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Preface to the Fourth Edition

Thirty-three years have passed since the first edition of Astrophysical Concepts ap-
peared. During this time astrophysics has undergone major revolutions. We have
gained new perspectives on the Universe with the aid of powerful gamma-ray, X-
ray, and infrared telescopes, whose sensitivities could not have been imagined three
decades earlier. We have become expert at snaring neutrinos to gain insight on nu-
clear processes at work in the Sun and supernovae. We have direct evidence for
the existence of neutron stars and gravitational waves, and persuasive arguments for
the detection of black holes on scales of individual stars as well as galactic nuclei.
Primordial fluctuations, remnants from the first moments in the expansion of the
Universe have revealed themselves in the faint ripples marking the microwave sky.
These ripples also document the first appearance of dark matter now known to have
dominated the formation and evolution of all cosmic structure. And dark energy has
gradually had to be acknowledged to be the dominant factor driving the expansion
of the Universe today.

With so much that is new, and so many new problems revealed by knowledge
already gained, much of the book had to be fully revised. My principal aim in this
fourth edition, however, has continued to be the presentation of a wide range of
astrophysical topics in sufficient depth to give the reader a general quantitative un-
derstanding. The book outlines cosmic events but does not portray them in detail
— it provides a series of astrophysical sketches. I think this approach still befits the
prevailing uncertainties and rapidly evolving views in astrophysics.

The first edition of Astrophysical Concepts was based on notes I prepared for a
course aimed at seniors and beginning graduate students in physics and astronomy
at Cornell. This course defined the level at which the book is written.

For readers who are versed in physics but are unfamiliar with astronomical ter-
minology, Appendix A is included. It gives a brief background of astronomical con-
cepts and should be read before starting the main text.

The first few chapters outline the scope of modern astrophysics and deal with
elementary problems concerning the size and mass of cosmic objects. However, it
soon becomes apparent that a broad foundation in physics is needed to proceed. This
base is developed in Chapters 4 to 7 by using, as examples, specific astronomical
processes. Chapters 8 to 14 enlarge on the topics first outlined in Chapter 1 and show
how we can obtain quantitative insight into the structure and evolution of stars, the
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dynamics of cosmic gases, the large-scale behavior of the Universe, and the origins
of life.

Throughout the book I emphasize astrophysical concepts. This means that ob-
jects such as asteroids, stars, supernovae, or quasars are not described in individual
chapters or sections. Instead, they are mentioned wherever relevant physical prin-
ciples are discussed. Thus, features common to various astronomical phenomena
are emphasized, but information about specific astronomical objects remains dis-
tributed. For example, different aspects of neutron stars and pulsars are discussed in
Chapters 5, 6, 8, Appendix A, and elsewhere. To compensate for this treatment, a
comprehensive index is included.

I have sketched no more than the outlines of several traditional astronomical
topics, such as the theories of radiative transfer, stellar atmospheres, and polytropic
gas spheres, because a complete presentation would have required extensive math-
ematical development to be genuinely useful. However, the main physical concepts
of these subjects are worked into the text, often as remarks without specific men-
tion. In addition, where appropriate, I refer to other sources that treat these topics in
greater detail.

The greatly expanded list of references is designed for readers who wish to cover
any given area in greater depth. Beginning students should not feel compelled to
look these up. They are included for those who would like to research any given
topic to greater depth or read about a subject in the discoverer’s own words. Oc-
casionally I also refer to informative popular articles designed to keep the larger
scientific community abreast of developments.

A book that covers a major portion of astrophysics must be guided by the many
excellent monographs and review articles that exist today. It is impossible to prop-
erly acknowledge all of them and to give credit to the astrophysicists whose view-
points strongly influenced my writing. I am grateful for the many suggestions of-
fered by colleagues and by several generations of Cornell students who saw earlier
editions of this book evolve from a series of informal lecture notes.

I thank Harry Blom and Chris Coughlin, my editors at Springer, for their ad-
vice, Frank Ganz for his unfailing courtesy in sharing his expertise on working with
LaTeX, Valerie Greco and Natacha Menar for their meticulous copy editing, and
Natacha also for seeing the book through production. They all made working with
Springer easy and enjoyable.

Finally, I acknowledge with pleasure my especial indebtedness to Andrew Wil-
son and Yuichi Terashima, NASA/Chandra X-ray Observatory Center (CXC), Uni-
versity of Maryland, USA and Institute of Space and Astronautical Science, Japan
for the image of the galaxy Messier 51 that appears on the cover of the book. This
image, obtained with the Advanced Charge-Coupled-Device Imaging Spectrometer
(ACIS-S) on the Chandra X-ray Observatory was processed by Andrea Prestwich
and Holly Jessop. I thank Harvey Tananbaum, Director of CXC, for the friendly
reception that my request for this image received.

Colleagues from all over the astronomical community were gracious in permit-
ting me to incorporate figures and tables they had produced, sometimes updating
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original figures to make them current. For help with these I thank Joao Alves,
Jennifer Barnett, Charles L. Bennett, Michael Blanton, Brian Boyle, Alain Coc,
John Cowan, Scott Croom, Tamara Davis, Frank Eisenhauer, Xiaohui Fan, Masa-
taka Fukugita, Zoltan Haiman, Jonathan Hargis, Günther Hasinger, Alan Heav-
ens, Alexander Heger, W. Raphael Hix, Stanley D. Hunter, D. Heath Jones, Ma-
ciej Konacki, Charlie Lada, Elizabeth Lada, Charley Lineweaver, Bradley Meyer,
Philip Myers, Ken’ichi Nomoto, Jim Peebles, Saul Perlmutter, Michael Perryman,
Juri Poutanen, Clement Pryke, Adam Riess, Sara Seager, David Spergel, Volker
Springel, John Stauffer, Max Tegmark, Lih-Sin The, Ethan Vishniac, and J. Craig
Wheeler.

My greatest debt, however, is to my wife Marianne. In the thirty-three-year his-
tory of the book, she has at various times taken on the roles of mail clerk, proof-
reader, editorial assistant, sales manager, and publisher. Throughout, she has also
remained my most loyal critic.

Martin Harwit
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1 An Approach to Astrophysics

In a sense each of us has been inside a star; in a sense each of us has been in the
vast empty spaces between the stars; and — if the Universe ever had a beginning —
each of us was there!

Every molecule in our bodies contains matter that once was subjected to the
tremendous temperatures and pressures at the center of a star. This is where the iron
in our red blood cells originated. The oxygen we breathe, the carbon and nitrogen
in our tissues, and the calcium in our bones, also were formed through the fusion of
smaller atoms at the center of a star.

Terrestrial ores containing uranium, plutonium, lead, and many other massive
atoms were formed in a supernova explosion — the self-destruction of a star in
which a sun’s mass is hurled into space at huge velocity. Most of the matter on
Earth and in our bodies went through such a cataclysmic event!

To account for a fraction of the light elements, lithium, beryllium, and boron,
which we find in traces on Earth, we have to go back to a cosmic explosion sig-
nifying the birth of the entire Universe. A separate portion of these same elements
originated through cosmic-ray bombardment in interstellar space. These two con-
stituents became admixed long before the Earth we now walk on was formed from
a cloud of gas and dust spread so tenuously that a gram of soil would have occupied
a volume the size of the entire planet.

How do we know all this? And how sure are we of this knowledge?
This book was written to answer such questions and to provide a means for

making astrophysical judgments.
We are just beginning a long and exciting journey into the Universe. There is

much to be learned, much to be discarded, and much to be revised. We have excellent
theories, but theories are guides for understanding the truth. They are not truth itself;
we must continually revise them if they are to keep leading us in the right direction.

In going through the book, just as in devising new theories, we will find our-
selves baffled by choices between the real and the apparent. We will have to learn
that it may still be too early to make such choices, that reality in astrophysics has
often been short-lived, and that — disturbing though it would be — we may some
day have to reconcile ourselves to the realization that our theories had recognized
only superficial effects — not the deeper, truly motivating, factors. We may there-
fore do well to avoid a preoccupation with astrophysical “reality,” and rather take a
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longer view, looking more closely at those physical concepts likely to play a role in
the future evolution of our understanding.

The development of astrophysics in the last few decades has been revolutionary.
We have discarded what had appeared to be our most reliable theories, replaced
them, and frequently found even the replacements lacking. The only constant in this
revolution has been the pool of astrophysical concepts. It has provided a continuing
source of material for our evolving theories.

This pool contained the neutron stars 35 years before their discovery, and it
contained black holes three decades before astronomers started searching for them.
The best investment of our efforts may lie in a deeper exploration of these concepts.

In astrophysics we often worry whether we should organize our thinking around
individual objects — planets, stars, pulsars, and galaxies — or whether we should
divide the subject according to physical principles common to the various astro-
physical processes.

The book’s emphasis on concepts makes the second approach more appropriate,
but also raises problems. Much of the information about individual types of objects
has had to be distributed throughout the book, and can be gathered only through use
of the Index. This leads to a certain unevenness in the presentation.

The unevenness is made even more severe by the varied mathematical treat-
ment. No astrophysical picture is complete if we cannot assign a numerical value to
its scale. In this book, we will consistently aim at obtaining rough orders of mag-
nitude characteristics of the different phenomena. In some cases, this aim leads to
no mathematical difficulties. In other problems we will have to go through rather
complex calculations before even the crudest answers emerge.

Given these difficulties, which appear to be partly dictated by the nature of mod-
ern astrophysics, let us examine the most effective ways to use this book: For those
who have no previous background in astronomy, Appendix A may provide a good
starting point. It briefly describes the astronomical objects we will study and intro-
duces astronomical notation. This notation will be used throughout the book and
is generally not defined in other chapters. Those who have previously studied as-
tronomy will be able to start directly with the present chapter, which presents the
current searches going on in astrophysics — the problems we will be pursuing, the
questions that we will seek to answer as we progress through the book. Chapters 2
and 3 show that, while some of the rough dimensions of the Universe can be mea-
sured by conceptually simple means, a deeper familiarity with physics is required
to understand the cosmic sources of energy and the nature of cosmic evolution. The
physical tools we need are therefore presented in the intermediate Chapters 4 to 7.
We then gather these tools to work our way through the formation and evolution
of stars, the processes that take place in interstellar space, the evolution of the Uni-
verse, the synthesis of chemical elements mentioned right at the start of this section,
the formation of galaxies and clusters of galaxies, and the astrophysical setting for
the origins of life.

This is an exciting, challenging venture; we have a long way to go.
Let us start.
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1:1 Channels for Astronomical Information

Imagine a planet inhabited by a blind civilization. One day an inventor discovers an
instrument sensitive to visible light and this device is found to be useful for many
purposes, particularly for astronomy.

Human beings can see light and we would expect to have a big head start in as-
tronomy compared to any civilization that was just discovering methods for detect-
ing visible radiation. Think then of an even more advanced culture that could detect
not only visible light but also all other electromagnetic radiation, cosmic rays, neu-
trinos, and gravitational waves. Clearly, that civilization’s knowledge of astronomy
could be far greater than ours.

Four entirely independent channels are known to exist by means of which infor-
mation can reach us from distant parts of the Universe.

(a) Electromagnetic radiation: gamma rays, X-rays, ultraviolet, visible, infrared,
and radio waves.

(b) Cosmic-ray particles: These comprise high-energy electrons, protons, and
heavier nuclei as well as the (unstable) neutrons and mesons. Some cosmic-ray par-
ticles consist of antimatter.

(c) Neutrinos and antineutrinos: There are three known types of neutrinos and
antineutrinos, each associated with electrons, µ-mesons, and τ -mesons.

(d) Gravitational waves.

Most of us are familiar with channel (a), currently the channel through which
we obtain the bulk of astronomical information. However, let us briefly describe
channels (b), (c), and (d).

(b) There are fundamental differences between cosmic-ray particles and electro-
magnetic or gravitational waves: (i) cosmic rays move at very nearly the speed of
light, whereas electromagnetic and gravitational waves move at precisely the speed
of light; (ii) cosmic-ray particles can be electrons, neutrons, or nuclei of atoms, all
with positive rest-mass; iii) when electrically charged, these particles are deflected
by cosmic magnetic fields. The direction from which a charged cosmic-ray particle
arrives at the Earth is usually unrelated to the actual direction of the source.

Cosmic-ray astronomy is far more advanced than either neutrino or gravitational
wave work. Through cosmic-ray studies we hope to learn about the chemistry of the
Universe on a large scale, eventually to single out regions in which, as yet unknown,
grandiose accelerators produce these highly energetic particles (Bi97).

(c) Neutrinos, have extremely low rest-mass. They have one great advantage
in that they can traverse great depths of matter without being absorbed. Neutrino
astronomy could give us a direct look at the interior of stars, much as X-rays can
be used to examine a metal block for internal flaws or a medical patient for lung
ailments. Neutrinos could also convey information about past ages of the Universe
because, except for a systematic energy loss due to the expansion of the Universe,
the neutrinos are preserved in almost unmodified form over many æons.1 Much of

1 One æon ≡ 109 yr ≡ 1 Gyr.
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the history of the Universe must be recorded in the ambient neutrino flux, but so far
we do not know how to tap this information.

A search for solar electron neutrinos at first seemed to show that the flux received
at Earth is lower than had been predicted, based on expected nuclear reactions in the
Sun. However, we now know that neutrinos oscillate between electron-, µ- and τ -
neutrino states. The originally predicted rate at which electron neutrinos are radiated
by the Sun appears to have been correct, but a large fraction of these neutrinos are
converted into µ- and τ -neutrinos before they reach Earth (Ba96).

The 1987 explosion of a supernova in the nearby Large Magellanic Cloud pro-
vided the first direct evidence for copious generation of neutrinos in these huge
eruptions and gave neutrino astronomy a new boost (Hi87), (Bi87).

(d) Gravitational waves, when reliably detected, will yield information on the
motion of very massive bodies. Gravitational waves have not yet been directly de-
tected, though their existence is indirectly inferred from observations on changes in
the orbital motions of closely spaced pairs of compact stars. We seem to be on the
threshold of important discoveries that are sure to have a significant influence on
astronomy.

In addition to use of channels (a)–(d) information on the solid constituents of the
ambient interstellar and interplanetary medium can also be gained by collecting and
chemically analyzing interstellar dust grains that penetrate into the Solar System
and meteorites that orbit the Sun.

It is clear that astronomy cannot be complete until techniques are developed
to detect all of the principal means by which information can reach us. Until then
astrophysical theories must remain provisory.

Not only must we be able to detect these information carriers, but we will also
have to develop detectors sensitive to the entire spectral range for each type of
carrier. The importance of this is shown by the great contribution made by radio-
astronomy. Eight decades ago, all our astronomical data were obtained in the vis-
ible, near infrared, or near ultraviolet regions; no one at that time suspected that
a wealth of information was available in the radio, infrared, X-ray, or gamma-ray
spectrum. Yet today, the only complete maps we have of our own Galaxy lie in these
spectral ranges. They show, respectively, the distributions of pulsars and molecular,
atomic or ionized gas; clouds of dust; bright, hot X-ray emitting stars and X-ray
binaries; and giant gamma-ray flares from soft gamma-ray repeaters, believed to
be magnetars, neutron stars with magnetic fields ranging up to 1014 − 1015 gauss
(Sc05).

Just as we have made our first astrophysically significant neutrino observa-
tions and are reaching for gravitational wave detection, a variety of new carriers
of information have been proposed. We now speak of axions, photinos, magnetic
monopoles, tachyons, and other carriers of information which — should they exist
— could serve as further channels of communication through which we could gather
astrophysical information. All these hypothesized entities arise from an extension
of known theory into domains where we still lack experimental data. Theoretically,
they are plausible, but there is no evidence that they exist in Nature. Photinos, ax-
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ions, and other weakly interacting massive particles, WIMPS, could, however, be
making themselves felt through their gravitational attraction, even though otherwise
unobserved. The hot, massive gaseous haloes around giant elliptical galaxies sug-
gest that these galaxies contain far more mass than is observed in stars and interstel-
lar gases. The surprisingly high speeds at which stars and clouds of hydrogen orbit
the centers of spiral galaxies even when located at the extreme periphery of their
galaxies’ disks lead to the same conclusion. These inferences, however, assume that
the force of gravity declines with the square of the distance, and we have no di-
rect observational proof that this is so on the scale of galaxies. But if it is, galaxies
quite generally must contain an abundance of some form of dark matter. Could this
consist of exotic particles?

1:2 X-Ray Astronomy: Development of a New Field

The development of a new branch of astronomy often follows a general pattern:
vague theoretical thinking tells us that no new development is to be expected. Not
until some chance observation focuses attention onto a new area are serious pre-
liminary measurements undertaken. Many of these initial findings later have to be
discarded as techniques improve.

These awkward developmental stages are always exciting. Let us outline the
evolution of X-ray astronomy, as an example, to convey the sense of advances that
should take place in astronomy and astrophysics in the next decades, as we venture
further into neutrino observations and search for ways to detect gravitational waves.

Until 1962 only solar X-ray emission had been observed. This flux can solely be
detected with instruments taken above the Earth’s atmosphere and is so weak that
no one expected a large X-ray flux from sources outside the Solar System. Then,
in June 1962, R. Giacconi, H. Gursky, and F. Paolini of the American Science and
Engineering Corporation (ASE) and B. Rossi of MIT flew a set of large area Geiger
counters aboard an Aerobee rocket (Gi62). The increased area of these counters was
designed to permit detection of X-rays scattered by the Moon but originating from
the Sun. The counters were sensitive in the wavelength region from 2 to 8 Å.

No lunar X-ray flux could be detected. However, a source of X-rays was dis-
covered in a part of the sky not far from the center of the Galaxy and a diffuse
background flux of X-ray counts was evident from all portions of the sky. Various
arguments showed that this flux probably was not emitted in the outer layers of the
Earth’s atmosphere and therefore should be cosmic in origin. Later flights by the
same group verified their first results.

At this point, a team of researchers at the U.S. Naval Research Laboratory be-
came interested. They had experience with solar X-ray observations and were able
to construct an X-ray counter some ten times more sensitive than that flown by Gi-
acconi’s group. Instead of the very wide field of view used by that group, the NRL
team limited their field to 10 degrees of arc so that their map of the sky could show
somewhat finer detail (Bo64a).
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An extremely powerful source was located in the constellation Scorpius about 20
degrees of arc from the Galactic center. At first this source, catalogued as Sco X-1,
remained unidentified. Photographic plates showed no unusual objects in that part of
the sky. The NRL group also discovered a second source, some eight times weaker
than the Scorpio source. This was identified as the Crab Nebula, a remnant of a
supernova explosion observed by Chinese astronomers in 1054 A.D. The NRL team,
Bowyer, Byram, Chubb, and Friedman, believed that these two sources accounted
for most of the emission observed by Giaconni’s group.

Many explanations were advanced about the possible nature of these sources.
Arguments were given in favor of emission by a new breed of highly dense stars
whose cores consisted of neutrons. Other theories suggested that the emission might
come from extremely hot interstellar gas clouds. No decision could be made on the
basis of observations because none of the apparatus flown had sufficient angular
resolving power.

Then, early in 1964, Herbert Friedman at NRL heard that the Moon would occult
the Crab Nebula only seven weeks later. Here was a great opportunity to test whether
at least one cosmic X-ray source was extended or stellar. For, as the edge of the
Moon passes over a well-defined point source, all the radiation is suddenly cut off.
In contrast, the flux from a diffuse source diminishes gradually.

No other lunar occultation of either the Scorpio source or the Crab Nebula was
expected for many years; so the NRL group went into frenzied preparations and
managed to prepare a payload in time. The flight had to be timed to within seconds,
because the Aerobee rocket to be used only gave five minutes of useful observing
time at altitude. Two possible flight times were available: one at the beginning of the
eclipse, the other at the end. Because of limited flight duration it was not possible to
observe both the initial immersion and subsequent egress from behind the Moon.

The first flight time was set for 22:42:30 Universal Time on July 7, 1964. That
time would allow the group to observe immersion of the central 2 minutes of arc
of the nebula. Launch took place within half a second of the prescribed time. At
altitude, an attitude control system oriented the Geiger counters. At 160 seconds
after launch, the control system locked on the Crab. By 200 seconds a noticeable
decrease in flux could be seen and by 330 seconds the X-ray count was down to
normal background level. The slow eclipse had shown that the Crab Nebula is an
extended source. We could definitely state that at least one of the cosmic X-ray
sources was diffuse. Others might be due to stars. But this one was not (Bo64b).

A few weeks after this NRL flight, the ASE–MIT group was also ready to test
angular sizes of X-ray sources. Their experiment made use of a collimator designed
by the Japanese physicist, Minoru Oda (Od65). This device consisted of two wire
grids separated by a distance D that was large compared to the open space between
wires, which was slightly less than the wire diameter d. The principle on which this
collimator works is illustrated in Fig. 1.1.

