) neutrino background
that originates from the neutrinos emitted during the collapse of massive stars.
Neither of these neutrino backgrounds are observed, nor expected to be observable
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in the foreseeable future. Considerations of the weak force interactions in the
early Universe nonetheless indicate that the cosmological neutrino background is
thermal with a temperature of 1.95 K, (( 4

11)
1
3 less than the electromagnetic cosmic

microwave background temperature).
It is interesting to consider the integrated universal energy balance between

the various backgrounds due to cosmic rays, nuclear reactions, and the neutrinos
originating from stellar collapse.

The local interstellar energy density of cosmic rays is 1 eV cm−3 (Webber 1987).
This is, however, larger than the average extragalactic energy density of cosmic rays.
The difference is due to the fact that galaxies are sources of cosmic rays, and that we
are close (or within) one such source, namely the Milky Way. In order to compare
the energy density of cosmic rays with other integral quantities, one must compute
the extragalactic cosmic ray energy density. This can be done by considering that
the cosmic ray luminosity of our Galaxy is 1041 erg s−1 (Strong et al. 2010), three
orders of magnitude less than the starlight luminosity of our Galaxy (1044 erg s−1).
Assuming that our Galaxy is representative of all galaxies in the ratio of cosmic
rays to starlight luminosities, one may conclude that the extragalactic cosmic ray
energy density is also three orders of magnitude less than the infrared background
energy density of 3 · 10−3 eV cm−3 or some 3 · 10−6 eV cm−3. Cosmic rays are
accelerated either by direct processes (large electric fields) in the vicinity of neutron
stars or, more likely, in shocks (see Chap. 9). In the latter case the energy of the
cosmic rays comes from the kinetic energy of the shocked flow. On the assumption
that, integrated over the life of stars and over an initial mass distribution, the
kinetic energy of their winds is negligible, the kinetic energy of the flows stems
predominately from the collapse of stars at the end of their lives. Cosmic rays are,
therefore, the result of particle acceleration in shocks surrounding compact remnants
of stars.

It is generally admitted that cosmic rays below some 1015 eV are of Galactic
origin, while those of higher energies are extragalactic, probably related to AGN
phenomenology. Since the energy spectrum of the cosmic rays is steep, their
energy density is dominated by the lower energy Galactic processes. Their energy,
therefore, originates from the collapse of stars. The energy available for cosmic
ray production is thus the gravitational binding energy of the compact remnants.
Knowing the nature of the compact remnant (white dwarf, neutron star or black hole)
as a function of the initial mass of a star allows one to compute the gravitational
energy liberated at the end of the life of the star. Similarly, knowing the chemical
composition of a star at the end of its life allows one to compute the total nuclear
energy released during its lifetime. This gives, for each star, the ratio of emitted
nuclear energy to gravitational energy. For a one solar mass star, one obtains that
the gravitational binding energy of the white dwarf remnant is 1050 erg, while the
nuclear energy radiated during the life of the star is ≤8 · 1051 erg. For a 20 solar
mass star this ratio is very different, and in this case the gravitational binding energy
exceeds the nuclear reaction energy by a factor �12.
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Both quantities can be integrated over the stellar mass distribution (known as
initial mass function). This integration was performed (Meynet private communica-
tion) with the result that the integrated gravitational binding energy of the remnants
in a galaxy is a factor �2 larger than the nuclear energy released by stars with
masses above 0.9 solar masses (i.e. for all the stars with lifetimes inferior to that of
the Universe).

About 99 % of the gravitational binding energy is emitted during stellar collapse
in the form of neutrinos, while the rest is kinetic energy, a fraction of which is
accelerated to cosmic rays. Knowing that the gravitational energy liberated by stars
at the end of their lives is, within a factor two, identical to the integrated stellar
luminosity of the stars (1044 ergs−1) and that 1 % of this is the kinetic energy of the
winds (1042 ergs−1), one concludes that the cosmic ray luminosity of our Galaxy
(1041 ergs−1), is about 10 % of the kinetic energy released as a consequence of the
collapse of massive stars in the galaxies. This implies an efficiency of very roughly
10 % for the acceleration mechanism, a high, though perhaps plausible efficiency.