When the angular diameter of the source is small compared to d/D, alternating
strong and weak signals are detected as the collimator aperture is swept across the
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Fig. 1.1. Principle of operation of an X-ray astronomical wire-grid collimator. (a) For parallel
light the front grid casts a sharp shadow on the rear grid. As the collimator is rotated about
an axis parallel to the grid lines, light is alternately transmitted and stopped depending on
whether the shadow is cast on the wires of the rear grid or between them. (b) For light from
a source whose angular dimension θ � d/D, the shadow cast by the front grid is washed
out and rotation of the collimator assembly does not give rise to a strong variation of the
transmitted X-ray flux.

source. If θ � d/D virtually no change in signal strength is detected as a function
of orientation.

In their first flight the MIT–ASE group found Sco X-1 to have an angular di-
ameter small compared to 1/2◦. Two months later a second flight confirmed that
the source diameter was smaller still — less than 1/8◦. A year and a half later this
group found that the source must be far smaller yet, less than 20′′ in diameter. On
this flight two collimators with different wire spacings were used. This meant that
the transmission peaks for the two collimators coincided only for normal incidence
and, in this way, yielded an accurate position of Sco X-1 (Gu66). An optical iden-
tification was then obtained at the Tokyo Observatory and subsequently confirmed
at Mount Palomar (Sa66). It showed an intense ultraviolet object that flickered on a
time scale less than one minute.

The brightness and color of neighboring stars in the vicinity of Sco X-1 showed
that these stars were at a distance of a few hundred light years from the Sun, and this
gave a good first estimate of the total energy output of the source. A search on old
plates showed that the mean photographic brightness of the object had not changed
much since 1896.

Interestingly, the 1969 discovery that the Crab Nebula contains a pulsar emitting
radio waves sent X-ray astronomers back to previously collected data. Some of these
records showed up the pulsar’s characteristic millisecond pulsations also at X-ray
energies, and demonstrated that an appreciable fraction of the flux — 10 to 15% —
comes from a point source now believed to be a neutron star formed in the supernova
explosion. Our views of the Crab Nebula as a predominantly diffuse X-ray source
had to be revised.

Myriad other Galactic X-ray sources have by now been located and identified;
and frequently they have a violet, stellar (pointlike) appearance similar to Sco X-
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1. These objects sometimes suddenly increase in brightness by many magnitudes
within hours. Others pulsate regularly, somewhat like the Crab Nebula pulsar.

The first galaxy to be observed at X-ray frequencies was M87, a galaxy known
to be a bright radio source (By67). It is a peculiar galaxy consisting of a spherical
distribution of stars from which a jet of gas protrudes. The jet is bluish in visible
light; it shines by virtue of highly relativistic electrons spiraling in magnetic fields
and emitting synchrotron radiation (see Chapter 6).

Four decades after the first feeble sighting of X-rays from beyond the Solar Sys-
tem, we know that many varieties of stars emit X-rays at some level, as do galaxies
and hot clouds of gas surrounding massive galaxies at the centers of galaxy clusters.
With the aid of the Röntgen satellite, ROSAT, roughly a million X-ray sources, many
of them quasars or galaxies exhibiting violently active nuclei, have been observed.
X-ray maps of clusters of galaxies show that most atomic matter in the Universe
is not contained in stars and cool interstellar clouds of gas as previously thought.
Hot, ionized, X-ray emitting gas surrounding the central galaxies in a cluster ap-
pears to comprise several times more mass than stars and interstellar gases com-
bined (Mu97). In addition to these discrete sources, a ubiquitous, diffuse, isotropic
background flux is observed, a significant fraction of which appears to be emitted
by Active Galactic Nuclei, AGNs.

The cover of the book exhibits an X-ray image of the spiral galaxy M51, showing
both the primary spiral and its smaller companion. The X-ray luminosity of M51 in
the 0.3 to 8 keV band is 4 × 1040 erg s−1, typical of many spiral galaxies. The
colors in the image are red for the energy range from 300 eV to 1 keV; green for
the range 1 – 2 keV and blue for the 2 – 8 keV range. Roughly 65% of the X-rays
are emitted by compact unresolved sources; the remainder is a diffuse component at
energies mostly below 1 keV. In many spirals the diffuse component arises largely
where massive stars have recently formed. Of the 117 compact sources in the image
as many as 27 may be background quasars or AGNs. Compact sources intrinsic
to the galaxy most probably are low-mass X-ray binary stars. Also seen, however,
are high-mass X-ray binaries in regions of star formation and a few X-ray bright
supernova remnants. Of particular interest in M51 are several ultraluminous X-ray
sources with luminosities in excess of the Eddington luminosity of a neutron star. At
the Eddington luminosity, also called the Eddington limit, the radiation emitted by
the star exerts such a high pressure on infalling material that attracting gravitational
forces are overcome; material ceases to fall onto the star’s surface, shutting off the
supply of energy it requires to continue radiating. The high observed luminosity
suggests that the compact source might be the remnant of a star so massive that it
collapsed under its own gravitational attraction and became a black hole (Pr04).

The range of X-ray and gamma-ray energies at which observations have by now
been carried out covers many orders of magnitude. Radio, infrared, visual, ultravio-
let, X-ray, and gamma-ray spectra are now available for many sources, and provide
complementing information. Four decades after its discovery, Sco X-1 is now known
to lie at a distance of ∼3 kpc. It consists of a neutron star with mass ∼1.4 M� or-
bited every 19 hours by a star of mass ∼0.4 M�. Relativistic jets of gas stream
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out in opposite directions from this system at speeds of ∼45% the speed of light
(Fo01, St02). This microquasar continues to be a tantalizing system calling for fur-
ther study. Other interesting X-ray sources are black holes surrounded by accretion
disks onto which matter tidally stripped from a nearby star rains down, liberating
vast amounts of kinetic energy radiated away as X-rays.

The fundamental nature of astrophysical discoveries being made — or remain-
ing to be made — leaves little room for doubt that our knowledge remains fragmen-
tary and a large part of current theory will be drastically revised as we learn more
over the next decades. In parts of astrophysics — notably in cosmology — our lack
of observations, our limited knowledge, influences the very way in which we think
and may hinder our approach to scientific problems. It is therefore useful to examine
the starting point from which our reasoning always embarks.

1:3 The Appropriate Set of Physical Laws

Today astrophysics and astronomy have almost become synonymous. In earlier
times it was not at all clear that the study of stars had anything in common with
physics. But physical explanations for the observations not only of stars, but of in-
terstellar matter and of phenomena on the scale of galaxies, have been so successful
that we confidently assume all astronomical processes to be subject to physical rea-
soning.

Several points, however, must be kept in mind. First, the laws of physics that
we apply to astrophysical processes are largely based on experiments that we can
carry out with equipment in a very confined range of sizes. We measure the speed of
light over regions that maximally have dimensions of the order of 1014 cm, the size
of the inner Solar System. Our knowledge of large-scale dynamics is also based on
detailed studies of the Solar System. We then extrapolate the dynamical laws gained
on such a small scale to processes on a cosmic scale of ∼1018 to 1028 cm. We have
no guarantee that this extrapolation is warranted.

It may well be true that these local laws do span the entire range of cosmic mass
and distance scales; but we only have to recall that the laws of quantum mechanics,
which hold on a scale of 10−8 cm, are quite different from the laws we would have
expected on the basis of classical measurements carried out with objects 1 cm in
size.

A second point, similar in vein, is the question of the constancy of the laws of
Nature. We now postulate that empty space — vacuum — once carried vast reser-
voirs of energy that controlled the evolution of the early Universe. The Universe we
currently observe greatly differs from such an original state, and the laws of physics
that earlier were in effect may have been quite different from those observed today.

A third question concerns the observational basis of science. Current theories
suggest that the Universe stretches well beyond a cosmic horizon where galaxies
recede at the speed of light, and thus well beyond the most distant regions from
which light could ever reach us, domains forever beyond observational reach. We
are thus confronted with a scientific assertion about the size of the Universe that
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may in principle be unverifiable. Should we accept it on faith? Where will this lead
us?

How far will this approach work for us? How soon will the philosophical diffi-
culties connected with the uniqueness of the Universe arise? In observing the cosmic
microwave background, first predicted by Ralph Alpher and Robert Herman (A�48)
and independently discovered by Arno Penzias and Robert W. Wilson (Pe65), we
have already encountered one such limit. The low-frequency undulations in surface
brightness observed across the celestial sphere are substantially weaker than ex-
pected; but we have no other universe to which we could compare this finding to see
whether it is significant or merely a statistical fluctuation restricted to our particu-
lar locale in the Universe. The inability to explain such apparent cosmic anomalies
for lack of observations beyond the cosmic horizon is called the cosmic variance
problem.

Until we encounter many more uniqueness limits of this kind, we address our-
selves to concrete problems which, although still unsolved, nevertheless are ex-
pected to have solutions that can be reached using the laws of physics as we know
them. Among these are questions concerning the origin and evolution of galaxies,
stars, and planetary systems. We also think we will be able to fully explain the ori-
gins and abundances of the various chemical elements. Perhaps the origin of life
itself will become clearly established as astrophysical and biochemical processes
become better understood.

This then is the current situation. We know a great deal about some as yet ap-
parently unrelated astronomical events. We feel that a connection must exist, but
we are not sure. Not knowing, we divide our knowledge into a number of differ-
ent “areas”: cosmology, galactic structure, stellar evolution, cosmic rays, and so on.
We do this with misgivings, but the strategy is to seek insight by solving individual
small problems. All the time we expect to widen the domains of understanding until
some day contact is made between the diverse areas and a firm path of reasoning is
established. The next few sections sketch some of the more important problems we
are currently investigating.

1:4 The Formation of Stars

We believe that no star has existed forever — because sooner or later its energy sup-
ply must run out — and so we must account for the birth of stars. Inasmuch as those
stars that we believe to be young are always found close to clouds of interstellar dust
and gas, we argue that such clouds of cosmic matter must be contracting slowly, giv-
ing rise to increasingly compact condensations, some of which eventually collapse
down to stellar size.

This picture makes a good deal of sense. Dust grains in interstellar space are very
effective at radiating away heat. When a hydrogen atom in a cloud of dust and gas
collides with a cold dust grain, the grain becomes slightly heated and radiates away
this energy in the infrared part of the electromagnetic spectrum. This results in a net
loss of kinetic energy of the gas, which gravitates toward the center of the cloud,
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gains some kinetic energy in falling, and again transfers a part of this to ambient
dust grains to repeat the cooling cycle. The gas also transfers some of its centrally
directed momentum to grains, thus also causing the grains to drift in toward the
center of the contracting cloud. The cloud as a whole contracts.

Grain radiation is not the only radiative process that rids a protostellar cloud
of energy. As it collapses, the protostar becomes progressively hotter, and various
molecular and atomic states are excited through collisions. The excited particles
emit radiation to return to their ground states. As radiation escapes, the net loss of
energy cools the cloud (Fig. 1.2).

Attractive though it is, there are difficulties with this picture. First, the protostar
cannot just lose energy in forming a star. It must also lose angular momentum.

The amount of matter needed to form a star from an interstellar cloud with a den-
sity 103 atoms cm−3 requires the collapse of gas from a volume whose initial radius
r would be of order 1018 cm. Over such distances, the observed rotational velocity
v, about the cloud’s center might be ∼104 cm s−1 for a cold Galactic molecular
cloud, so that the angular momentum per unit mass rv ∼ 1022 cm2 s−1. In contrast,
the observed surface velocities of typical stars indicate an angular momentum per

Fig. 1.2. Cooling processes in protostellar clouds. (a) An atom with velocity v hits a grain.
Its kinetic energy is v2/2 multiplied by the atomic mass m. (b) The grain radiates away the
absorbed energy and the atom leaves with reduced velocity v′ and reduced kinetic energy
mv′2/2. In (c), (d), and (e) an atom collides with another atom or with a molecule. This
second particle goes into an excited (higher) energy state, denoted by an asterisk (*), and
then emits radiation to return to its initial state. The first atom loses kinetic energy also in this
process. If the emitted radiation escapes from the cloud, the entire protostellar mass loses
energy and slowly contracts to form a star.
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unit mass many orders of magnitude lower: 1016 to 1018.3 cm2 s−1. For the Sun, it
is only ∼1015 cm2 s−1, but the angular momentum of the Solar System taken as a
whole corresponds to 1017 cm2 s−1. Entries in Table 1.4 allow us to conclude that
most of the angular momentum resides in the motion of Jupiter orbiting the Sun. A
comparison of the rotational velocities of stars given in Table A.4 of Appendix A,
further indicates that the angular momentum of the entire Solar System equals that
of more massive stars of spectral types F and A. It is therefore tempting to asso-
ciate the observed low angular momentum of less massive stars with the formation
of planetary systems. The initially contracting cloud of interstellar matter somehow
contrives to redistribute almost all of its angular momentum to a gaseous disk that
eventually gives rise to orbiting planets. Only a small fraction of the angular mo-
mentum is retained by the star.

A similar problem concerns the magnetic field initially present in the interstellar
medium. If this field is predominantly oriented along some given direction, then
the final field after contraction of the cloud to form a star would also have that
direction. The flux density B of the magnetic field permeating a cloud is inversely
proportional to the cross-section of the area of the cloud as it contracts, as long
as the magnetic lines of force act as if frozen to the partially ionized gas (Section
6:2). Thus, the number of these lines of force threading through the cross-sectional
area stays constant. A field, B, initially as weak as 10−6 gauss would become some
1014 times stronger as the protostellar radius decreased from 1018 down to 1011 cm.
Actual fields found on the surfaces of stars like the Sun are of the order of one
gauss, and the highest fields observed in a few peculiar stars only range up to tens
of thousands of gauss. Protostellar contraction must therefore be accompanied by
destruction or loss of magnetic field lines permeating the interstellar material. How
this loss occurs is still under active investigation.2

1:5 The Hertzsprung–Russell and Color-Magnitude Diagrams

Granted that we do not know very much about how stars are born, can we say
anything about how they evolve after birth? The answer to this is a convincing “Yes,”
although many questions persist.

When the absolute brightness of a set of stars is plotted against surface temper-
ature, as measured either from an analysis of the stellar spectrum or by the star’s
color, we find that only certain portions of such Hertzsprung–Russell and color-
magnitude diagrams are populated appreciably. The concentration of stars in select
parts of these diagrams, Figs. 1.3 to 1.7, help us to understand how stars of different
masses evolve as they age.

Color-magnitude diagrams and Hertzsprung–Russell plots share a number of
common features. Stars on the left of these diagrams are hot, having extreme surface

2 White dwarfs and the even denser neutron stars, respectively, have surface fields of order
105 and 1012 gauss — just the field strengths we would expect if the Sun were to shrink
to the size of these stars without shedding field lines.
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Fig. 1.3. Color-magnitude diagram for galactic clusters within the Galaxy and for the glob-
ular cluster M3. These clusters show different turn-off points from the main sequence, the
diagonal line running from upper left to lower right. From the theory of nuclear evolution we
can determine the ages of stars at their turn-off points. Those ages are shown on the right of
the figure (after A. Sandage (Sa57)).

temperatures ranging to nearly 105 K. Stars on the right are cool. Luminous stars are
found at the top of the diagram and faint stars at the bottom. A large majority of the
stars falls on the main sequence, a track that runs diagonally from top left to bottom
right. Stars on the subgiant and red-giant branch (Fig. 1.4) are comparatively rare
and belong to a population that is more or less spherically distributed about the
Galactic center in a halo. These halo stars, are also referred to as Population II stars
to distinguish them from the Population I stars that lie in the Milky Way plane and
make this portion of the Galaxy appear particularly bright. Halo stars — globular
cluster stars among them — tend to be stars with masses M ≤ 1M�.

Stellar evolution theory attempts to explain the distribution of stars within the H–
R diagram, showing not only why certain regions are populated and others not, but
also why some regions — particularly the main sequence — are heavily populated,
whereas stars are sparse elsewhere. The basic assumptions of the theory are that
nuclear reactions in a star’s interior provide the energy the star emits as starlight.
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Fig. 1.4. Schematic Hertzsprung–Russell diagram. The lines of constant slope represent stars
having identical radii. The effective temperature of a star, Te is defined in Section 4:13.

As the star evolves, a progression of different nuclear processes set in. While on the
main sequence, the star sustains itself by converting hydrogen to helium.

Figure 1.3 plots the range of colors and magnitudes for stars in several of the
loosely agglomerated galactic clusters found in the Milky Way plane — clusters
that must be very young because the stars they contain are too bright to have existed
a long time on their limited fund of nuclear energy.

Figure 1.4 shows the characteristics of a wide variety of different stars in a
Hertzsprung–Russell diagram that plots a star’s luminosity as a function of its ef-
fective surface temperature. The location of a star in this plot often is one of the first
clues to its identity. Figures 1.5 and 1.6 exhibit the evolution of protostellar objects,
to which we will return below, while Fig. 1.7 provides a plot of the visual magnitude
versus color of some of the very oldest stars in the Galaxy. These are faint stars that
have slowly used up their nuclear fuel over some 10 Gyr. They are members of the
globular cluster Messier 3. Such clusters are spherically symmetric aggregates con-
sisting of hundreds of thousands of stars (Fig. A.1(c)). Many may have formed at
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the time the Galaxy itself was born, and are found primarily in the nearly spherical
Galactic halo extending well above and below the Milky Way plane.

A star’s position on the main sequence in the H–R diagram is determined by
its surface temperature and luminosity when its central temperature has risen suf-
ficiently for nuclear reactions to set in. The first nuclei to be consumed liberating
energy are deuterium, lithium, beryllium, and boron admixed in trace quantities with
hydrogen, the star’s main constituent. But these minor energy sources are quickly
exhausted. The central temperature then has to rise somewhat higher to initiate con-
version of hydrogen into helium with the release of sufficient energy to maintain a
steady state. For each gram of hydrogen converted into helium 0.007 c2 = 6× 1018

erg of energy can leave the star’s surface to travel out into space. A slight motion
through the Hertzsprung–Russell diagram persists even during this phase. In the
course of several billion years, a star moves from the zero-age main sequence, ex-
panding somewhat and becoming more luminous. The Sun may have had a zero-age
luminosityL = 2.78× 1033 erg s−1 and a radius R = 6.608× 1010 cm, compared
to its current L� = 3.84 × 1033 erg s−1 and R� = 6.96 × 1010 cm, 4.5 Gyr later
(B�99)). It will keep shining at these approximate rates for another 5 Gyr.

O and B stars, Population I objects found solely in the Milky Way plane, have far
shorter life spans than the Sun. They are the bluest, most luminous main sequence
stars. Their high luminosity tells us that they must be young. Figure 1.5 shows a
15M� main sequence B star to be ∼3 × 104 times more luminous than the Sun.
Though its nuclear fuel supply is 15 times that of the Sun, its projected lifespan is
thousands of times shorter, lasting just a few million years. O and B stars cannot be
older than this when their supply of fuel runs out. In contrast, Population II objects
are probably ∼1010 yr old, judging by their low luminosities and by the fact that
the brighter members of this population are just turning into red giants — stars that
have consumed all the hydrogen in a central core and are beginning to release other
nuclear resources.

Though a star spends most of its life on the main sequence, it is not born there. Its
life begins in the dense core of a cloud consisting primarily of molecular hydrogen
and traces of carbon monoxide and other small molecules. Dust grains permeate
these clouds making them impenetrable to starlight.

How do we know all this? What is the observational evidence?

1:6 The Birth of Low-Mass Stars

Observations at infrared wavelengths can penetrate dense dusty molecular clouds to
detect nascent stars. Most of these stars have low masses, since low-mass stars, like
the Sun, are far more prevalent than stars with masses at or above 10 M�, about
whose formative stages we still know little. Current observations indicate that the
birth of a low-mass star proceeds from the formation of a dense pre-stellar molecular
cloud through roughly three protostellar stages, respectively labeled Class 0, Class
I, and Class II. As Fig. 1.6 indicates the entire evolutionary process may require of
order thirty million years.
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Fig. 1.5. Contraction of stars toward the main sequence. The path of the stars across the
Hertzsprung–Russell diagram proceeds toward the left. The left end of the curves roughly
coincides with the main sequence. The star with mass 15M� completes the transit shown
here in ∼6 × 104 yr; the 0.5M� star in 1.5× 108 yr. The steep portion on the right is called
the Hayashi track (Wh04). The curves denoting very low mass stars correspond to pre-main-
sequence evolutionary tracks of T Tauri stars. Circular symbols indicate the projected surface
rotational velocities, where i is the usually unknown inclination of a star’s rotational axis to
the line of sight. Massive stars generally rotate rapidly (Ha66), (Bo86) (after Iben (Ib65)).

i) In a pre-stellar phase a dusty cloud of molecular hydrogen builds up a dense,
rotating core. Dust grains radiate away heat, and as the cloud cools to 10 K, it begins
to contract.

ii) In the ensuing protostellar phase the magnetic field appears to leak out of
the core, and turbulent motions are damped. If the cloud has excess angular mo-
mentum as it contracts, it may fragment into smaller cores or flatten into a disk.
Strong bipolar, highly collimated outflows appear. Their origins are uncertain; they
may represent the escape of gas compressed to excessive pressures by high-angular-
momentum material falling onto an accretion disk orbiting the central protostar. The
temperature of the central condensation gradually rises to ∼70K, radiates at submil-
limeter and far-infrared wavelengths, but remains optically invisible. This is a Class
0 object; its lifespan is ∼<105 yr.

iii) As the protostar accretes more mass and an increasingly massive disk is
formed, infalling material from the remnant cloud falls on the disk at supersonic
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Fig. 1.6. Temperature and bolometric luminosity of protostars. The evolutionary tracks of
protostars of 0.3, 0.5, and 0.7M� are shown proceeding from right to left where the stars
reach the zero-age main sequence (ZAMS) and begin consuming their nuclear fuel. A pro-
tostar begins life as a Class 0 object, a dense cloud at temperatures in the 8 to 12 K range,
glowing at submillimeter wavelengths. Strong bipolar outflows of gas accompany contraction
of the central core. Shown here, along with the positions in the H–R diagram of a number
of young stellar objects (YSOs), is a set of modeled evolutionary tracks represented by solid
lines. The time to fall inward to form a star t∗ is taken to be three times the duration of the
outflow te that dissipates an initially enveloping cloud — t∗/te = 3. The bipolar outflow
weakens by the time the protostar evolves to Class 1, and abates totally thereafter. A Class 0
object gradually evolves, its temperature rising as it passes through the Class I and II stages
before arriving on the ZAMS ∼30 million years after the onset of contraction. Isochrones —
lines of equal age — indicating equal times before arrival on the ZAMS are drawn as straight
line segments connecting small dots on the evolutionary tracks. For the tracks shown, the
initial mass Me0 of the gaseous envelope in which the protostar originally formed has been
assumed to be six times the final mass M∗∞ of the star. Note the sharp drop in luminos-
ity of these low-mass stars on final approach to the main sequence. In Fig. 1.5, the Hayashi
track, shown at the extreme right, corresponds to this drop and shows the same temperature,
∼4000 K. Courtesy of Philip C. Myers (My98).
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velocities, generating heat that constitutes the main source of energy radiated away.
A weakened and less collimated outflow persists. The protostar, whose temperature
gradually rises to ∼600 K, and its surrounding disk, become observable at near-
and mid-infrared wavelengths. The protostar is now a Class 1 object. It transits this
phase in ∼1 to 6 × 105 yr.

iv) In the following phase, the outflows have stopped. Class II objects exhibit
low accretion rates and strong infrared emission from the enveloping disk. Some of
these objects are young stellar objects, YSO, long known as T Tauri stars after the
archetypical star for this family.

v) Finally, the infall of the dusty ambient cloud material clears and visible light
escapes to reveal a T Tauri star with an optically thin disk and far less infrared
emission. In this phase the evolving star is called a Class III object. The fate of the
disk is still uncertain. Some of it may break up to form a system of planets or a single
major orbiting companion. A fraction may eventually fall onto the star, making the
disk an accretion disk, while the remainder may be ejected back into interstellar
space. Observations indicate that circumstellar disks are rare around stars older than
300 – 400 Myr, suggesting that when planets do form, they form rather quickly —
within a few hundred million years after the star reaches the main sequence (Ha99).
A low-mass star may then continue to shine for another 10 Gyr.

Occasionally, young stars exhibit strong polar outflows, now emanating directly
from the star with velocities as high as several hundred kilometers per second.
Named after George Herbig and Guillermo Haro who first noted them in the 1950s,
these outflows are referred to as Herbig–Haro objects.

1:7 Massive Stars

Because massive stars are rare, we know much less about conditions favoring their
formation. They are often found in associations containing numerous massive stars.
These circumstances suggest that the formation of such stars may be triggered by
supersonic shocks. Massive stars exhibit strong outflows, and intense radiation. Both
can induce shock compression in ambient molecular clouds, possibly favoring the
successive formation of massive stars in a stellar association. Shocks must also per-
vade regions where molecular clouds in merging galaxies collide. Here also massive
stars invariably appear. These signs are suggestive, but more incisive observations
will be needed before we feel we reliably understand how massive stars are formed,
and why the masses of observed Galactic stars never exceed ∼150M� (Fi05a).

1:8 The Late Stages of Stellar Evolution

Structural changes that result when all the hydrogen at a star’s center has been used
up give rise to a change in the star’s surface temperature and brightness. The star
moves off the main sequence in the Hertzsprung–Russell diagram. In the Galactic
cluster h+ χ Persei (Fig. 1.3), evidence for such a move is a curling from the main
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sequence toward the right — toward lower temperatures — and a new grouping
in the right-hand, upper corner of the plot where bright red stars are to be found.
Detailed calculations based on model stars, and on the rates at which the nuclear
reactions proceed in them, indicate that stars just turning off the main sequence in
h+ χ Persei cannot be more than two million years old.

In contrast, the Galactic cluster M67 shows no main sequence stars bluer than
spectral type F. These stars therefore all are relatively small — not much more mas-
sive than the Sun. Stars of this luminosity complete the hydrogen burning in their
central regions in roughly 3 − 4 × 109 yr. We think that this is the present age of
M67.

This cluster also has a well-developed giant branch. Stars that leave the main se-
quence travel out into this branch. Because the actual number of stars lying along the
branch is small compared to the number populating the main sequence, we conclude
that the stars do not spend much time in the subgiant or red-giant stages before go-
ing on to some other stage. Otherwise, we would expect this portion of the diagram
to be more densely populated — perhaps as densely as the main sequence near the
turn-off point, because the subgiants and giants all are former main sequence stars
that resided on the portion of the main sequence just above the present turn-off point.

If we assume that all members of a cluster were formed at one and the same
epoch, the density of stars observed in different portions of the H–R diagram tells us
not only where various stars reside, but also the initial distribution of stellar masses:
the initial mass function when the cluster first formed, and how old the cluster may
be. If we know the luminosities and masses of stars just turning off the main se-
quence, having just used up their central supply of hydrogen, we can calculate how
old they and the clusters are.

We note one other feature shown in Fig. 1.3. As a star moves off the main se-
quence it becomes redder and, if anything, more luminous than it was on the main
sequence. At lower temperatures, however, an object always emits less radiation per
unit area. Correspondingly, the only way that this particular course of evolution can
proceed is for the star to grow as it moves off the main sequence. The stars become
giants. Their radii increase by factors of 10 to 100.

Let us see how such stages evolve.
For this purpose the study of globular clusters is most instructive. They contain

some of the oldest stars in the Galaxy, whose faint, red, turn-off points indicate their
age. Figure 1.7 shows the color-magnitude diagram for the globular cluster M3.
Once a star leaves the main sequence (MS) at its turn-off (TO), it continues to burn
hydrogen in a shell around the hydrogen-depleted core and moves up the subgiant
branch (SGB), becoming brighter and redder and eventually reaching the red-giant
branch (RGB), in a first red-giant phase in which hydrogen shell burning is the main
source of energy. The helium core slowly increases in mass while the burning shell
moves outward converting more hydrogen into helium as it proceeds (see Figs. 8.8
and 8.9).

At the tip of the red giant branch the massive core has heated up through con-
traction to a temperature at which three helium nuclei can fuse to form carbon in
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Fig. 1.7. Color-magnitude diagram for the globular cluster M3. The acronyms referring to
different parts of the diagram, counterclockwise from the bottom stand for main sequence
(MS); turn-off point from the main sequence (TO); subgiant branch (SGB); red-giant branch
(RGB): asymptotic giant branch (AGB); horizontal branch (HB); post-AGB(P-AGB), where
planetary nebulae can be found; and blue stragglers (BS). Reprinted with permission from
the Annual Review of Astronomy and Astrophysics (Re88).

the so-called triple-alpha process. An added helium nucleus can also convert some
of the carbon to oxygen. The triple-alpha process occurs very rapidly, burning he-
lium in what is called a helium flash. Roughly 3% of the core, whose total mass is
∼0.5M�, is burned in the flash. This is enough to heat the core to the point where it
expands against gravitational forces and then keeps burning helium in a convectively
churning core mass.

Interestingly, during the flash, the energy conversion rate in the core may equal
the total energy being released by all the stars in a cluster. But this energy cannot
immediately reach the surface of the star. Instead, it goes into effecting an expansion
of the highly gravitationally bound core.

The horizontal branch (HB) phase in the life of the star is believed to represent a
subsequent stage in which the main source of energy comes from helium burning in
the core — with hydrogen burning continuing farther out in a shell. The star moves
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along the HB to the left, but then reverses its path and roughly retraces its steps in
a loop along the HB that lasts some 108 yr. In comparison, the evolution from the
turn-off point to the red-giant branch must have lasted rather longer, judging from
the significantly larger population along that track.

When the star reaches the right-hand limit of the (HB), the core has become
exhausted of helium and a stage of helium shell burning sets in. The segment lead-
ing up the asymptotic giant branch (AGB) represents a phase in which the star
consists of an inert carbon–oxygen core, surrounded by a helium-burning shell,
a further helium zone in which no nuclear conversion is going on, a hydrogen-
burning shell, and finally an envelope made up of the original unconverted matter
from which the star formed. The chemical makeup of the outermost portions of the
star, the only portions we actually see, seldom show clear evidence of the complex
changes that have occurred in the star’s interior, even at this advanced stage of evo-
lution.

During this asymptotic giant branch (AGB) stage, the star follows almost the
same path through the H–R diagram that it earlier traced in going up — and later
down — the red-giant branch. The AGB and RGB have an outwardly similar ap-
pearance.

In each flash of helium shell burning, the peak luminosity may be of order
105L�. There are indications that, at least in certain model stars, the helium shell
flash causes the star to move off the red-giant branch in a loop that leads to the left
and back again in a matter of about 103 yr. This motion takes the star into a portion
of the diagram occupied by Population II Cepheid variables — luminous pulsating
stars whose pulsation periods change significantly in the course of a million years.
Eventually, the pulsations become unstable and the star’s surface layers are ejected
in violent outbursts that separate off an outer shell of the star lying above a point
somewhere between the hydrogen- and helium-burning shells. A planetary nebula
is formed.

Planetary nebulae are hot central stars surrounded by a shell of ejected material.
Abundances of the elements He, C, N, O, Ne, S, Ar, and in some cases Mg and

Si have been measured for a variety of planetary nebulae. These indicate that these
stars can follow two quite distinct evolutionary paths, depending on whether the
star leaves the highly reddened asymptotic giant branch (AGB) as a hydrogen- or
helium-burning object. This affects both the rate at which the star moves across the
H–R diagram and where it moves across it. The rapid mass loss, through material
blown off the star’s surface into space at this stage of its evolution, channels stars
from a wide range of initial masses into a narrow range of core mass. Material ap-
pears to be dredged up from the interior of these stars in three different stages to ap-
pear on the surface. The first dredge-up occurs as the star becomes a red giant for the
first time and involves convection from regions that have undergone partial burning
of carbon, nitrogen, and oxygen. A second dredge-up occurs in stars more massive
than 3 to 5 M�, when the hydrogen-burning shell is extinguished and convection
again brings up processed material. The third dredge-up occurs during the thermally
pulsing AGB phase in which, after each helium-burning pulse, convection brings up
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material rich in 4He, 12C, and heavier elements. A further stage of hot-bottom burn-
ing occurs in AGB stars more massive than M > 3M� when convection in the
star’s envelope cycles matter through the hydrogen-burning shell during the inter-
pulse phase (Do97). Each of these phases brings up to the stellar surface mixtures
of isotopes that permit us to reconstruct details of the nuclear processes that have
taken place at successive stages deep in the interior of these evolving stars.

The central star of the planetary nebula first appears very hot and bright, as
indicated by the loop drawn on the left in Fig. 1.4, but then cools down, slowly
contracting to the white dwarf stage in the lower left of the H–R diagram occupied
by white dwarfs. The central portion of the star contains a relatively low-mass core,
rich in carbon and oxygen. The mass of the white dwarf at this stage might be no
more than ∼ 0.7M�, the rest of the mass having been ejected during the outbursts
that produced the gaseous envelope characterizing planetary nebulae.

A star more massive than ∼ 8M� evolves much more rapidly than low-mass
stars, and its thermonuclear reactions proceed further as the star becomes a red su-
pergiant. Helium burning at the star’s core proceeds beyond carbon and oxygen,
continuing on to form the most stable of nuclei, iron 56Fe. Surrounding the iron
core, nuclear burning continues in shells of elements whose nuclei contain even
numbers of both protons and neutrons — calcium 40Ca, silicon 28Si, magnesium
24Mg, oxygen 16O, and others. Although the star at this stage has a radius compa-
rable to or even exceeding the Earth’s orbital radius about the Sun, the radius of its
core may be smaller than that of the Earth (G�97*).

The size of the highly ionized iron core continues to grow. Its self-gravity and
tendency to collapse is resisted only by the pressure of the embedded free electrons
at relativistic energies. As the hydrostatic pressure due to gravity rises, the pressure
on the electrons forces them into the iron nuclei, in an inverse beta decay that en-
riches the nuclei with energetically favored neutrons. This diminishes the electron
pressure and permits further collapse. The core has reached its limiting mass and
suddenly implodes — in less than a second! The inverse beta decay neutronizes
the core; a flood of neutrinos is released. The neutrinos collide with the imploding
nuclei, whose high density prevents the neutrinos from escaping. Eventually, the im-
ploding core rebounds, sending shock waves outward. In the ensuing turmoil, which
is not at all well understood, the outer shells of the star are hurled into interstellar
space at speeds of tens of thousands of kilometers per second. A supernova has just
exploded!

Supernovae that do not exhibit emission lines of hydrogen are designated su-
pernovae of type I, SNe I. Those that do are designated SNe II. SN 1987A, which
exploded in the Large Magellanic Cloud in 1987, was a supernova of this second
type. The total energy released in such an explosion is of the order of 1053 erg. Only
one percent of this energy resides in the massive outflow of matter, which persists
for thousands of years as a readily identified, expanding, radiating, spherical shell
— a supernova remnant. The remaining energy is released largely in an outpouring
of neutrinos lasting no more than about ten seconds. The core cools and forms a
neutron star. Its density is about 1014 g cm−3 , and its mass is roughly 1.4M�. As
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Fig. 1.8. One potential way to form a supernova of type Ia from stars in a close binary.
The two stars forming the binary arrive on the main sequence, one having a mass in the
range 4 – 9 M� , while its less massive companion might have a mass of 1 – 3 M�. Their
orbital separation — twice the orbital semi-major axis a — at this stage may range from
3000 to 60,000 R� or ∼15 − 300 AU. The more massive star is first to evolve to the AGB
phase characterized by a carbon and oxygen core. It sheds its outer envelope and becomes a
carbon–oxygen white dwarf. The wind emitted by the giant star preferentially reaches escape
velocity along the direction of orbital motion, so that the system loses angular momentum. In
addition, as the giant’s outer layers expand, the companion loses momentum as it becomes
enveloped in this denser medium. Both effects cause the two stars to spiral in toward each
other. The less massive companion next reaches the red-giant phase, in which its extended
outer envelope can be gravitationally captured by the more compact white dwarf. Eventually
the white dwarf becomes sufficiently massive to collapse and explode as a Type Ia supernova.
Courtesy of K. Nomoto (Ha99a).
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the core collapses, its angular momentum has to be conserved, and so the neutron
star is born rapidly spinning. Its magnetic field, highly compressed during collapse,
may be as high as ∼1013 G. The spinning neutron star is a pulsar.

Pulsars are found only in some supernova remnants. In many instances they ap-
pear to be missing, most probably due to the high-velocity kicks that pulsars receive
in the course of a supernova explosion. Many pulsars are observed to travel through
the Galaxy at speeds of order 1000 km s−1, leaving behind the supernova remnant
that resulted from the same explosion but whose expansion may have been slowed
in sweeping up ambient interstellar gases.

Like supernovae of type II, some supernovae of type I, those designated SNe
Ib and SNe Ic appear to originate in the collapse of massive isolated stars. SNe
Ia, in contrast, are formed when a white dwarf rich in carbon and oxygen accretes
sufficient mass from a less compact binary companion to trigger the central collapse
followed by a massive explosion, as sketched in Fig. 1.8.

White dwarfs are sufficiently compact to tidally strip material from a close bi-
nary companion star. As the amount of matter accreted onto the white dwarf in-
creases, the star may grow so massive that matter in its core can no longer support
the hydrostatic pressure. The dwarf star implodes to form a neutron star while eject-
ing matter in a giant supernova explosion. Supernovae of this type are designated
SNe Ia. Type Ia supernovae may also be formed through the merger of two white
dwarfs. Neither of these two processes is well understood.

SNe Ia are remarkably homogeneous in their luminosities, rise times of fifteen
to twenty days and a subsequent decline of several weeks. The post-explosion lu-
minosity is powered by the radioactive decay of 56Ni into 56Co and then 56Fe. The
radioactive decay rate determines the rate at which the luminosity declines. At max-
imum luminosity, SNe Ia tend to be ∼5 times more luminous than SNe II. The
homogeneity of SNe Ia permits their use as distance indicators. Other factors being
equal, the fainter the supernova, the farther away the explosion must have occurred.
This property, together with their high luminosities, when combined with red shifts
determined for their parent galaxies, makes SNe Ia useful markers for charting the
expansion rate of the Universe.

For some massive collapsing stars, the implosion is believed to form not a neu-
tron star, but rather a black hole so dense that its internal pressure cannot support
the hydrostatic pressure of overlying material. The collapse proceeds until the star
swallows itself and shrinks to a singularity.

1:9 Abundance of the Chemical Elements in Stars and the Solar
System

The abundance of chemical elements found in the Sun, in meteorites that fall onto
Earth from interplanetary space, and in terrestrial matter, are remarkably similar
provided we discount the very high abundances of hydrogen and helium in the Sun,
which the Earth is unable to gravitationally bind. This uniformity stretches beyond
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the Solar System to other stars and nearby galaxies. Where significant differences
arise, the deviant abundances most often provide insights on stellar evolution or
chemical fractionation. Table 1.1 shows chemical abundances in the Solar System
derived mainly from carbonaceous chondrites, meteorites considered to be most
representative of the primeval Solar Nebula and hence probably also of the solar sur-

Table 1.1. Abundance, by Number of Atoms, of the Chemical Elements in the Solar Sys-
tem. Compilations of Abundance Normalized to Si = 106. (Reprinted from E. Anders and N.
Grevesse (An89) c© with kind permission from Elsevier Science Ltd, The Boulevard, Lang-
ford Lane, Kidlington OX5 1GB, UK.)a

Element Abundance Element Abundance Element Abundance
1 H 2.79 × 1010 29 Cu 522 58 Ce 1.136
2 He 2.72× 109 30 Zn 1260 59 Pr 0.1669
3 Li 57.1 31 Ga 37.8 60 Nd 0.8279
4 Be 0.73 32 Ge 119 62 Sm 0.2582
5 B 21.2 33 As 6.65 63 Eu 0.0973
6 C 1.01× 107 34 Se 62.1 64 Gd 0.3300
7 N 3.13× 106 35 Br 11.8 65 Tb 0.0603
8 O 2.38× 107 36 Kr 45 66 Dy 0.3942
9 F 843 37 Rb 7.09 67 Ho 0.0889

10 Ne 3.44× 106 38 Sr 23.5 68 Er 0.2508
11 Na 5.74× 104 39 Y 4.64 69 Tm 0.0378
12 Mg 1.074 × 106 40 Zr 11.4 70 Yb 0.2479
13 Al 8.49× 104 41 Nb 0.698 71 Lu 0.0367
14 Si 1.00× 106 42 Mo 2.55 72 Hf 0.154
15 P 1.04× 104 44 Ru 1.86 73 Ta 0.0207
16 S 5.15× 105 45 Rh 0.344 74 W 0.133
17 Cl 5240 46 Pd 1.39 75 Re 0.0517
18 Ar 1.01× 105 47 Ag 0.486 76 Os 0.675
19 K 3770 48 Cd 1.61 77 Ir 0.661
20 Ca 6.11× 104 49 In 0.184 78 Pt 1.34
21 Sc 34.2 50 Sn 3.82 79 Au 0.187
22 Ti 2400 51 Sb 0.309 80 Hg 0.34
23 V 293 52 Te 4.81 81 Tl 0.184
24 Cr 1.35× 104 53 I 0.90 82 Pb 3.15
25 Mn 9550 54 Xe 4.7 83 Bi 0.144
26 Fe 9.00× 105 55 Cs 0.372 90 Th 0.0335
27 Co 2250 56 Ba 4.49 92 U 0.0090
28 Ni 4.93× 104 57 La 0.4460

a This table represents a best estimate for primitive solar matter, and is based as much as
possible on abundances of Type 1 carbonaceous chondrites — stony meteorites containing
millimeter-sized silicate spherules — because volatile substances probably escape least from
this type of meteorite (Ca68). For H, C, N, O, and noble gases, solar and other astronomical
data were used. Abundances of Mg, S, and Fe are based on an average of mean values for in-
dividual meteorites. For the remaining elements, a straight average of all acceptable analyses
was used.
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face composition some 4.5 Gyr ago (Ca68). Because not all elemental abundances
can be reliably determined in this way — some volatile elements, for example, may
have escaped from the meteorites through diffusion — the table has been augmented
using information obtained from solar spectra and from the cosmic rays emitted by
the Sun. We note that the heaviest elements, which can be readily determined in me-
teorites, are not easily obtained in spectra of stellar atmospheres. The two types of
information therefore complement each other and serve also to point out agreement
or differences for elements for which direct comparisons are available.