We also conclude that the neutrino luminosity of our Galaxy is similar or slightly
larger than its electromagnetic luminosity and, therefore, that the extragalactic
stellar neutrino energy density is 3 · 10−3 erg s−1, similar to the infrared stellar
luminosity background.
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A
Absorption edges, 36
Accretion disk, 33, 130, 131, 135, 240

alpha, 139
luminosity, 136
spectrum, 136, 137, 139
temperature, 136, 139

Accretion efficiency, 177, 182, 300
A 2052 cluster, 42
ADAF, 145
AGN, 65, 140, 182, 323–324

blazar, 301, 305, 306
blue bumb, 303
classification, 300
Compton emission, 86
density, 315
evolution, 315
host galaxy, 317
jet, 303
line emission, 305, 307
luminosity function, 315
polarisation, 309
soft excess, 303
variability, 298, 303, 306

Alfven radius, 244, 268
Angular momentum conservation, 169
Angular momentum transport, 132, 138, 244
Annihilation line, 257
A0620–00 = Nova Mon 1975, 256
Auger detector, 121

B
Beaming, 28
Black hole, 149, 157, 164, 238

candidate, 240, 259
evaporation, 187

Kerr, 185
luminosity, 187
Schwarzschild, 184
spin, 184
supermassive, 300

Blandford–Znajek mechanism, 185
BL Lac object, 300, 305, 306
Boltzmann equation, 93
Bondi accretion, 127
Bremsstrahlung, 31

emissivity, 35, 38
thermal, 34, 39

C
3C 273, 65, 66, 88, 281, 297, 298, 302
Cataclysmic variables, 139, 237
Cen X-3, 243
Chandra, 42
Charge, accelerated, 21
Charge acceleration

diffusive shock acceleration, 116
electrostatic, 32, 113, 218, 219
injection problem, 116
stochastic, 114

Chemical potential, 193
Christoffel symbols, 159
Circular orbits, 175
Clusters of galaxies, 39, 96, 314
Coded mask, 12
Collisionless shocks, 117
Coma cluster, 100
Compactness, 108
Compton

inverse, 82
length, 187
photon energy shift, 79
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Compton (cont.)
power law slope, 86
radiated power, 83
radiation, 82, 275, 305
reflection, 79
scattering, 77
spectrum, 84
temperature, 92

Cosmic microwave background, 321, 323
Cosmic rays, 111, 191, 219, 325

composition, 112
opacity, 121
propagation, 119
spectrum, 112

Cosmological distances, 101
Coulomb force, 32
Covariant derivative, 159
Crab

nebula, 70–71
pulsar, 214, 216, 223

Curvature radiation, 221
Cyclotron

line, 4, 51, 240
radiation, 49, 57, 214

Cyclotron frequency, 48, 119
Cygnus A, 312, 314
Cygnus X-1, 98, 255

D
Dark matter, 43
de Broglie wavelength, 49
Dispersion measure, 211
Doppler effect, 277
Dust emission, 66, 68, 303

E
1E1207.4-5209, 54
Eddington

accretion rate, 126, 268
luminosity, 126, 254, 299

Einstein equation, 161, 163
Electrical dipole, 23, 32
Electron-positron

annihilation cross section, 108
annihilation line, 109
extragalactic opacity, 106
pair creation cross section, 106

Emission
bound-bound, 36
free-bound, 36
free-free, 31
line, 36

Emission line
broad, 297
narrow, 297

Energy conservation, 168
Ergosphere, 179, 185
Euler equation, 127
EXO 0748-676, 199

F
Fe line, 40, 183, 303, 307
Fermi charge acceleration, 113
Fermi energy, 193
Fermi gas, 192, 194
Field

electrical, 22
radiation, 22

Fourier transform, 23, 32

G
Galactic centre, 149
Gamma ray burst, 188
Gaunt factor, 34, 35
Geminga, 223
General relativity, 157

conservation laws, 161
metric, 158

Gravitational radiation, 225, 227
Gravitational radius, 163
Gravitational redshift, 164, 198
GRB

distribution, 287
duration, 285
fluence, 285
lightcurve, 285
supernova association, 291