Spectroscopic determinations of the abundances of chemical elements in the at-
mospheres of stars other than the Sun provide us with information on the chemical
composition of the medium from which those stars were formed. The theory of stel-
lar structure shows that for most types of stars, the outer layers remain unaffected by
the nuclear processes that liberate energy at the stars’ centers. Deuterium, lithium,
beryllium, and boron, however, do not remain representative of the protostellar ma-
terial, because their nuclei are readily destroyed during an early convective contrac-
tion that mixes material from the protostar’s surface into the hot central portions of
the star.

Table 1.2 shows that the relative abundances of some of the more abundant el-

Table 1.2. Elemental Abundances log n for “Normal” Stars Relative to log n = 12 for Hy-
drogen.

Abundance: log n
Sun

Log(n/n�)
Atomic Ele- Goldberg, τ -Scorpii ζ-Persei Planetary ε-Virginis

Number ment Müller, Various B0 V B1 Ib Nebulae G8 III
Aller Other

(1960, 1967) Sources

1 H 12.00 12.00 12.00 12.00 12.00 0.00
2 He 11.2 11.12 11.31 11.25
6 C 8.51 8.51 8.21 8.26 8.7 −0.12

8.55
7 N 8.06 7.93 8.47 8.31 8.5
8 O 8.83 8.77 8.81 9.03 9.0

10 Ne 8.98 8.61 8.6
11 Na 6.30 6.18 +0.30
12 Mg 7.36 7.48 7.7 7.77 +0.04
13 Al 6.20 6.40 6.4 6.78 +0.14
14 Si 7.24 7.55 7.66 7.97 +0.13
15 P 5.34 5.43
16 S 7.30 7.21 7.3 7.48 8.0 +0.09

a Based on a more extensive compilation from various sources by A. Unsöld (Un69)*.
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ements in stars with different ages: (a) the Sun, which is 5 × 109 yr old; (b) a very
young B0 star, Tau Scorpii; (c) planetary nebulae; (d) a red giant ε Virginis; and
many other “normal” stars, all have the same chemical composition, within the lim-
its of observational error. This is significant because the ages of these objects cover
much of the lifetime of the Galaxy since the earliest stage of star formation during
which the globular cluster red-giant precursors are thought to have formed.

These analyses show that throughout most of the life of the Galaxy interstel-
lar matter has had an almost unchanged composition. This appears surprising, at
first, because the continual formation of heavy elements in stars, and the ejection of
matter from these stars at the end of their lives, should gradually have enriched the
interstellar medium and the composition of stars most recently formed.

The reason why we do not observe a gradual enrichment may be due to two fac-
tors. In massive supernova explosions, ejecta rich in heavy elements may be hurled
out of the Galaxy to enrich the intergalactic, rather than interstellar, medium. Al-
though this will not happen to material ejected at lower velocities as planetary neb-
ulae form, fresh material diluting these enriched gases continues to be tidally swept
up by the Galaxy from intergalactic clouds and small galaxies rich in gas that has
never been processed in stars (Se04). The infall rate appears to amount to two so-
lar masses each year, which is about equal to the star formation rate in the Galaxy
(La72).

Evidence for an early growth in the abundance of heavy elements, when the
Galaxy was very young, nevertheless is persuasive. We suspect that low-mass stars
belonging to the Galaxy’s halo population are among the stars that formed earli-
est in the birth of the Milky Way, roughly ten billion years ago. Some of these
show abundances of the elements from carbon to barium that are up to a couple
of orders of magnitude lower than in younger stars like the Sun. Table 1.3 shows
the ratios of abundances of selected atoms from sodium through lanthanum, rel-
ative to the same ratios found in the Sun. This low but nevertheless significant
metal abundance — in this context the word “metal” denotes any atom heavier
than helium — is striking. Although these stars exhibit a metal deficiency relative
to hydrogen, helium is not significantly deficient. Its origin dates back to an epoch
when the Universe was only a few minutes old and temperatures were of the order
of 109 K.

Primordial Star Formation

We are still attempting to determine how stars may have formed at early epochs in
the history of the Universe when no heavy elements existed and stars had to form
from dust-free, helium–hydrogen mixtures. Though the details are still lacking, in-
dications are that the first stars were very massive and erupted in exceptionally pow-
erful supernova explosions, giving rise to the first chemical elements more massive
than 7 atomic mass units (Ab02, He02).

The very oldest stars in the Galaxy have metal abundances systematically low,
compared to their hydrogen content, by as much as a couple of orders of magni-
tude. Two of the most metal-deficient stars discovered to date have iron deficiencies
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Table 1.3. Abundances in Globular Cluster Stars.a

Abundance Metal Richb Intermediatec Metal Poord

[Fe/H] −0.80 −1.35 −2.25
[Na/Fe] 0.25 0.05 0.25
[Mg/Fe] 0.20 0.30 −0.10
[Si/Fe] 0.30 0.25
[Sc/Fe] 0.10 0.05 0.05
[Ti/Fe] 0.30 0.35 0.30
[V/Fe] 0.25 0.25 0.35
[Cr/Fe] 0.10 0.05 −0.10
[Mn/Fe] −0.10 −0.30 −0.15
[Co/Fe] −0.00 0.00
[Ni/Fe] −0.20 −0.15 0.05
[Cu/Fe] −0.20 −0.30 −0.40
[Y/Fe] 0.10 −0.05 −0.20
[Zr/Fe] −0.15 0.05
[Ba/Fe] −0.35 −0.20 −0.15
[La/Fe] 0.00 0.05

a Ratios shown in square brackets are comparisons to solar ratios and given in logarithms to
the base ten.
b These abundances are straight means of the results for the clusters NGC 104 (47Tuc), NGC
6352, and NGC 6838 (M71).
c These abundances are means of the results for 17 clusters with −0.8 ≥ [Fe/H] ≥ −1.9.
d These abundances are averages of the abundances of M15 and M92.
From (Wh89), with permission from the Annual Reviews of Astronomy and Astrophysics
c©1989, Annual Reviews, Inc.

[Fe/H] = −5.3 and −5.45, meaning that their iron abundances relative to hydrogen
are, respectively, 2 × 105 and 3 × 105 times lower than in the Sun (Su04), (Ao06).

Was there an even earlier stage of star formation in which the very first heavy
elements were formed — a stage that left no apparent survivors? All available evi-
dence indicates this, but no genuinely primordial star devoid of all elements heavier
than helium has yet been identified.

The most distant galaxies and quasars observed date back to a time when the
Universe was less than a billion years old. Yet they have spectra that reveal metal
abundances similar to those of the oldest Galactic stars. Our theories tell us that these
elements could only have formed inside stars. The ratios of abundances observed for
iron, oxygen, calcium, and neon are reminiscent of the ratios observed in the ejecta
of supernovae of type II. This drives us to conjecture that the Universe had already
gone through at least one star-forming epoch before even these earliest observed
quasars and galaxies formed. Stars of some sort apparently formed early within the
first billion years in the life of the Universe.

Extremely massive stars could have formed in the very earliest condensations
the Universe produced in a collapse of a primordial mixture of nearly pure hydrogen
and helium. Such putative stars, called Population III stars, are thought to have been



1:10 Origin of the Solar System 29

very massive and to have formed when the Universe was ∼<108 yr old. Because of
their high mass, the stars rapidly evolved to the supernova stage in ∼106 yr and
ejected a first dose of heavy elements that appears to have been incorporated into
every generation of stars subsequently formed.

Population III stars may have existed at such early epochs that the origi-
nal wavelength λ of radiation reaching us today would have suffered a red shift
z ≡ ∆λ/λ ∼ 20. Such early luminous objects would then be apparent to us only
through observations at infrared wavelengths around 5 to 10µm. As we build in-
struments to look ever farther into the Universe and back to earlier times, a set of
first hints on the formation of stars and galaxies should emerge. What it will teach
us remains uncertain.

The relative abundance of different chemical elements observed in the Sun, on
Earth, and in meteorites has been studied for many decades. A triumph of the theory
of stellar evolution is that the chemical elements produced in the stars agree so well
with the predictions of the theory. By virtue of the theory, the central temperatures
of stars of different masses and at different stages of evolution can be calculated,
experiments conducted at accelerators can be used to calculate nuclear reaction rates
at these temperatures, and complex chains of successive nuclear reactions can then
be concatenated to determine the final abundances of the chemical elements that
should be ejected from different types of stars. The concord between the observed
abundances of the chemical elements and the abundances predicted by theory is, by
now, found to be quite striking, even if some anomalies persist.

1:10 Origin of the Solar System

Sometime around the era when the Sun formed, the system of planets became estab-
lished too. Was the Solar System formed after the Sun already was several hundred
million years old, or were the Sun and the planets (Table 1.4) born in one and the
same process? Did the Solar System form out of a single cloud of matter surround-
ing the Sun, or was there another star involved in the birth of the planets?

Both questions seem to have been answered, at least in part, by observations
cited in Section 1:6. Most probably the Sun and a surrounding dusty disk formed
from a single contracting cloud of gas and dust. After a few hundred million years,
the disk gave birth to the planetary system now observed.

Planets are fairly common around stars in the Sun’s vicinity. They probably
are common everywhere but, at the moment, our telescopes do not reach out suffi-
ciently far to check this. Many of the planetary systems discovered to date appear
very different from our own. They seem to contain a single massive planet orbiting
the parent star in an eccentric orbit that brings the planet close to the star once each
orbit. Most techniques for discovering planets are indirect; they measure the gravi-
tational tug of the planet on the parent star. Because a single massive planet passing
close by the star exerts the greatest tug, this type of system is most readily detected.
Nevertheless, a few systems have been discovered that contain several planets. We
still do not know how frequently each type of system actually occurs. For this to
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become known, we will need to develop techniques that are capable of detecting a
wider range of planetary systems. In addition, we can learn a great deal more by
studying our own Solar System in considerably greater depth. Here, too, a variety
of tools are needed to answer different classes of questions.

Let us look at some of these.

(a) Dynamical Questions

Newton’s laws of motion describe the orbits of the planets about the Sun; they also
describe the changes in these orbits as the planets interact with each other. This is
the subject matter of celestial mechanics. From the motion of the moons around
individual planets, and from the short-term interactions of neighboring planets, we
can judge the masses of the major bodies that make up the Solar System. Knowing
these masses, and knowing the instantaneous orbits, we might think that we should
be able to look back in time to calculate how the Solar System evolved in the past,
what its appearance was a few hundred years ago, a few million years ago, and
possibly billions of years ago!

A revival of celestial mechanics, based on the prodigious capability of comput-
ers to conduct large numbers of repeated steps might be thought to give shape to
the dream of reconstructing a dynamic history of the Solar System by computing
the evolution of planetary orbits backward in time. However, even small unknown
disturbances, possibly due to a relatively close approach of a passing star, or a col-
lision among planets far back in time, lead to extrapolations that diverge, becoming
meaningless as we calculate ever farther back in time.

An example of this difficulty is this: we know that the planets all orbit close
to the Earth’s orbital plane, the ecliptic. Only Mercury, the smallest and nearest
planet to the Sun has an inclination as high as 7◦. Pluto has a higher inclination
yet, greater than 17 ◦; but its inclination, in contrast to that of the other planets,
is believed to vary rapidly under the perturbing influence of its far more massive
neighboring planets. Generally, then, the orbital angular momentum axis for all the
planets lies along the same direction. The mean angular momentum has a direction
nearly normal to the orbital plane of Jupiter, the most massive planet.

Surprisingly this angular momentum has a direction 7◦ away from the Sun’s
spin axis. The Sun’s equatorial plane is inclined that strongly relative to the ecliptic.

How can this be? Does it mean that the Sun and planets could not have been
formed from one and the same rotating mass? Does it mean that some other massive
body was present and instrumental in the birth of the planets? On a more detailed
basis, could it be that Mercury, whose orbit does have about the same inclination
to the ecliptic as the Sun’s equator was formed later than the more distant planets,
or else — because of its proximity to the Sun — interacted more strongly with our
parent star?

The number of questions raised by this single consideration is large. It may
therefore not be a very productive line of pursuit. Perhaps some future theory in-
volving much more complex arguments will automatically also produce the proper
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relationships among orbital inclinations as a natural side product; but the side prod-
uct alone may not be a sufficient clue to the overall structure of that theory, and may
not help us very much right now. Many such questions remain puzzling (De04).

A second example involves Bode’s law. The planets occupy orbits that are regu-
larly spaced according to a pattern first noted two centuries ago and then popularized
by the German astronomer Bode (see Fig. 1.9).

Fig. 1.9. The orbital relationship Tn = T0A
n applied (a) to the Solar System and (b) to the

moons of Saturn. Tn is the orbital period of the nth planet or moon. T0 is chosen, respectively,
close to the rotational period of the Sun or the parent planet (after Dermott (De68). With the
permission of the Officers and Council of the Royal Astronomical Society.) In addition to the
large regular satellites of Saturn found close to the parent and listed in (b), smaller irregular
satellites, much darker in appearance, are found at greater distances. These two groups may
have had distinct origins.

Bode discovered that the distance of the planets from the Sun follows a regular
progression. More recently Dermott (De68) was able to show that a slightly new
phrasing of this law permits us to include not only planetary orbits around the Sun,
but also the orbits of moons around their parent planets. In either case, the orbital
period Tn of the nth body of the orbital system can be written in terms of a basic
period T0, close to the spin period Tp of the parent body

Tn = ATn
0 .

Is Bode’s law just a coincidence of numbers, or does it describe some deeper
interrelation among the planets’ orbits? In particular, does that relationship pro-
vide any insights into the early history of the Solar System, or is it an arrangement
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that would hold for any system of bodies orbiting about a central mass, given only
enough time for these bodies to reach some state of dynamic equilibrium? Perhaps
Bode’s law is just telling us that a rich system of planets or satellites requires their
orbits to be sufficiently far apart to prevent collisions (De73).

(b) Radioactive Dating

Radioactive dating allows us to conclude that at least some rocks on Earth must
have solidified some 3.8 Gyr ago, and that meteorites falling onto Earth from inter-
planetary space have ages of 4.5 to 4.6 Gyr. The Earth as a whole seems to be about
4.5 Gyr old. Lunar surface samples brought back to Earth indicate ages in excess
of 4.4 Gyr so that the Moon and Earth may have comparable ages. This would be
in agreement with the belief that the Moon was torn out of the Earth by a giant
asteroidal impact that could have occurred between 4.5 and 4.6 Gyr ago (De94).

The age of solidified rocks can be determined from the ratio of radioactive parent
and decay products found in a sample. Specifically, the uranium isotope 238U decays
into lead 206Pb, by sequentially emitting eight alpha particles. The half-life for this
decay is 4.5 Gyr. If the rock is not porous, the alpha particles become trapped as
helium atoms after combining with some of the electrons that are released as the
nuclear charge diminishes in the alpha decay. By measuring the ratio of 238U to
206Pb and helium present in the rock, some estimate of the age can be obtained.
This estimate must take into account that other radioactive decay may be going
on simultaneously. The uranium isotope 235U, for example, decays into lead 207Pb
with the release of seven alpha particles in a half-life of 0.7 Gyr; thorium 232Th
decays into lead 208Pb and six helium atoms in 13.9 Gyr; rubidium 87Rb turns into
strontium 87Sr in 46 Gyr; and potassium 40K turns into argon 40Ar in 1.25 Gyr
(Wh64). A complete age determination usually involves several of these decays.
Only if all the dates obtained agree can we feel safe in setting an age for a studied
sample.

Studies of this kind indicate that the Earth and the meteorites solidified about 4.5
Gyr ago, within a time of ∼108 yr. Other theories, involving nuclear processes going
on in stars, predict the abundance ratios for the various isotopes of a given element
at the time that matter was ejected from a star. The current abundance ratios for
some of the radioactive isotopes found in the Solar System, therefore, also can be
used to fix the time of formation of these elements in the interior of an earlier star.
Somewhat surprisingly that time is only of the order 6 Gyr, so that the Sun must
have formed within ∼1 Gyr after the heavier elements in the Solar System were
formed, perhaps in the explosion of an earlier generation star. The entire process
of star and planet formation probably took place within a time span of only 1 Gyr.
Figure 1.10 provides a rough early history of our planet.

(c) Chemical and Mineralogical Evidence

Remarkably detailed information on the early history of the Solar System comes
from the study of meteorites. Many stony meteorites show an abundance of milli-
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Fig. 1.10. Time line for the formation of meteorites, the earliest dated Moon rocks, and the
formation of the Earth (De94). (Reprinted with permission from Nature c©1994 Macmillan
Magazines Limited.)

meter-sized spheres held together by a matrix of silicates. Were these spherical
chondrules already present in the early Solar Nebula and do they therefore con-
tain information that could be used to infer primitive conditions? Studies on the
X-ray flaring of T Tauri stars suggest that chondrules may form in T Tauri disks
through flash-heating. Magnetic fields connecting the rotating central star and the
surrounding disk can suddenly reconnect to release magnetic pressure and energy,
and accelerate charged particles to high energies. These might heat and melt dust
aggregates, which could then cool and condense as chondrules (Gr97), (Sh97).

Iron meteorites show crystalline structure that can only form at very high pres-
sures. Does this mean that these meteorites originated in the interior of a larger
planetary body that once broke up? Can the high-pressure conditions needed for
the crystalline structures be provided by shocks that would naturally occur when
asteroids from time to time collide? The few close-up pictures we have of asteroids
show them to be thoroughly cratered, battered by many successive high velocity
collisions.

(d) Comets, Asteroids, and Kuiper Belt Objects

The early Solar System may have comprised mainly comet-sized objects. Comets
contain frozen gases such as water, ammonia, and methane. Large amounts of hy-
drogen are trapped in these molecules or larger mother molecules that can break up
into NH3, OH, CO2, and CH on exposure to solar radiation. Embedded in these ices
are silicate grains and other solids. Some comets approach the Sun from distances
as remote as 1018 cm. They appear to be bound members of the Solar System that
have been at great distances from the Sun most of their life and are approaching now
after an absence of a hundred million years, or perhaps considerably more. In these
comets we may be seeing the primordial matter from which the planets formed.
The comets apparently were pushed out to large distances from the Sun early in
the formation of the Solar System, and have been orbiting there ever since. They
may represent deep-frozen samples of matter preserved from the early Solar System
and, therefore, are extremely interesting objects to study if the history of the Solar
System is to be reconstructed. To date we have been able to study comets only as
they fall apart on approaching the Sun, where solar heating evaporates some of the
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frozen gases and liberates solid materials that were held together by the ices. Some
of these solid particles later strike Earth’s atmosphere and heat or burn up because
of their high approach velocity to Earth. This heating and burning gives rise to emis-
sion of light whose spectrum can be analyzed for the presence of various elements.
From this and from the spectra of gases released by the comet on approaching the
Sun, we can make crude chemical analyses of the comets’ contents. By and large,
we find that comets comprise chemical elements that are also abundant in the outer
planets. A precise analysis of material constituting the nucleus of a comet may have
to await a spacecraft probe that lands on a nucleus and examines the local matter
before evaporation, dissociation, or ionization by sunlight. In the meantime, space
probes that approached comet Halley in 1986 were at least able to analyze the gases
in close vicinity of the nucleus and establish the dust-grain size-distribution there.

The gravitational influence of Jupiter is so great that it can significantly alter the
orbits of at least some comets and bring them appreciably closer to the Sun. These
comets are captured from the highly elliptical orbits that have taken them to the most
distant parts of the Solar System and placed them into relatively small, short-period
orbits with aphelion points near Jupiter’s orbit.

The continual heating by solar irradiation can then evaporate most of the frozen
gases of a short-period comet. The comet nucleus itself is too small to hold on to
these gases through gravitation. Over ∼102 orbits, the comet disintegrates. If it has a
solid core, only that core remains intact after a few thousand years. It is possible that
at least some asteroids — bodies whose sizes range largely from a few kilometers
down to fractions of kilometers — are the remnants of earlier comets. They certainly
have orbits very similar to the short-period comets and might, therefore, have a
common origin. The largest asteroids, however, are more than 100 km in diameter,
much larger than observed comets seen in the past, and it is likely that these larger
asteroids do not represent cometary remnants.

In the early 1990s, a whole new family of asteroidal and cometary bodies was
discovered. They orbit the Sun at distances of 50 to 100 AU, well beyond the orbits
of even the outermost planets, Neptune and Pluto. The number of comets in this
Kuiper belt may run into the hundreds of millions or billions. We are only just
beginning to investigate the significance of these bodies in the history of the Solar
System.

(d) The Chemical Makeup of Planets

The differences in density and chemical composition of the planets may provide ev-
idence about how they were formed. The inner, terrestrial planets are much more
dense than the outer giant planets. They contain silicates and iron, which solidify
at relatively high temperatures and hence could have solidified close to the Sun.
They contain lesser amounts of hydrogen, because hydrogen is readily evaporated
from a small planet close to the Sun where temperatures are high. Because of this
evaporation, the atmospheres of the inner planets as seen today may be quite differ-
ent from their enveloping atmospheres during early times in the Solar System. The
Earth’s atmosphere in particular is thought to have been reducing — meaning that
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hydrogen was prevalent and that oxygen was tied up in molecules and unavailable
for combining with other elements. Today, of course, the atmosphere is definitely
oxidizing with its 20% abundance of free oxygen gas.

We can see from Table 1.4 that the major planets are less dense but more massive
than the inner planets. They contain a large fraction of their mass in the form of hy-
drogen and are able to retain it because of the low temperatures determined by their
relatively large distances from the Sun and because of their stronger gravitational
pull.

The distribution by volatility suggests that elements with low vapor pressures
were able to solidify at small distances from the Sun in the early life of a gaseous
pre-planetary nebula surrounding the Sun. Initially the size of condensations may
have been no bigger than dust grains, but these grains could have aggregated by
successive collisions, some of which would have vaporized colliding grains, while
others would have caused the grains to stick. Both vaporization and sticking would
act to narrow the velocity ranges of successively condensing dust grains until they
were able to clump gravitationally. As such clumps grew to 1000 km proportions,
they could start sweeping up a wider swath of matter through their gravitational
attraction, and grow at the expense of multitudes of smaller bodies. A more recently
suggested alternative to this process is that the protoplanetary disk orbiting the star
becomes unstable and fragments into rings that collapse to form planets. Both ideas
are currently being pursued; both may contribute to a more complete understanding
of planet formation.

The natural abundance of heavy elements found in the Sun appears to be mir-
rored in the composition of the Solar System as a whole. We know this for the
terrestrial planets; and though the atmospheres of the giant planets appear primarily
to contain hydrogen and helium — also in the abundances observed in the Sun —
they no doubt harbor heavier elements deep in their interior.

1:11 The Galaxy and the Local Group

Some of the phenomenological evidence for the evolution of galaxies comes from
the Local Group of galaxies. The Galaxy and the Andromeda Nebula appear to be
a pair of gravitationally bound galaxies with a substantial number of smaller com-
panions. By 1994, a careful search had displayed a Local Group numbering some
27 identified members (Table 1.5), with another 18 suspected. There are certain to
be several others obscured by the absorbing matter within the Galaxy, and probably
many more that have been too faint to detect by present-day techniques.

The group contains a number of dwarf spheroidal systems. These are very small
galaxies, devoid of gas and dust, looking very much like extremely large globular
clusters but with very low surface brightness. One of these systems, Fornax, contains
five apparently normal globular clusters and, therefore, must be considered to be
more like a galaxy than like a cluster of stars.

As will be discussed in Chapter 3, a loosely bound group of stars, such as any
one of these spheroidal systems, cannot come too close to a massive, gravitation-
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ally attracting center, before being pulled apart by the difference in the gravitational
forces acting on its near and far sides. This is evidenced by the Magellanic Stream,
an extended trail of gas falling into the Galaxy, apparently stripped from the Magel-
lanic Clouds at some recent close approach to the Galaxy. Most of the other minor
galaxies in the Local Group have apparently escaped this fate and are unlikely to
ever have come very close either to the Galaxy or to the Andromeda nebula, M31.

Dwarf systems not tied to the Galaxy could be more or less uniformly distributed
throughout the Local Group, and there could be some 200 of them. We would only
see the nearest members because they are too faint to be seen far away. It may,
however, be that all these objects are bound to either the Galaxy or to M31 and,
in that case, the total number would be smaller. We would then suspect that such
systems are formed at the edge of a galaxy, in some protogalactic stage, and that no
close approach to the center ever occurred. Interestingly, the colors of the stars in
the dwarf systems are rather different — and their H–R diagrams differ strongly —
from H–R diagrams for components of the Galaxy. This indicates a different helium
or metal abundance in the dwarf systems. That view is also supported by studies of
individual variable stars in these objects.

In these systems that apparently have always been well isolated from the Galaxy
itself, we therefore seem to have the interesting possibility of studying the evolution
of stars having a different initial chemical composition from that found in most
of the stars in the Galaxy. Not all these small galaxies are alike. While the dwarf
spheroidal systems have no apparent gas content, the Magellanic Clouds are rich in
gas with respective mass fractions of ∼10% (LMC) and ∼ 30% (SMC), consider-
ably higher than the gas contents of the Galaxy and M31, respectively 3% and 1%
by mass.

Related to the question of Local Group membership is the possible existence of
globular clusters whose velocities are so great that even though the clusters are near
to the Galaxy, they might not be physically bound unless the mass of the Galaxy is
as high as 1012M� (Pe85). Tidal considerations also show that some globular clus-
ters could never have been close to the Galactic center, suggesting a quite separate
chemical evolution, independent of the evolution of the Galaxy.

Abundant evidence exists that the stars, at least in our Galaxy and in M31, have
an increasing metal abundance near the center. The nuclear region appears to be
particularly metal rich, and this seems to indicate that the evolution of chemical
elements is somehow speeded up in these regions and is not uniform throughout
the galaxy. The various chemically distinct stellar populations in the Galaxy may
provide useful tests of the theory of buildup of chemical elements and perhaps offer
insight into events that led to chemical differentiation, both within the Galaxy, and
between the Galaxy and its chemically isolated companions.

1:12 The Formation of Large-Scale Structures

A major area of contemporary studies concerns the formation and evolution of large-
scale cosmic structures. Matter is inhomogeneously distributed throughout the Uni-
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verse. Much of the Universe is empty; but embedded in these empty spaces we find
large aggregates of galaxies, intracluster and intercluster gas, and large voids nearly
devoid of galaxies. At large distances we observe all of these in varying proportions,
as in Fig. 1.11. A number of different physical processes compete in determining the

Fig. 1.11. A deep sky exposure obtained of the Galaxy Cluster 0024+1654 in Pisces. North
is up and east is left. This massive cluster acts as a gravitational lens, magnifying a far more
distant background galaxy whose image appears broken up by the lens into five elongated,
ring-shaped arcs, three of which are highly magnified — two in the southeast and one in the
northwest. The resolution is greater along the long axis of the arcs. The image also reveals
the many small galaxies that apparently existed at early epochs. These evidently merged at a
later epoch to form the sizeable galaxies we see today. These distant galaxies are largely blue,
suggesting a population of luminous young stars. Hubble Space Telescope image, courtesy
of NASA (Co96).

characteristics and makeup of these aggregates. The physical processes that lead to
the substantial differences that distinguish globular clusters from galaxies, and in-
dividual galaxies from clusters of galaxies, are largely unknown. Though we speak
of hierarchical structure formation, we do not know why there should be abrupt
distinctions as we switch from a scale of 1020 cm to 1023 cm, to 1025 cm, and lastly
to 1026 cm. These are the respective dimensions of globular clusters, galaxies, clus-
ters of galaxies, sheets or walls of galaxies, and the voids they enclose (Fig. 1.12).
Larger yet, by a factor of ∼102, is the scale of the entire Universe whose horizon is
roughly 1028 cm distant.
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6 h

 0.01

 0.02

 0.03

Fig. 1.12. The nearby structure of the Universe at red shifts z < 0.04, in a cone-shaped swath
of the sky in the declination range −40◦ < δ < −30◦ . This distribution of galaxies in right
ascension and red shift was obtained at near-infrared wavelengths in the 2.2µm K-band, as
part of the 6dF Galaxy Survey. This survey, carried out with the UK Schmidt Telescope in
Australia, was obtained through a tiling of successive 6◦ fields (6dF) on the sky. A galaxy
with a red shift z = 0.01 is expanding away from us at a speed of 1% the speed of light. At an
expansion velocity of 70 km s−1 Mpc−1, a galaxy at z = 0.01 lies at a distance of ∼43 Mpc.
Clearly shown in this map are the walls of galaxies, and the voids they enclose. These are the
largest structures observed in the Universe. (Note the two blank wedges, respectively around
8h and 17h, reflecting a lack of data.) Compare the structures seen here to those on scales a
factor of 6 larger, in Fig. 13.6, and note both the similarities and differences. Courtesy of D.
Heath Jones (Jo04).

Let us ask next how galaxy formation could have taken place in the Universe
when it was rapidly expanding at all epochs. What gave rise to these condensations?
How did they form? How did the many small galaxies revealed in Fig. 1.11 evolve
into the large, fully formed galaxies that are abundant today, though rare at early
epochs?

The formation of quasars also needs to be understood. Quasars are the most
distant sources readily detected in the Universe. They are extremely luminous and
rapidly consume their energy supply. We think they cannot shine for longer than a
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few million years at the highest observed luminosities ∼1048 erg s−1. Whether iso-
lated quasars can form directly from the intergalactic medium through contraction,
or exist solely within galaxies is likely to be observationally answered within the
next few years.

The puzzle of concentrating mass into quasars and galaxies in a universe that
is rapidly expanding, appears to be resolved by postulating quantum fluctuations
dating back to primordial times. The inflationary origin of the Universe proposes
that the galaxies we observe today formed around such higher density regions after
the Universe had sufficiently cooled, some 108 yr after its birth. The growth of
these fluctuations which gravitationally attract ambient matter was helped by the
prevalence of dark matter, so-called because it makes itself apparent only through
its gravitational attraction for normal baryonic matter — stars, dust, and gas — but
emits no apparently detectable electromagnetic radiation.

Rotation curves in spiral galaxies (Fig. 1.13). provide strong evidence for the ex-

Fig. 1.13. Rotation curves for the spiral galaxies NGC2903 and NGC7331. Units on the
abscissa are multiples of the radius of each galaxy’s optical disk. Data points refer to radio
observations of hydrogen gas velocities (in km s−1). While the data show a flattened curve
out to large distances from the galaxy’s center, we would expect a slow drop in rotational
velocity, as indicated by the dashed curves if mass in these galaxies were concentrated as
centrally as the light-emitting stars. Although the stellar mass appears to determine the shape
of the rotation curve in the inner parts of the galaxies, an additional factor, usually considered
to be an as yet unspecified dark matter is required to account for the high rotational velocities
at larger distances from the center. The dotted curves represent a suggested theoretical fit
(Ma97).
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istence of dark matter. For most spirals, the observed rotational velocities far from
the center would be excessive if the only gravitationally attracting mass present
were that of stars and gas clouds. Similarly, some central elliptical galaxies in large
clusters would be unable to gravitationally bind their observed haloes of hot, X-ray
emitting plasma, if the entire aggregate were not far more massive than its stellar
component suggests. This has led to the postulate that an unknown form of mat-
ter, dark matter, pervades these galaxies out to large distances. Other alternatives,
however, have also been proposed, including modifications to Newtonian dynamics
and, in particular, the inverse square law of gravitational attraction over distances
comparable to the dimensions of galaxies (Mi95a).

Accounting for the dark matter is currently one of the prime unsolved problems
of astrophysics. If, as is widely assumed, dark matter rather than an entirely new
theory of gravitation is involved, its prevalence is readily estimated. An examination
of condensations on all scales suggests that the overall density of dark matter in the
Universe is roughly five times that of baryonic matter — another name for atomic
matter.

Equally demanding of attention as dark matter is the apparent ubiquity of an
even larger contributor to the mass density of the Universe — dark energy. Dark
energy makes itself apparent only through an acceleration it induces in the expan-
sion of the Universe. General relativity can account for an energy term somewhat
resembling dark energy. Einstein called it a cosmological constant, implying that
its density should not vary as the Universe expands. We do not know whether dark
energy remains constant or changes during cosmic expansion.

1:13 Black Holes

The observational evidence for stellar black holes has been accumulating for many
years. Several X-ray binary stars are known in which an invisible star, whose mass is
several times greater than the Sun’s, is orbited by a visible companion. The invisible
star is embedded in an accretion disk that emits X-rays as matter falls onto it from
the companion. The emission tends to be sporadic and some such stars flare up as
recurrent novae (Ca96), (Ka97), (Na97a). The X-Ray Nova XTE J11118+480 has a
dwarf secondary that orbits the primary star at a velocity of ∼700 km s−1, with a
period of 4.08 hours, indicating that its primary has a mass of at least 6M�, which
greatly exceeds the maximum mass a neutron star could have (Mc01). This and
perhaps a dozen other such X-ray novae all appear to be stellar black holes.

We do not know how individual stars convert their cores into black holes. One
uncertainty is the equation of state, the relation between pressure and density, for
material at densities in excess of ∼1015 g cm−3. At such densities and pressures the
stiffness of the material, its ability to resist pressure before yielding, is not in hand.
Knowledge of this property is critical to understanding whether, how, and when a
massive star may collapse to form a black hole.

The evidence for massive black holes at the center of galaxies is also strong. The
Galaxy, whose center is located at the position of the radio source Sgr A*, appears
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to house a black hole of relatively low mass ∼4×106M� (Gh03). High velocities of
stars orbiting the nuclei of other galaxies indicate the existence of compact central
concentrations with masses of order 109M� or even higher, confined to regions
perhaps less than a parsec in radius (Ta95). Such regions are not small enough to
guarantee the existence of a black hole, but our observing techniques are not yet
sufficiently refined to discern the actual size of the nucleus, which might be orders
of magnitude smaller. Still, lower limits to the density of matter determined for
such nuclear regions already exceed normal densities elsewhere in galaxies by many
orders of magnitude. The mass density within the radio source Sgr A* at the center
of the Galaxy exceeds 6 × 1021M� pc−3 (See Figure 3.5c). In contrast, the mass
density in the Galactic plane in the Sun’s neighborhood is ∼0.15M� pc−3 (Sc03).

A black hole is formed whenever an aggregate of mass M is confined within a
sphere of radius R = 2MG/c2, where G is the gravitational constant and c is the
speed of light. For a star five times as massive as the Sun, this radius is only 15 km.
Before its collapse, the star’s central density would have been ∼1015 g cm−3. For
a black hole of mass 109M�, the radius is ∼3 × 1014 cm, and its density is only
0.02 g cm−3 — comparable to the density of air at a pressure of a few atmospheres.
If sufficient mass can gradually be added to the nucleus of a galaxy, while heat is
radiated away, a massive black hole will ultimately form. Whether this happens in
Nature is a different question. But the physics of such processes is more readily
understood than the physics governing the formation of stellar black holes.

1:14 Magnetohydrodynamics and Turbulence

One vital theoretical tool that we still lack is an adequate theory of turbulence,
particularly in partially or fully ionized gases permeated by magnetic fields. The
absence of an adequate theory frustrates us on every level in astrophysics, deny-
ing us insight on the origins of cosmic magnetic fields, the formation of galaxies
and galaxy clusters, stars and star clusters, and planets. Turbulent processes often
dominate the transport of energy and matter and the shedding of angular momen-
tum. Where magnetic fields are known to play a dynamic role, the mathematical
problems of magnetohydrodynamic turbulence, and the generation and collapse of
magnetic fields, are even more daunting.

Convection on all scales involves turbulence. In stars, heat and chemical ele-
ments are frequently transported to the surface by convection. In accretion disks
around protostars, neutron stars, or black holes, turbulence may dominate the rate
at which orbiting matter can lose angular momentum to spiral in and fall onto the
central mass. The number of protostellar fragments into which cold, dense, con-
tracting interstellar clouds divide, and the masses of stars that then form, hinge on
turbulent processes. In protostellar or protoplanetary clouds the size distribution of
turbulent eddies is likely to determine whether a binary stellar system forms or a
group of planets is born orbiting a single star. Astronomical observations alone will
not solve these problems. A most urgent need of theoretical astrophysics today is
greater insight into turbulent processes.
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1:15 Problems of Life

A fascinating problem of astrophysical science concerns the origin of life. Because
physical and chemical methods have consistently shown themselves able to clarify
biological problems, there now is great confidence that the origins of life, and the
conditions under which life can originate, will some day be understood.

We do not know just how to define life and all it entails. Is a virus alive? Or is
virus formation just a matter of the reproduction of rather complex forms, just as
crystal formation is a reproduction of a complex form? To what extent are natural
mutation and eventual death requisite features of living matter? Somewhere a line
between animate and inanimate matter must be drawn, and we do not yet know just
how to do that.

Even when we understand how to define life and living matter, we still will have
to investigate whether entirely different physical or chemical bases of life might not
be possible, and whether life on quite different scales might some day be found in
the Universe.

Even in the more restricted problem of life as we know it on Earth, we are faced
with formidable difficulties. We know of millions of different forms of life on our
planet. We also know that species die out and that new, quite different, species are
born. Why? Do conditions on Earth change sufficiently, so that the habitat becomes
too unfriendly for one kind of life and more hospitable to another? Apparently!

The primitive Earth formed from a nebula surrounding the Sun, and had an at-
mosphere whose hydrogen and CO2 content was far greater than today’s. The form
that life took at that time must have been entirely anaerobic. As the atmosphere
slowly became rich in oxygen, and life changed to take advantage of oxygen as a
source of energy, some anaerobes remained and sought refuge where oxygen could
not penetrate and where competition from the aerobes, or oxygen-metabolizing or-
ganisms, was not severe (Op61a,b), (Sh66).

One of the interesting problems of astrophysics, then, is to try to understand
the chemistry of the primitive Earth. By noting the overall composition of solar
surface material and the chemical composition of the atmospheres of other planets
where conditions may have always remained stable, we may come to understand
what changes have taken place on Earth. The chemistry of comets may also help to
produce an understanding of the initial conditions that existed on the young Earth.

Is life, even as we know it, abundant in the Universe? The answer to that question
is still thoroughly speculative. If we estimated conservatively, we might suggest that
life exists only on planets around stars having the same general characteristics as the
Sun; but even then, we might need to postulate the existence of a planet just at the
distance where water neither freezes nor boils. This is referred to as a star’s habitable
zone. Even when observations tell us the number of habitable planets around Sun-
like stars, we will still need to estimate the likelihood of life spontaneously arising
on such a planet.

Increasingly sophisticated laboratory tests are now possible. They seek to es-
tablish the kind of lifelike molecule that could occur under conditions assumed to
have held on the primitive Earth. These experiments are beginning to synthesize
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lifelike primitive organisms out of component parts. But whether this will permit us
to estimate the probability of spontaneous formation of life in Nature is not at all
clear.

We do not yet know the full range of habitats that host life on Earth. Some
bacteria thrive in hot springs where temperatures exceed 100 ◦C; they exist in the
depth of the oceans and in volcanic openings; and they might exist deep inside the
Earth where we have not had the means to find them.

Entirely different possibilities should also be considered. Perhaps life is more in
the nature of an infection that, having started in a given planetary system, is then
able to spread from one system to another, either through natural causes, or through
the intervention of intelligent beings who would like to see life propagate over wide
regions. If this were true, then life would have had to be formed only once, and from
then on no further spontaneous formation would have been necessary. The search
for a spontaneous origin of life on a primitive Earth would then be misguided.