GRB 030329, 293
GRB 070125, 294
GRB 990705, 292
Griesen-Zatsepin-Kuzmin cut-off, 120
GRO J1655-40, 247
GRS 1915+105, 248, 261, 262
GS1124-68 = Nova Muscae 1991, 256
GX 1+4, 243
Gyro frequency, 48, 57, 119
GZK cut-off, 120

H
Hawking radiation, 186
Her X-1, 51, 243
High mass X-ray binary, 239. See also HXMB
Horizon, 163
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Hubble constant, 101
HXMB

absorption, 241
Be system, 241
distribution, 239
magnetic field, 244
orbital period, 241
SFXT, 242
spin period, 241, 245

Hydrostatic equation, 162, 191

I
IGR J00291+5934, 269
Inertial reference system, 160
Infrared background, 324

K
Keplerian disk, 131, 135
Kerr metric, 177
Kinematic viscosity, 133, 138
Klein Nishina cross section, 79
Kompaneets equation, 93, 94, 96

L
Lagrange function, 166, 180
Landau levels, 50
Larmor

formula, 23, 49, 75, 221
frequency, 48, 57, 119
radius, 48, 119

Light cylinder, 217
Line emissivity, 37
LMC X-3, 256
LMXB

accretion disk, 247
atoll sources, 248
Comptonising corona, 247
dip, 254
distribution, 239
magnetic field, 239
variability, 247
Z sources, 247

Lockman hole, 322, 324
Lorentz

force, 47, 218
transformation, 25–27

Low mass X-ray binary, 239. See also LMXB
Luminosity function, 315

M
M87, 276
Magnetars, 236
Magnetic

acceleration, 48, 57
dipole radiation, 213
energy density, 58
field, 4, 51, 65, 66, 313
flux, 51
mass accretion rate, 135
mass function, 228, 255
MCG 6-30-15, 5, 183
metric, flat, 25

Microquasar, 260
Minkowski metric, 25, 158, 159
Molecular viscosity, 138

N
Neutron drip point, 199
Neutron star, 157, 191, 206, 237

beta equilibrium, 192
equation of state, 191, 195, 196, 199, 201
mass, 196–200, 228
moment of inertia, 209, 214, 245
radius, 196, 252

NGC 1068, 310
NGC 1275, 42
NGC 4151, 303, 304
NGC 5548, 87
Nucleosynthesis, 7

O
OAO 1657-415, 243

P
Pair creation, 290
Particle acceleration, 113, 219
Periastron shift, 228
Perseus cluster, 40, 42, 45
Positronium, 108
Potential

Newtonian, 175
relativistic, 174

Poynting vector, 23
Proper time, 159, 164, 167, 171
PSR 1133+16, 207
PSR 1913+16, 225, 227, 230
PSR 1957+20, 269
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PSR1957+20, 271
PSR B0540-69, 223
PSR J1614-2230, 201
PSR J0737-3039A, 225
Pulsar, 191

death line, 222
distribution, 212
emission, 214
evolution, 266, 270
magnetic field, 212, 213, 217
millisecond, 205, 214, 230, 272, 222, 266
period, 206, 214, 267
period derivative, 206, 214
polar cap, 220
proper velocity, 212

Q
QSO, 297
Quadrupole formula, 225
Quasar, 297
Quasi periodic oscillations, 259

R
Radial trajectories, 170
Radiation

inefficient accretion flow, 145, 153
spectrum of accelerated charge, 24

Reflection hump, 305, 311, 322
Relativistic

aberration, 26, 28, 58, 183, 277, 291, 293
charged particles, 25

Relativity, special, 25
Reverberation mapping, 309
Roche lobe, 130, 270

S
Schwarzschild metric, 163
Seyfert galaxy, 297, 305, 308
Sgr A∗, 148
Sgr B2, 81
Shakura-Sunyaev accretion disk, 130, 146
SLE disk, 146
Sonic point, 128
SS 433, 276
Stress energy tensor, 160
Sunyaev–Zeldovich effect, 96
Synchrotron

characteristic frequency, 61

cooling time, 58, 61, 66, 72, 314
emissivity, 63
polarisation, 63
power, 58
radiation, 57, 83, 275, 303, 305, 311
self absorption, 63, 66
self Compton, 275
spectrum, 62, 64

T
Thermal distribution, 34
Thomson

cross section, 58, 76
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