The assumption of intelligent life existing in other regions of the Galaxy or
the Universe is of course fascinating. Can we contact such life? How would we
communicate? If an intelligent civilization far more advanced than ours exists, is it
trying to communicate with us? Is there some unique best way of communicating,
which a better understanding of physics and astrophysics will some day provide? Do
we have to communicate by means of electromagnetic signals, or are there perhaps
faster than light particles — tachyons — that we will discover later on and that
would almost certainly be used by an intelligent civilization bent on saving time?
These are highly speculative conjectures, but they should not be rejected out of hand.

If other civilizations exist, should we visit them, or is that even possible outside
our Solar System? After all, the purpose of a visit is to see, talk, and touch; all of
that could be done by improved communication techniques provided only that the
distant civilization is able, and also willing, to communicate. There are relatively
few things that cannot be settled that way, although without some actual exchange
of mass, we probably could not decide whether a given civilization was made of
matter or antimatter.

There are many fundamental questions of life on which astrophysics can throw
new light and the interest of astrophysicists in biological problems is bound to in-
crease in coming years.

1:16 Unobserved Astronomical Objects

In Appendix A we list a wide variety of astronomical objects, and we might think
that we know enough to reasonably describe the world around us.

To avoid this trap of complacency, we should complete our list of astronomical
objects by citing those that may not yet have been observed. We might think that
this would be difficult; but it is not. To illustrate this, we first restrict ourselves
to optical observations of diffuse objects. An extension to other techniques then
becomes obvious.
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We produce a plot comparing the absolute photographic magnitude and the log-
arithm of the diameter of different objects (Fig. 1.14). This was first conceived by

Fig. 1.14. Diagram showing the diameter–brightness strip onto which extended objects ob-
served at visual wavelengths through the atmosphere tend to fall. Objects in the upper left-
hand corner are compact and are not readily distinguished from ordinary stars. In the lower
right-hand corner atmospheric night sky emission interferes with observations. The upper
and lower crosses, respectively, represent the highly compact quasars 3C 273 and 3C 48. The
upper and lower filled circles represent the Fornax and Draco galaxies — minor members of
the Local Group of galaxies. (Based on a drawing by Arp (Ar65).)

Halton Arp (Ar65).
We note that all objects normally discovered in optical observations with ground-

based telescopes have to lie on a strip between the two slanted lines on the Arp plot.
Objects lying to the left or above this strip appear stellar. But because there are about
1011 stars that can appear on optical images obtained from within the Galaxy, abnor-
mal or highly compact objects with a stellar appearance cannot readily be separated
from bona fide stars without an inordinate amount of labor.

To detect something unusual about objects falling into this upper region on the
chart, some other peculiar earmark must be found. Quasars, which lie above the
strip, were first discovered by virtue of their radio emission, and were only later
identified by their spectra as distant, red-shifted objects.

To the right and below the strip, the surface brightness of a diffuse object is so
low that the foreground glow emitted by the night sky outshines the object, making it
undetectable. Exceptions to this are Local Group minor galaxies such as Fornax and



1:16 Unobserved Astronomical Objects 47

Draco in which individual stars can be counted. If these objects were more distant,
these stars would not be detected and the galaxies could not be discerned.

We note that the strip of observable objects covers only a small portion of the
available area on the plot. This means that we have not yet had the opportunity to
see many different varieties of objects that probably occur in Nature. It would be too
much of a coincidence to expect all classes of objects in the Universe to fit neatly
into a pattern defined by our own instrumental capabilities — and to fall onto the
strip of observable sources in the Arp diagram. This point has recently been brought
home through the use of novel, high-contrast techniques to search for faint diffuse
galaxies. In the parts of the sky where such observations have been carried out, a
substantial number of new galaxies have been discovered, suggesting that current
catalogues may be missing at least one-third of all galaxies in the nearby universe
(Sp97).

By taking instruments above the atmosphere in rockets and satellites, we are
able to get above the atmosphere’s night sky emission. The demarcation line on the
right can therefore be moved downward and further to the right — though not very
far. Sunlight-scattering interplanetary dust imposes a limit which is almost as severe
as atmospheric emission. On the other hand, telescopes taken above the atmosphere
avoid distortions produced by atmospheric scintillation. This permits them to obtain
sharper images, and moves the line on the left of the strip upward and to the left.
The combined effect is to widen the strip and to allow us to identify a larger variety
of objects than are accessible from the ground. This is one reason for launching
an observatory into an orbit high above the atmosphere. It accounts for some of
the successes of the relatively small, 2.4 m Hubble Space Telescope, whose light-
gathering power is more than an order of magnitude lower than that of the largest
ground-based telescopes.

Of course, not all objects emit visible radiation, and so we cannot expect to
find out all there is to know in astronomy simply by making visual observations.
The ubiquitous background radiation reaching us from a time when the Universe
was less than a million years old is only detected at microwave frequencies. Short
bursts of gamma rays, lasting no longer than a few tens of seconds, flashing spas-
modically at a rate of a few bursts per week, and showing no preference for any
particular part of the sky, for thirty years could be detected only at gamma-ray fre-
quencies. Not until early in 1997 were the first few gamma-ray bursts identified
also at X-ray and optical wavelengths, and then only with great difficulty. Interstel-
lar and circumstellar masers, with few exceptions, are detected only at radio wave-
lengths. They could not have been discovered at optical or X-ray frequencies. Nor
would they have been identified without the very high spectral resolution that radio-
astronomical techniques permit. Quasars similarly might not have been identified
had radioastronomers not evolved techniques that provided sub-arc-second images.
Such techniques, however, would have been useless for detecting the microwave
background radiation, which required high sensitivity to diffuse radiation reaching
us isotropically — with equal intensity — from all parts of the sky.
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These examples show how important it is to observe not only at all wavelengths
transmitted across the Universe, but also at high and at low spatial resolving power,
spectral resolution, and even time resolution.

We note from the highly subjective Fig. 1.15 that most of our knowledge about

Fig. 1.15. Subjective drawing indicating the amount of information that has been gained
through observations in the various portions of the electromagnetic spectrum. The ordinate
has a quite arbitrary scale, probably more nearly logarithmic than linear. The peak V repre-
sents observations in the visual part of the spectrum.

the Universe still comes from visual and radio observations, mainly because more
observations have been carried out in these two wavelength domains than in other
parts of the spectrum, though a wide variety of infrared, extreme-ultraviolet, X-ray,
and gamma-ray sensing instruments, have by now been placed in Earth orbit where
they obtain a clear view of the Universe without atmospheric obstruction.

Our natural aim is to perfect observational techniques throughout (Ha81)*:
(a) The entire electromagnetic spectrum, going all the way from the lowest fre-

quencies in the hundred kilocycle radio band, where interstellar plasma absorbs and
blocks passage of radiation, up to the highest energy gamma rays. In some of these
wavelength regimes the very structure and contents of the universe may limit the
distances across which we are able to survey. Figure 1.16 illustrates this difficulty.

(b) The entire modulation frequency spectrum, going up to megacycle frequen-
cies. Pulsars would never have been discovered had it not been for electronic in-
novations that permitted observations of intensity changes over millisecond time
intervals. Using photographic plates, where exposure times of the order of an hour
were representative, astronomers could not have discovered objects with periodic



1:16 Unobserved Astronomical Objects 49

Fig. 1.16. Distances across the Universe from which highly energetic photons and protons
are able to reach us. Collisions with the cosmic microwave background radiation (CMBR)
break up energetic photons to produce electron–positron pairs and prevent penetration of the
intergalactic medium from beyond the distances shown. Uncertainties in distance-limiting ef-
fects through collisions with infrared and optical (IR/O) or radio photons whose extragalactic
fluxes are still quite uncertain, are shown, respectively, by the spread between curves a, b, and
c, and curves 1, 2, 3 and the chain of triangles. The distances from which energetic protons
can reach us are also limited by collisions with extragalactic photons. The highest-energy
particles observed, to date, have energies of ∼3 × 1020 eV, and could not have arrived from
distances beyond ∼30 Mpc (O’H98). (See also Sections 5:10 and 5:11.) (After Coppi and
Aharonian (Co97)).

brightness undulations much shorter than an hour. At the other extreme, analysis of
old photographic plates cannot yield discernible variations for phenomena whose
period is far longer than a century, because photographic records only stretch that
far back.

(c) The entire spatial frequency domain. As already indicated, many observ-
ing techniques are good for stellar or at least highly compact objects, but are not
capable of detecting a uniform background. Other techniques permit background
measurements but not the observation of faint compact objects. Until we have ob-
served the entire range of possible angular sizes, from the highest angular resolution
for detecting the most compact sources, down to the lowest resolving powers for
detecting a uniform background, we may miss potentially interesting astronomical
sources.



50 1 An Approach to Astrophysics

Table 1.6. The Mass–energy Density of Different Cosmic Constituents Averaged over the
Entire Universe.a

Constituent Fractional Density Parameterb Equivalent Mass Densityb

g cm−3

Dark Energy 0.72 ± 0.03 (7 ± 0.3) × 10−30

Dark Matter 0.23 ± 0.03 (2.2 ± 0.3)× 10−30

Primeval Electromagnetic Radiation 5 × 10−5 4.9 × 10−34

Primeval neutrinos (1.3 ± 0.3)× 10−3 (1.3 ± 0.3)× 10−32

Binding Energy from Primeval Nucleosynthesis −8 × 10−5 −8 × 10−34

Gravitational Binding from Primeval Structure (−8 ± 1) × 10−7 (−8 ± 1) × 10−36

Total Baryonic Rest–Mass 0.045 ± 0.003 (4.4 ± 0.3)× 10−31

Warm Intercluster Plasma 0.40 ± 0.003 (3.9 ± 0.3)× 10−30

Intracluster Plasma (1.8 ± 0.7)× 10−3 (1.8 ± 0.7)× 10−32

Main Sequence Stars in Spheroids and Bulges (1.5 ± 0.4)× 10−3 (1.5 ± 0.4)× 10−32

Main Sequence Stars in Disks and Irregulars (5.5 ± 0.4)× 10−4 (5.4 ± 0.4)× 10−33

White Dwarfs (3.6 ± 0.8)× 10−4 (3.5 ± 0.7)× 10−33

Neutron Stars (5 ± 2) × 10−5 (5 ± 2) × 10−34

Black holes (7 ± 2) × 10−5 (7 ± 2) × 10−34

Substellar Objects (1.4 ± 0.7)× 10−4 (1.4 ± 0.7)× 10−33

Planets 10−6 10−35

H I + He I (6.2 ± 1) × 10−4 (6 ± 1) × 10−33

Molecular Gas (1.6 ± 0.6)× 10−4 (1.6 ± 0.6)× 10−33

Dust (2.5 ± 1.2)× 10−6 (2.4 ± 1) × 10−35

Baryons Sequestered in Massive Black Holesc 4 × 10−6/(1 − ε) 4 × 10−35/(1 − ε)

Binding Energy from Gravitational Settling −10−5 −1034

Binding Energy from Stellar Nucleosynthesis −5 × 10−6 −5 × 10−35

Radiant Energy Originating in Stars 2 × 10−6 2 × 10−35

Neutrinos from Stellar Core Collapse 3 × 10−6 3 × 10−35

Cosmic Rays and Magnetic Fields ∼ 5 × 10−9 ∼ 5 × 10−38

Kinetic Energy in the Intergalactic Medium (1 ± 0.5) × 10−8 (1 ± 0.5) × 10−37

a Based on a more comprehensive tabulation by Fukugita and Peebles (Fu04).
b Based on a Hubble constant H0 = 70 km s−1 Mpc−1 and a Euclidean model of the Universe, density parameter

Ω0 = 1.
c ε is the mass–energy radiated away in the formation of the black hole.

(d) The entire set of communication channels: electromagnetic and gravitational
radiation, cosmic rays, neutrinos, and, if they exist, any others. These channels again
can be expected to exhibit the existence of new phenomena in a Universe rich far
beyond our most adventurous speculation.

(e) Some astronomical objects, however, may be hard to find without exploratory
voyages. If 10% of the mass of our Galaxy consisted of snowballs (fist-sized chunks
of frozen water freely floating through interstellar space) we would never know it.
The amount of light scattered from these objects would be too low to make them
detectable. They would not be able to penetrate the Solar System without evaporat-
ing in sunlight. Only when spaceships began travel beyond the Solar System would
they be detected, and then as a major nuisance. A spaceship moving at nearly the
speed of light could be completely destroyed on colliding with one of these minia-
ture icebergs.

(f) Another set of uncertainties greets us when we analyze those aspects of the
Universe that our observations do provide. As Table 1.5 shows, more than 95%
of the mass–energy in the Universe appears to consist of two components, neither
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of which fits into current theories of matter and radiation. A predominant fraction,
∼72% of the mass–energy density governing the expansion of the Universe is in
dark energy. Another ∼23% consists of dark matter. Less than 5% of the mass–
energy density of the Universe is in baryonic matter. The mass density due to elec-
tromagnetic radiation, as seen from the table is minute even when compared to the
small fraction found in baryonic matter. If we understand the physics of less than
5% of the contents of the Universe, does this mean that our understanding of the
Universe is also less than 5%?

From this perspective, it almost seems premature to construct sophisticated cos-
mological theories and cosmic models. On the other hand, these theories and models
often suggest novel observational tests that produce new results. We should there-
fore think of astrophysical theory not so much as a structure that summarizes all we
know about the Universe. Rather, it is a continually changing pattern of thought that
permits us to find our way forward. The compilation of Table 1.6 can help us in this
effort by at least exhibiting what we do and what we do not know.

Now that we have worked our way through the landscape of the Universe as it
appears to us today, and have found where much of the uncharted territory lies, it
is time to start learning the use of the tools that have brought us this far. These will
help us to push on farther to see how much more we may learn about the grand
structure of the Cosmos, its origins, and its evolution.

The chapters ahead of us will provide a guide.



2 The Cosmic Distance Scale

2:1 Size of the Solar System

A first requirement for the establishment of a cosmic distance scale is the correct
measurement of distances within the Solar System. The basic step in this procedure
is the measurement of the distance to Venus. A precise way of obtaining this distance
is through the use of radar techniques. Another method is described in Problems 2–2
and 2–3 at the end of this chapter.

A radar pulse is sent out in the direction of Venus, and the time between its
transmission and reception is measured. Since time measurements can be made
with great accuracy, the distance to Venus and the dimensions of its orbit can be
established to within a kilometer — a precision of one part in a hundred million.

Once the distance to Venus is known at closest approach a, and most distant
separation b, and these measurements are repeated over a number of years, the di-
ameters and eccentricities of both the orbits of Earth and Venus can be computed.
The mean distance from the Earth to the Sun is then directly available as the mean
value of (a + b)/2 (Fig. 2.1). This distance is called the astronomical unit, AU

Fig. 2.1. Measurement of the astronomical unit and trigonometric parallax.

(1 AU ∼ 1.5 × 1013 cm). A check on the Earth–Venus distance is obtained from
trajectories of space vehicles sent to Venus.
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2:2 Trigonometric Parallax

When observations are made from opposite extremes in the Earth’s orbit about the
Sun, a nearby star appears displaced relative to more distant stars in the same part
of the sky. The parallax p is defined as half the apparent angular displacement mea-
sured in this way. The distance d to the star is then

d =
1 AU
tan p

(2-1)

or
d = 1.5× 1013(tan p)−1 cm.

A star whose parallax is one second of arc is at a distance of 3 × 1018 cm, since
tan1′′ = 5 × 10−6. This distance forms a convenient astrophysical unit of length,
and is called the parsec, pc. 1 pc = 3 × 1018 cm.

With observations from the Hipparcos satellite, which has obtained the most
accurate positional observations on more than 120,000 stars, the trigonometric par-
allax can be reliably determined with an overall accuracy of ∼ 0.001 arcsec (Pe95).
At distances of about 100 pc this yields an accuracy of ∼ 10%.

2:3 Spectroscopic Parallax

Once the distance to nearby stars has been determined, we can correlate absolute
brightness with spectral type. Bright stars of recognizable spectral type then be-
come distance indicators across large distances where only the brightest stars are
individually recognized and a trigonometric parallax is too small to be measured.

2:4 Superposition of Main Sequences

This method is based on the assumption that main sequence stars have identical
properties in all galactic clusters. This means that the slope of the main sequence
is the same, and that main sequence stars of a given spectral type or color have the
same absolute magnitude in all clusters (see Fig. 1.3). On this assumption we can
compare the brightness of the main sequence of the Hyades cluster of stars (Figure
2.2) and any other galactic cluster. The vertical shift necessary to bring the two main
sequences into superposition gives the relative distances of the clusters.

PROBLEM 2-1. (a) If the shift in apparent magnitudes is ∆m = mGC − mHya

show that the relative distances are

∆m = 5 log
rGC

rHya
+ A′, (2-2)
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Fig. 2.2. Color-magnitude diagram of the Hyades Cluster. Most of the data shown were ob-
tained with the Hipparcos satellite, as indicated by the filled circles. Data from two other data
bases, the Tycho catalogue, and the Bas des Amas, BDA, are included and show the fainter
end of the main sequence. Stars at the lower left are dwarfs. Stars at upper right lie on the
red-giant branch. (Courtesy of Michael Perryman (Pe98a))

.

where A′ is a correction for the difference in interstellar reddening of the galactic
cluster, GC , and the Hyades. The derivation is analogous to the work leading to
equation (A–2). The factor A′ can be determined through use of stellar line spectra
as explained in Section A:8.

(b) In Chapter 3 we will see how spectroscopic measurements on visual bina-
ries — binary stars whose orbits can be clearly resolved — can provide complete
information on orbital velocities and separations of the two stars, and thereby also
their distances from Earth (see Fig. 3.5 (b)). The distance to such a Hyades cluster
binary has been determined in this way and found to be 47.8 ± 1.6 pc (To97). As-
suming that interstellar reddening can be neglected for nearby clusters, compare the
main sequences for the Hyades and Pleiades clusters (Figs. 2.2 and A.2). Convince
yourself that it makes sense for the Pleiades to be about 2.5 times more distant. The
distance to the Pleiades has been estimated to be 116 pc.

To measure the distance to globular clusters, which generally lie much farther
away, we can proceed on one of three different assumptions:
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(a) The Hertzsprung–Russell diagram of the globular cluster has a segment that
runs essentially parallel to the galactic cluster main sequence. We can assume that
this segment coincides with the main sequence of the Hyades cluster. The distance
of the globular cluster can then be calculated in terms of equation (2–2).

(b) Alternatively we can assume that the segment coincides with the main se-
quence defined by a group of dwarf stars in the Sun’s immediate neighborhood. The
distance to these dwarf stars is determined by trigonometric parallax.

(c) Finally we can assume that the mean absolute magnitude for short-period
variables (RR Lyrae variables) is the same in globular clusters and in the solar neigh-
borhood (see Section 2:5, below).

None of these three choices is safe in itself. However, when applied to the glob-
ular cluster M3 (Fig. 1.7), all three methods give distance values in fair agreement
with each other. This verifies that the main sequences of different groupings of stars
coincide reasonably well and can be used as distance indicators.

2:5 RR Lyrae Variables

We find that the apparent magnitudes of all RR Lyrae variables in a given globular
cluster are the same regardless of the variables’ periods, though the metallicity of
the stars in any one cluster — the abundance, for example, of iron observed in the
atmospheres of such stars — does affect their periodicity. Because these stars are
intrinsically luminous, and because their short pulsation periods make them stand
out, they serve as ideal distance indicators. We assume that the absolute magnitudes
of these stars is the same not only within a given cluster, but also elsewhere. The
relative distances of two clusters can then be determined by the inverse square law
corrected for interstellar extinction (equation (2–2)).

2:6 Cepheid Variables

At the end of the nineteenth century, Cepheid variables in the Magellanic Clouds
were found to have periods that are a function of luminosity. The Magellanic Clouds
are dwarf companions to the Galaxy. They are small galaxies in their own right
and are sufficiently compact so that all their stars can be taken to be at essentially
the same distance from the Sun. By comparing the magnitudes of Cepheids in the
Magellanic Clouds to those in globular clusters, one was able to obtain relative
distances to these objects.

However, there was a pitfall. The Cepheids in the Magellanic Clouds are Pop-
ulation I stars — stars normally found in the disk of a galaxy. Globular clusters,
on the other hand, belong to the halo Population II component that is more or less
spherically distributed about the center of a galaxy.

In 1952, Walter Baade analyzed the magnitudes of Cepheids in the Andromeda
nebula, comparing Population I with Population II regions. He found that Population
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I Cepheids were about 1.5 magnitudes brighter than Population II Cepheids. The
distance modulus of M31 had previously been derived by comparing these brighter
Cepheids with type II Cepheids in clusters within our own Galaxy. The distance
to M31 had therefore been erroneously underestimated by a factor of two. Baade’s
measurements showed that this distance and the distance to all other galaxies had to
be doubled.

2:7 Novae and HII Regions

Novae have an absolute magnitude that is related to the decay rate of the luminosity
after an outburst. The great intrinsic brightness of a nova makes it a useful distance
indicator for nearby galaxies.

The diameters of bright HII (ionized hydrogen) regions also form good yard-
sticks by which to judge the distances of such galaxies.

2:8 Supernovae

Supernova outbursts have, by now, been observed in distant galaxies red-shifted by
as much as z = 1.75 (Ri01). They exploded at an epoch when the Universe was only
half its present age. While there are several different types of these highly luminous
explosions, supernovae of type SN Ia have a predictable luminosity if the color
and rate of decline of luminosity are taken into account. By making observations at
different wavelengths it is also possible to calibrate out any absorption by dust in
the distant galaxy that might dim the apparent luminosity of the supernova and lead
to a false distance measure (see Fig. 11.6) (Pe98b, Ri95).

2:9 The Tully–Fisher and Faber–Jackson Relations

The Tully–Fisher relation is an empirical relation between the apparent magnitude
of a galaxy and its rotational velocity as measured by the Doppler width of observed
spectral lines. Figure 1.13 shows that rotational velocities are fairly uniform out to
quite large distances from a galaxy’s center. They also seem to be well correlated
with the luminosity of a galaxy, even though this luminosity is not directly related
to the galaxy’s total mass that determines rotational speeds. Figure 2.3 shows the
Tully–Fisher distance calibrated against the distance judged from observations on
Cepheid variables. The agreement is quite good.

A similar empirical relationship holds for gas-poor elliptical galaxies. There, the
widths of stellar absorption lines, Doppler broadened by the stars’ random velocities
in the galaxy’s gravitational field, are a measure of the galaxy’s absolute magnitude
in blue light, MB (Fa76). Neither relationship has a satisfactory explanation, par-
ticularly since the velocities depend on mass, determined by the dominance of dark
matter, whereas the light output of a galaxy is determined by the starlight it emits.
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Fig. 2.3. Comparison of the Tully–Fisher relation and Cepheid distance indicators. MI is
the galaxies’ I-band absolute magnitude (see Table A.1) based on Cepheid calibration of
the galaxies’ distances. W is the rotational velocity width of atomic hydrogen spectral lines
measured in km s−1 (see Fig. 1.13). The dotted lines h = 0.5 and h = 1.0, respectively,
indicate a Hubble constant of 50 and 100 km s−1 Mpc−1. The interspersed dotted lines
correspond to values of the Hubble constant spaced 10 km s−1 Mpc−1 apart. Open circles
denote galaxies for which the Tully–Fisher relation should not be applied (Gi97).

2:10 Distance–Red-Shift Relation

The distances to galaxies can be gauged through a comparison of bright sources that
populate them. Suitable candidates are O stars, novae, Cepheid variables, and HII

regions. These individual objects can be detected to distances about as far out as
the nearer Virgo cluster galaxies. By comparing the distances estimated from the
apparent magnitudes of such stars and the sizes of HII regions, it is possible to show
that the spectral red shift of light from these galaxies is linearly related to distance:
∆λ/λ ≡ z ∝ r.

We can also compare the magnitudes of individual galaxies to estimate relative
distances. Here we must be careful to compare galaxies of the same general type.
To minimize errors due to statistical variation in brightness, we sometimes com-
pare not the brightest, but rather, say, the tenth brightest galaxies in two different
clusters. By this device we hope to avoid selecting galaxies that are unusually lumi-
nous.
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The data show a linear distance–red-shift relation (see Fig. 11.6). It is not clear
how far this linearity persists, but for many cosmological purposes we use the red
shift as a reliable indicator of a galaxy’s distance. This procedure may not be suf-
ficiently accurate, even in our own part of the Universe, wherever massive clusters
attract galaxies and accelerate them to high velocities.

We should still note that distance measurements are not easy, and that errors
cannot always be avoided. In 1958, Sandage (Sa58) discovered that previous ob-
servers had mistaken ionized hydrogen regions for bright stars. This had led them
to underestimate the distance to galaxies by a factor of ∼3 beyond the error pre-
viously unearthed by Baade. Within a space of five years the dimensions of the
Universe therefore had to be revised upward by a total factor of ∼6. It is not un-
likely that, from time to time, other corrections may lead to further revisions of the
cosmic distance scale. However, Fig. 2.4 shows that we can frequently check astro-

Fig. 2.4. Flow chart of distance indicators.

nomical distances by several different methods, and eventually we should be able
to derive a reliable distance scale. At present, a red-shift velocity of 7000 km s−1

is estimated to indicate that a galaxy is at a distance of ∼100 Mpc. The velocity–
distance proportionality constant — the Hubble constant, H, named after Edwin
Hubble who, in 1929, convincingly showed that the Universe is expanding — has a
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value H ∼ 70 km s−1 Mpc−1. We will adopt this value for purposes of estimates
throughout the book, but uncertainties in the value are of order ±15%.1

2:11 Distances and Velocities

It is important to have several different ways of measuring extragalactic distances.
Galaxies are known to have random velocities of many hundreds of kilometers per
second, meaning that their red shifts can give distance measures in error by as much
as ∼>10 Mpc. By making use of Cepheid variable and supernova distance indica-
tors, we are able to place much better constraints on the distances to individual
galaxies than red shifts can provide. Use of these more reliable distance indicators,
together with red shift data, has further permitted the charting of large-scale flows
of galaxies. We find that members of our Local Group and other nearby galaxies are
systematically streaming toward a region of the sky, now named the Great Attractor
on the assumption that the galaxies are gravitationally attracted toward this region.
The approximate direction of this stream is shown in Fig. 12.1.

2:12 Seeliger’s Theorem and Number Counts in Cosmology

Once we know the distances to the various galaxies, we can estimate typical inter-
galactic distances and typical number densities of galaxies. The variation of number
density with distance can, in principle, be used to determine the geometric proper-
ties of the Universe. By such means we may hope to determine whether the Universe
is open or closed, and whether it is finite or infinitely large. We will return to such
questions in Chapters 11 to 13, but a simple argument based on Euclidean geometry
is worth keeping in mind.

If a set of emitting objects is homogeneously distributed in space, then the ratio
of the number of objects whose apparent magnitude is less than m to those whose
apparent magnitude is less than (m− 1) is Nm/Nm−1 = 3.98. This is called Seel-
iger’s theorem. Let us see how this result is obtained.

Let m−1 be the apparent magnitude of a star at distance r1 (see Fig. 2.5). Then
the distance r0 at which its apparent magnitude would be m is r0 = (2.512)1/2r1.
At that distance its apparent magnitude is reduced by (r0/r1)2 = 2.512, as follows
directly from our definition of the magnitude scale in Section A:7.

If stars are uniformly distributed in space and have a fixed brightness, they will
appear brighter than apparent magnitude m out to a distance r0, but brighter than

1 Because of such uncertainties, astronomers often specify the assumed Hubble constant
on which their calculations have been based, and write, for example, the abbreviation
h = 0.7 or perhaps h = 0.75 to denote that they have adopted a Hubble constant of,
respectively, 70 or 75 km s−1 Mpc−1. If the assumed value of h is specified in this way, a
computed result may later be recalculated when a better value of h becomes established.
This notation can be found in Figs. A.7 and 13.9, among others.
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Fig. 2.5. Diagram to illustrate Seeliger’s theorem.

m − 1 only out to a distance r1. The ratio of the number of stars brighter than a
certain magnitude, Nm/Nm−1, is proportional to the volume occupied.

Nm

Nm−1
=
r30
r31

= (2.512)3/2 = 3.98. (2-3)

Because this is true for stars of any given magnitude, it will also be true for any
homogeneous distribution of stars, regardless of their luminosities. Equation (2–3)
states that the flux obtained from a source is proportional to r−2, and the number
of sources observed down to a limiting flux density is proportional to r3. Here, we
define the flux density S(ν) at spectral frequency ν , as the energy received from a
source in unit time, per unit telescope collecting area, and in unit spectral frequency
band at frequency ν . Hence, the number of sources that have a flux density greater
than S(ν) is

N ∝ S(ν)−3/2 because N ∝ r3 and S(ν) ∝ r−2. (2-4)

This proportionality, which already was of interest in classical stellar astronomy, has
become even more important in modern cosmology, where it is usually found in a
somewhat different form. If we take the logarithm of both sides of equation (2–4)
we find

logN ∝ −3
2

logS(ν). (2-5)

A comparison of log N and logS, often called the logN − logS plot, shown in
Figure 2.6, means this: if the logarithm of the number of sources brighter than a
given magnitude is plotted against the logarithm of the flux density at the spectral
frequency at which the instrument operates, then the slope of the plot should be con-
stant, with a value of −3

2 , provided: (a) the sources are homogeneously distributed
in space; (b) space is Euclidean; and (c) we compensate for any cosmic red shift in
apparent brightness. This latter requirement comes about because observations are
made at one given frequency ν . If the source is intrinsically very bright at high fre-
quencies, then red shift to lower frequencies would make it look deceptively bright.
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Fig. 2.6. Plot of log N against log S, where N is the number of sources per unit solid angle
at or below a given magnitude and log S is the magnitude of the source, which is already
logarithmic. The plot shows data in the K and I infrared bands (see Table A.1) and in the
blue band B. For clarity, the I-band counts have been multiplied by a factor of 10 and the
K-band counts by a factor of 100. At large distances and correspondingly faint magnitudes,
the deviation from a slope of 3

2
is appreciable. The dashed and dotted lines refer to different

cosmological models. The parameter q0 is a measure of the acceleration or deceleration of the
cosmic expansion; we will encounter it again later in Section 11:6. Some of the curves take
into account that galaxies evolve — even though we do not yet know precisely how; others
assume galaxies always had their present-day appearance (Me96). Reprinted with permission
from Nature c© 1996 Macmillan Magazines Limited.

The correction for such expected spectral features of a source is called a K correc-
tion. A further correction is also required because a cosmically red-shifted source
already appears weaker just from the time dilation effect, that is, from the increased
apparent spacing between the emission times of photons. How this correction is to
be made is deduced in Sections 11:6 to 11:9.

In Section 11:7 we will show how number counts are to be calculated in cosmo-
logical models that are non-Euclidean. Actual observations, however, indicate that
care must be taken in the interpretation of data, mainly because galaxies now are
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known to substantially evolve during the time it takes for their radiation to reach
us. Small galaxies merge to form larger, often more luminous galaxies. At different
distances, then, one is counting quite different types of galaxies.

Problems Dealing with the Size of Astronomical Objects

The methods described in the following problems are not those normally used by
astronomers. However, they allow us to obtain insight into the dimensions of plane-
tary and stellar systems without recourse to the more sophisticated methods covered
in this chapter. The first seven steps were already known to Isaac Newton (Ne–).

2–2. The distance, R, to Venus can be obtained by triangulation when Venus is at
its point of closest approach. Two terrestrial observers separated by 104 km along
a line perpendicular to the direction of Venus find the position of Venus on the
star background to differ by 49′′ of arc. Calculate the distance of Venus at closest
approach.

2–3. At this distance, the angular diameter of Venus is 64′′, whereas at greatest
separation its angular diameter is 10′′. Assume that the orbits of both the Earth and
Venus are circular and concentric, and compute the two orbital radii.

2–4. The mean angular diameter of Saturn at smallest separation is about 1.24 times
as great as at largest separation. (These mean angular diameters have to be averaged
over many orbital revolutions, because Saturn’s orbit about the Sun is appreciably
eccentric). Calculate the semimajor axis, a, of Saturn’s orbit about the Sun.

2–5. Both the Sun and the Moon subtend an angular diameter of ∼1
2

◦
at the Earth.

The lunar disk at full moon is only about 2×10−6 as bright as the Sun’s disk. Know-
ing that the Moon is much nearer the Earth than the Sun, compute the reflection
coefficient K of the lunar surface, assuming that the light is reflected isotropically,
into 2π sterad. Show that this reflection coefficient is appreciably lower than that of
terrestrial surface material (which is estimated to have a mean reflection coefficient
of order 0.3). Actually the Moon scatters light mainly in the backward direction, so
the result obtained here gives an artificially elevated value for K.

2–6. Assume that Saturn subtends an angular diameter of ∼17′′ at the Sun. Let
its distance from both the Earth and the Sun be considered to be 9.5 AU. If the
light received from Saturn is 0.86 × 10−11 that received from the Sun, compute
the reflection coefficient of Saturn’s surface. Note that Saturn is known to shine
primarily by reflection, since its moons cast a shadow on the surface when they pass
between the planet and the Sun.

2–7. Saturn appears to emit 0.86 × 10−11 as much light as the Sun. How far would
the Sun have to be removed from the Earth to appear to have a magnitude identical
to that of Saturn, that is, to appear as a first magnitude star?

2–8. Assuming the Sun to be a typical star, we conclude that the nearest stars are
of the order of 5 × 1018 cm distant. We further assume that this is the characteristic
distance between stars in the disk of the Andromeda spiral galaxy M31. We note that
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M31 appears to be a system viewed more or less perpendicular to the disk containing
the spiral arms. Other spiral galaxies viewed in profile indicate that the thickness of
the disk is about 0.003L, where L is the diameter of the galaxy. In terms of the
distance D of M31, show that the flux received would be

∼
(

0.003SL3

D2

)(π
4

)( 1
5× 1018

)
,

where S is the flux we would expect to receive from the Sun if it were 5 × 1018 cm
from Earth.

2–9. If the bright central region of M31 subtends an angular diameter of 3◦ at Earth,
and if the galaxy is a fifth magnitude object, calculate the galaxy’s distance. Show
that this region’s diameter is ∼5 kpc. (Note that the full diameter of M31 is actually
an order of magnitude larger.)

2–10. Find the distance of the smallest resolved galaxies, on the assumption that
all spiral galaxies are of the size of M31 and that space is Euclidean. The smallest
extragalactic sources resolved with currently available telescopes are of the order of
0.05′′ of arc in diameter.

2–11. Olbers’s paradox: Let there be n stars per unit volume throughout the Uni-
verse.

(a) What is the number of stars seen at distances r to r+ dr within a solid angle
Ω?

(b) How much light from these stars is incident on unit area at the observer’s
position, assuming each star to be as bright as the Sun?

(c) Integrating out to r = ∞ how much light is incident on unit detector area at
the observer?

This problem will be discussed at length in Chapter 11.

Answers to Selected Problems

2–2. R ∼ 4.2× 107 km.

2–3. Re ∼ 1.5× 108 km, Rv ∼ 1.1 × 108 km.

2–4. (a+ 1)/(a− 1) = 1.24. Hence a ∼ 9.5 AU.

2–5. If L� is the solar luminosity, r is the radius of the Moon, and R is the distance
of the Moon — and Earth — from the Sun, then S = (πr2/4πR2)L� is the radia-
tion accepted by the Moon. This light is spread into a 2π solid angle so that, at the
distance D from the Moon, the flux per unit area is (K · S)/2πD2 , which has to be
compared with L�/4πR2 coming directly from the Sun.

...
Kr2

2D2
= 2 × 10−6 and K ∼ 0.2.

2–6. Saturn’s diameter is 2r ∼ 7.8× 10−4 AU.
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...

πr2L�
4π(9.5)2

· K

2π(9.5)2
L�

4π(1)2

= 0.86× 10−11 .

Hence K ∼ 0.90.

2–7. The distance at which the Sun would appear to be a first magnitude star is
r ∼ 5 × 1018 cm.

2–8. If L� is the Sun’s luminosity, and D is the distance, the flux from the galaxy is

(volume of galaxy)(number density)L�
4πD2

∼
(π/4)(L2)(0.003L) ·

(
1

5.2× 1018

)3

·L�

4πD2

=
(π/4)(L2)(0.003L)

D2
· S

(5.2 × 1018)
.

2–9. Comparing the magnitude of M31 to a first magnitude star, and taking
θ = 3/57 = L/D we see from Problem 2–8 that L ∼ 5 kpc, D ∼ 0.1 Mpc.
The actual distance to M31 is given in Table 1.5.

2–10. Distance ∼6×1028 cm. This is at a distance at which galaxies would be reced-
ing at a speed appreciably exceeding that of light. With 0.05 arc second resolution,
galaxies of the size of M31 can be resolved at all distances at which they are not
excessively red-shifted.

2–11. (a) Ωnr2 dr.

(b) Ωnr2 dr
L�

4πr2
=
Ωn

4π
L� dr.

(c) The integral of (b) out to infinity would diverge if distant stars were not
eclipsed by nearer stars. When eclipses are taken into account, the flux at the ob-
server is finite and is equal to the flux at the surface of the Sun.
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The motion of astronomical bodies was first analyzed correctly by Isaac Newton
(1642-1727). He saw that a variety of apparently unrelated observations all had
common features and should form part of a single theory of gravitational interaction.
To formulate the theory, he had to invent mathematical techniques that described the
observations and showed their interrelationship.His struggles with the mathematical
problems are recorded in his book Principia Mathematica (Ne–).

The intervening three centuries since Newton’s discoveries have allowed his
mathematical formulation to be streamlined, so that it can now be presented in brief
form; but the underlying astrophysics remains unchanged.

The aim of this chapter will be to show how astronomical observations lead to
the conclusions reached by Newton. We will then show the importance of Newto-
nian dynamics in determining the masses of all astronomical objects. It is interesting
that a correct evaluation of these masses was not obtained until more than a century
after Newton’s work. We will discuss the gravitational interaction of matter with
antimatter and finally mention some of the limitations of Newton’s work.

3:1 Universal Gravitational Attraction

A number of astronomical observations and experimental results were known to
Newton when he first tried to understand the dynamics of bodies. Many of the
experimental results dealing with the motion of falling bodies had been found by
Galileo (1564–1642) (Ga–). The astronomical observations, which treated the mo-
tions of planets, had been gathered over many years by Tycho Brahe (1546–1601).
Johannes Kepler (1571–1630) had then analyzed these data and summarized them in
three empirical laws. Newton postulated that the work of Kepler and of Galileo was
related. We will not retrace his reasoning here, but rather will outline the evidence
with some of the advantages of three centuries of hindsight.

We know from experiments with sets of identical springs and sets of identi-
cal masses that a single mass accelerated through the release of, say, two stretched
springs mounted side by side, is accelerated at twice the rate experienced by the
same mass when impelled by one spring alone (Fig. 3.1). Of course, the springs
have to be stretched to the same length. Measurements of this kind lead us to assert
that an acceleration is always produced by a directly proportional force.
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Fig. 3.1. Definition of inertial mass (See also Section 3:7).

F ∝ r̈ . (3-1)

In a related experiment three connected masses m accelerated by releasing a single
spring would be accelerated at only one-third the rate experienced by one mass acted
on by the same spring. This second type of measurement shows that the acceleration
produced is inversely proportional to the mass of the impelled body:

r̈ ∝ 1
m
. (3-2)

Combining relations (3–1) and (3–2) we obtain the proportionality

r̈ ∝ F/m . (3-3)

This is a brief way of stating Newton’s first and second laws. The acceleration of a
body is proportional to the force acting on it and inversely proportional to its mass.
When the impelling force is zero, the body remains unaccelerated; its velocity stays
constant and may be zero.

We can go one step further and say that the force is equal to the mass times the
acceleration. This defines the unit of force in terms of the other two quantities:

F ≡ mr̈ . (3-4)

With these ideas in mind we can draw a significant conclusion from Galileo’s
experiments, which showed that two bodies placed at identical points near the Earth
fall (are accelerated) at equal rates, even though their masses may be quite different.
This independence of mass, interpreted in terms of (3–3), shows that the accelerating
force is proportional to the mass of the falling body. We will need to make use of
this point in the arguments that follow.

Galileo’s work on ballistics showed that a projectile launched at a given angle
falls to Earth at a greater distance if its initial velocity is increased. We can ask what
would happen if the initial velocity were increased indefinitely. The projectile would
keep falling to Earth at progressively greater distances and, neglecting atmospheric
effects, it could presumably circle the Earth if given enough initial velocity. If the
projectile still retained its original velocity on returning to its initial position, the
circling motion would continue. The projectile would orbit the Earth much as the
Moon.



3:1 Universal Gravitational Attraction 69

Newton already knew a number of facts about the motion of the Moon and
he performed calculations to show that the Moon behaves in every way just as a
projectile placed into an orbit around Earth.

In addition to the experiments of Galileo, Newton was also aware of Kepler’s
observational deductions. Kepler’s laws summarize three principal observations:

(i) The orbits along which planets move about the Sun are ellipses.
(ii) The area swept out by the radius vector joining the Sun and a planet is the

same in equal time intervals. The angular velocity about the Sun is small when the
planet is distant and is large when the planet is close to the Sun. The Moon shows
the same behavior as it orbits the Earth.

(iii) The period a planet requires to describe a complete elliptical orbit about the
Sun is related to the length of the semimajor axis of the ellipse. The square of the
period P is proportional to the cube of the semimajor axis a (Fig. 3.2). This law

also describes the motion of satellites (moons) about their parent planets.

Newton therefore had three pieces of information:

(i) He knew that projectiles fall because they are gravitationally attracted toward
the Earth.

(ii) He knew that there are certain similarities between the motions of projectiles
and the motion of the Moon about the Earth.

(iii) He knew that the motion of the Moon is similar to that of Jupiter’s and
Saturn’s satellites and that those motions appeared to be governed by the same laws
that described the motions of planets about the Sun.

These ideas led him to attempt an explanation of all these phenomena in terms
of accelerations produced by gravitational attraction.
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Newton already suspected that in the interaction of two bodies, equal but oppo-
sitely directed forces act on both bodies (Newton’s third law). The fact that a planet
is attracted by the Sun, but can also attract a satellite by gravitational means, in-
dicates that there is no real difference between the attracting and the falling body.
If the force acting on one of Galileo’s falling bodies was proportional to its own
mass — as stated above — then the force must also be proportional to the mass
of the Earth. The gravitational force of attraction between two bodies must then be
proportional to the product of their masses ma and mb:

F ∝ mamb . (3-5)

Because the acceleration of distant planets is smaller than that of planets lying
close to the Sun, this force must also be inversely dependent on the distance between
the bodies. Similarly, the distance and orbital period of the Moon show it to have
an acceleration toward the Earth much smaller than that of objects at the Earth’s
surface. F must drop faster than r−1, because otherwise the effects of distant stars
would influence a planet’s orbital motion more strongly than the Sun.1 Using argu-
ments similar to those of Problems 2–6 and 2–7, Newton surmised the distances to
other stars and knew that there were a large number of stars surrounding the Sun.
As a reasonable choice of distance dependence, Newton tried an inverse square re-
lationship F ∝ r−2. We will show in Section 3:5 that a force law of the form

F ∝mambr
−2 (3-6)

allows us to derive Kepler’s laws of motions. To turn this proportionality relation
into the form of an equation, we write

F =
mamb

r2
G , (3-7)

where the proportionality constantG is the gravitational constant. Sometimes called
the Newtonian gravitational constant,G is a fundamental constant of Nature whose
value must be experimentally determined as discussed in Section 3:6 below.

3:2 Ellipses and Conic Sections

Since the planets are known to describe elliptical orbits about the Sun, it is conve-
nient to start the discussion of their motions by defining a set of parameters in terms
of which the elliptical paths can be described.

We can define an ellipse as the set of all points the sum of whose distances,
r+ r′, from two foci is constant (see Figure 3.2). Because the ellipse is symmetrical
about the two foci, we can see that this constant must have the value 2a:

1 If differential acceleration of the Sun and Earth is considered, the effect of the distant stars
is not so striking. However, with an r−1 force, the Sun would still rob the Earth of its
Moon.
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r + r′ = 2a. (3-8)

Hence b =
√
a2 − a2e2 by the theorem of Pythagoras. The figure also shows that

r sin θ = r′ sin θ′ (3-9)

and that
r cos θ − r′ cos θ′ = −2ae . (3-10)

These two equations, respectively, represent the laws of sines and of cosines for
plane triangles. Squaring (3–9) and (3–10) and adding these expressions gives

r2 + 4aer cos θ + 4a2e2 = r′2 . (3-11)

Substituting from (3–8) then yields

r =
a(1 − e2)
1 + e cos θ

, (3-12)

an equation that we will need below. Actually, equation (3–12) is more general than
shown here; it describes any conic section. When the eccentricity is 0 < e < 1,
the figure described is an ellipse. If e = 0, we retrieve the expression for a circle
of radius a. If e = 1, a becomes infinite, the product a(1 − e2) can remain finite,
and the equation describes a parabola. When e > 1, equation (3–12) describes a
hyperbola.

3:3 Central Force

From Kepler’s second law, a simple but important deduction can at once be drawn.
In vector form the law states

r ∧ ṙ = 2An . (3-13)

Here r is the radius vector from the Sun to the planet, ṙ is the planet’s velocity with
respect to the Sun, A is a constant, and the symbol ∧ stands for the vector product,
or cross product. The product of r, ṙ, and the sine of the angle between these two
vectors is twice the area swept out by the radius vector in unit time. n is a unit vector
whose direction is normal to the plane in which the planet moves.

We see that the time derivative of equation (3–13) is

d

dt
(r ∧ ṙ) = r ∧ r̈ = 0 (3-14)

because both A and n are constant. Multiplying this expression by the mass of the
planet m and using equation (3–4) we find that

F ∧ r = 0 . (3-15)

Since neither the force nor the radius vector vanishes in elliptical motion, it is clear
that the force and radius vectors must be collinear. The force acts along the radius
vector. Such a force is called a central force. A planet is pulled toward the Sun at all
times; and the components of a binary star are always mutually attracted.
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3:4 Two-Body Problem with Attractive Force

Let us now define a coordinate system whose origin lies at the center of mass of
bodies a and b. The positions and masses of the bodies are related (Fig. 3.3) by

ra = −mb

ma
rb . (3-16)

Because planetary motion deals with a central attractive force, and the force
decreases more rapidly than the inverse first power of the distance between attracting
bodies, we postulate that the attractive force is an inverse square law force. If this
postulate is correct, we should obtain the motion given by Kepler’s laws. We will
show below that this is true.

For a central force decreasing as the square of the distance between two attract-
ing bodies, we write the force Fa on body a due to body b as

Fa = ma r̈a = −mambG

r3
r , (3-17)

wherema andmb are the masses of the two bodies. From the definition of r and the
center of mass, we have

r = ra − rb =
(

1 +
ma

mb

)
ra . (3-18)

Combining (3–17) and (3–18) we obtain

r̈a = −GM
r3

ra, M ≡ma +mb , (3-19)

where M is the total mass of the two bodies. Subtracting a similar expression for rb

we derive

r̈ = −GM
r3

r . (3-20)

We see that the acceleration of each body relative to the other is influenced only by
the total mass of the system and the separation of the bodies. If equation (3–20) is
multiplied by a mass term µ, we obtain a force term that is a function only of r, M ,
µ, and the gravitational constant:

Fig. 3.3. Center of mass (CM) of two bodies a and b. The center of mass of two or more
orbiting masses is also referred to as the barycenter.
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F(µ,M, r) = −GMµ

r3
r =

−Gmambr
r3

. (3-21)

If this force is to be equal to the force acting between the two masses, we must
satisfy equation (3–7) which means that

µ =
mamb

ma +mb
; (3-22)

µ is called the reduced mass.
The equation of motion (3–20) taken together with equation (3–21), shows that

the orbit of each mass about the other is equivalent to the orbit of a mass µ about
a mass M that is fixed — or moves in unaccelerated motion. There is a great ad-
vantage to this reformulation. Newton’s laws of motion only hold when referred to
certain reference frames — stationary coordinate systems, or those in uniform un-
accelerated motion (see also Sections 3:8 and 5:1). Such unaccelerated reference
frames are called inertial frames of reference It was for this reason that we initially
referred the motion of the masses a and b to the center of mass. This procedure,
however, required us to keep separate accounts of the time evolution of ra and rb.
The separation r was only determined subsequently by adding ra and rb. This two-
step procedure is avoided if equations (3–20) to (3–22) are used, because r can then
be determined directly.

3:5 Kepler’s Laws

Consider a polar coordinate system with unit vectors εr and εθ (Fig. 3.4). A particle
is placed at position r = rεr. Since the rate of change of the unit vectors can be
expressed as

ε̇r = θ̇εθ , (3-23)

defining the rate of change (rotation) of the radial direction, and

ε̇θ = −θ̇εr , (3-24)

Fig. 3.4. Vector components of the velocity ṙ.
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giving the rate of change for the tangential direction, we can write the first and
second time derivatives of r as

ṙ = ṙεr + rθ̇εθ , (3-25)

r̈ = (r̈ − rθ̇2)εr + (2ṙθ̇ + rθ̈)εθ . (3-26)

From expressions (3–20) and (3–26) we obtain two separate equations, respectively,
for the components along and perpendicular to the radius vector

r̈ = −GM
r2

+ rθ̇2 (3-27)

and
2ṙθ̇ + rθ̈ = 0, so that 2ṙrθ̇ + r2θ̈ = 0 . (3-28)

The second of equations (3–28) integrates to

r2θ̇ = h, (3-29)

where h is a constant that is twice the area swept out by the radius vector per unit
time. This relationship has a superficial resemblance to the law of conservation of
angular momentum (per unit mass). But that law would involve the distances ra and
rb, instead of r. Equation (3–29) does state Kepler’s second law, however, and that
is satisfactory.

Combining equations (3–27) and (3–29) we have

r̈ − h2

r3
+
MG

r2
= 0 . (3-30)

PROBLEM 3–1. Choose a substitution of variables

y = r−1, θ̇
d

dθ
=

d

dt
, (3-31)

to rewrite equation (3–30) in the form

d2y

dθ2
+ y =

MG

h2
. (3-32)

Show that this has the solution

y = B cos(θ − θ0) +
MG

h2
. (3-33)

This leads to

r =
1

B cos(θ − θ0) + (MG/h2)
. (3-34)
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This is the expression for a conic section (see equation (3–12)). It therefore repre-
sents a generalization of Kepler’s first law. Gravitationally attracted bodies move
along conic sections which, in the case of planets, are ellipses. We see this if we set

a(1 − e2) =
h2

MG
(3-35)

and

e =
Bh2

MG
. (3-36)

The minimum value of r occurs for θ = θ0.
Let rm be a relative maximum or minimum distance between the two bodies.

Then the entire velocity at separation rm must be transverse to the radius vector,
and by equation (3–29),

(rmθ̇)2

2
=

h2

2r2m
(3-37)

is the kinetic energy per unit mass. The total energy per unit mass is the sum of
kinetic and potential energy per unit mass

E =
h2

2r2m
− MG

rm
. (3-38)

Solving for rm we have

rm =

(
MG

h2
±
√
M2G2

h4
+

2E
h2

)−1

. (3-39)

Hence the quantityB in equation (3–34) has the value

B = +

√
M2G2

h4
+

2E
h2

, (3-40)

the sign being determined by the condition that the minimum r-value occur at
θ− θ0 = 0.

Equations (3–12) and (3–35) show that the minimum value of r is

q =
h2

MG(1 + e)
. (3-41)

Substituting this into equation (3–38) we then have an expression for the energy in
terms of the semimajor axis a,

E = (e2 − 1)
M2G2

2h2
= −MG

2a
, (3-42)

where we have made use of expression (3–35). To obtain the total energy of the
system we can multiply E by µ. The total energy per unit mass is the sum of kinetic
and potential energy, also per unit mass. From this we see that
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E =
v2

2
− MG

r
, (3-43)

and from (3–42) we obtain the orbital speed as

v2 = MG

(
2
r
− 1
a

)
. (3-44)

We can now make a number of useful statements:

(i) If S is the area swept out by the radius vector

dS

dt
=

1
2
h, S − S0 =

1
2
ht . (3-45)

For an ellipse, the total area is

S − S0 = πab = πa2(1 − e2)1/2 (3-46)

so that from equation (3–35) the period of the orbit is

P =
2
h
πa2(1 − e2)1/2 =

2πa3/2

√
MG

. (3-47)

Equation (3–47) is a statement of Kepler’s third law.
(ii) If the eccentricity is e = 1, the total energy is zero by equation (3–42)

and the motion is parabolic. Astronomical observations have shown that some
comets approaching the Sun from very large distances have orbits that are prac-
tically parabolic, although they may be slightly elliptical or slightly hyperbolic. At
best, these comets therefore are only loosely bound to the Sun. A small gravitational
perturbation by a passing star evidently can make the total energy of some of these
comets slightly positive, and they escape from the Solar System to wander about in
interstellar space.

We should still note that one of the big advances brought about by Newton’s the-
ory was the realization that both cometary and planetary orbits could be understood
in terms of one and the same theory of gravitation. Prior to that no such connection
was known.

(iii) If the eccentricity e > 1, the total energy is positive, and the motion of the
two masses is unbound. After one near approach the bodies recede from each other
indefinitely.

(iv) If the eccentricity is zero, the motion is circular with some radius R and the
energy obtained from equation (3–42) is −MG/2R per unit mass. Equation (3–44)
then states that v2 equals MG/R or that the gravitational attractive force per unit
mass MG/R2 must equal v2/R, which sometimes is called the centrifugal force
— a fictitious force that is supposed to “keep the orbiting mass at constant radius R
despite the attractive pull of M .”

Thus far we have shown that the motion of one mass about another describes
a conic section. In addition, we can show that the orbit of each mass about the
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common center of mass is a conic section as well. Equation (3–19) can be rewritten
as

r̈a = − GM

(1 +ma/mb)3
ra

r3a
. (3-48)

This is of the same form as equation (3–20) and we can, therefore, readily obtain
equations similar in form to expressions (3–27) to (3–29), and finally (3–34). This
argument also holds true if we were to talk about the vector rb instead of ra. Hence
both masses ma and mb are orbiting about the center of mass along paths that de-
scribe conic sections.

Let us still see how we can determine the masses of the components of a spec-
troscopic binary. This is the most important means we have for determining stellar
masses. For such binaries we can measure the radial velocities of both stars through-
out their orbits (Fig. 3.5).

It is relatively easy to determine the period of such a binary by looking at the
repeating shifts of the superposed spectral lines. Equation (3–47) then gives the ratio
(a3/M) of the semimajor orbital axis cubed and the sum of the masses. If the binary,
in addition, is an eclipsing binary, so that the line of sight is known to lie close to
the orbital plane, then the semimajor axes of the orbits of the two components about
the common center of mass can be found; and this gives the individual component
masses if use is made of component equations derived from (3–18) and (3–19).

For a few visual binaries that are close enough to permit accurate observations,
the motion of the individual components relative to distant background stars again
permits computation of the individual semimajor axes, provided the trigonometric
parallax is also known. The orbital period then allows us to compute the individual
masses through Kepler’s third law and equations (3–18) and (3–19).

We note that expressions such as (3–35), (3–36), (3–44), and (3–47), which
connect measurable orbital characteristics toM andG always depend on the product
MG and, hence, permit a determination of neither the system’s total mass, nor of the
gravitational constant. For a long time this presented a serious difficulty. However:

PROBLEM 3–2. Show how a rough measure of G can be obtained from falling
mass experiments when the known size of the Earth and some estimate of its density
are used to determine the Earth’s mass. In Section 3:6, below, we show how G was
eventually measured by Cavendish. Note that for an accurate determination of the
Earth’s density, G has to be accurately known.

3:6 Determination of the Gravitational Constant

Henry Cavendish (1731–1810), an English chemist, discovered a means of mea-
suring the gravitational constant G, late in the eighteenth century, more than one
hundred years after Newton had first shown how the motion of the planets depends
on the mass of the Sun. Until Cavendish performed his experiment, the absolute
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(a)

(b)

(c)

Fig. 3.5. (a) Binary star orbits and the individual semimajor axes for two stars orbiting their
common center of mass. (b) The apparent orbit of the secondary star with respect to the
primary in the close binary listed as HD 27483 in the Henry Draper (HD) catalogue. The
two stars have almost identical masses, 1.38 ± 0.13 and 1.39 ± 0.13M�, and respective
semimajor axes 0.02915 ± 1.4 × 10−4 and 0.02878 ± 2.4 × 10−4 AU. The distance to the
binary has been determined from precision parallax measurements obtained with the aid of
the Hipparcos satellite and is 45.9 ± 1.8 pc. The observations were carried out at optical
wavelengths with a Michelson stellar interferometer (See Section 4:12). Courtesy Maciej
Konacki (Ko04). (c) Orbit of the star S2 about the compact radio source Sgr A*, commonly
taken to define the Galactic center at Galactic longitude � = 0 and latitude b = 0. The
position of the star observed at infrared wavelengths is shown in Galactic coordinates for
the period from 1994 to 2003, the dates being expressed in decimal form. The continuous
curve is the best-fit Keplerian ellipse whose focus is shown by the small error circle, lying
within a few milliarcseconds from the radio source. The size of the cross indicates a current
±10 milliarcseconds positional uncertainty of the infrared relative to the radio astrometric
reference frames. By making use both of the spectroscopic line shift of S2, and its proper
motion, the deduced elliptic orbit provides a highly accurate distance to the Galactic center,
7.94±0.42 kpc, as well as the mass of the purported Galactic center black hole, 3.59±0.59×
106M�. This mass is contained within a sphere of projected radius ∼<10 mas or 1015 cm
∼ 100 AU from the central mass. Courtesy of Frank Eisenhauer (Ei03). Sgr A* is expected
to move about the barycenter of the system of stars passing close by. Radio observations show
that the component of this motion perpendicular to the Galactic plane is at most 0.4±0.9 km
s−1, as gauged by relative positions of Sgr A* and two distant quasars. This indicates that
the mass of the radio emitting source must exceed 4 × 105M� or 10% of the total. Because
the size of the radio source and hence this mass concentration is <1 AU, this implies a mass
density in excess of 6 × 1021M� pc−3 and provides strong indication that a supermassive
black hole of mass ∼106M� occupies the Galactic Center (Re04).
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masses of celestial objects could not be accurately determined; there were only rel-
ative values of, say, planetary masses as judged by orbits of their moons.

In the Cavendish experiment a torsion balance is used. Typically such a device
may consist of a fine quartz fiber to which a rod bearing masses m1 and m2 is
attached, as shown in Fig. 3.6 (a). Each mass is at some distance L from the fiber.

Fig. 3.6. The Cavendish experiment to determine the gravitational constant G.

We can calibrate the balance by noting the torsion that can be induced in the fiber
when a small measurable torque is applied to the system by a spring with known
force constant exerting a horizontal force at the position of m2.

If masses M1 and M2, respectively, are placed at a small horizontal distance
from masses m1 and m2, we may observe a twist of the fiber, in the sense shown
in Fig. 3.6 (b). We can determine the distances r1 and r2, respectively, between m1

and M1, and m2 and M2, to find the horizontal forces acting on the ends of the bar
and, hence, establish the torque acting on the quartz fiber. That torqueN is

N = L

(
m1M1G

r21
+
m2M2G

r22

)
. (3-49)

From the measured deflection of the masses we can determine the value of N , in
terms of the calibration previously obtained on the twisted quartz wire. Because
we can measure N , L, r1, r2, and the masses of all the different bodies, we now
have the values of all quantities in (3–49) except for G, which can then be directly
determined from the equation. That value isG = 6.674×10−8 dyn cm2 g−2 (Ba97).

Once the value of G is known, the mass of the Sun is readily determined using
Kepler’s third law, equation (3–47). That law actually involves the total mass M
of the Sun and planet, but by performing the calculations for a number of different
planets we can verify that the mass of the Sun is very nearly equal toM and that the
summed masses of the planets ∼0.0013M� can be neglected to a good approxima-
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tion. The approximate mass of the Earth, M⊕ = 5.974× 1027g, can be derived in a
similar way, making use of the known orbit of the Moon.

3:7 The Concept of Mass

If we examine what we have said about the measurement of masses, we find that
there are really two quite distinct ways of determining the mass of a body: (i) we
can measure its acceleration in response to a measured force (equation (3–4)); or
(ii) we can measure the force acting on the body when a given mass is placed at
a specified distance — this is what we do when we weigh the body with a spring
balance.

The first of these is a dynamic measurement; the second can be static. The mass
of a body measured in the first way is called its inertial mass; the mass measured by
means of the second method is called the gravitational mass.

Suppose now that we take a steel ball whose gravitational mass ism1. We take a
wooden ball that is slightly too heavy, and slowly file away excess material until its
gravitational mass is also equal to m1. If the two balls are placed on a pan balance,
they should leave the balance arm in a horizontal position, because the Earth attracts
both masses equally.

The question now is whether the inertial mass of these two bodies is always the
same. Will the wooden ball be accelerated at precisely the same rate as the steel ball
in response to a given force? We need to refine Galileo’s work on falling bodies to
answer this question.

The problem intrigued the Hungarian baron Roland von Eötvös, around the end
of the nineteenth century. He suspended two weights of different composition but
identical weight on a torsion balance, with the horizontal bar along the East–West
direction (Fig. 3.7(a)). As the Earth rotated, two forces acted on each mass: (i) a
gravitational attraction that is equal, because the weights of the masses are equal;
and (ii) a centrifugal force due to the Earth’s rotation. If the centrifugal force on

Fig. 3.7. Eötvös and Dicke experiments.
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mass A was greater or less than on mass B, this would indicate that their inertial
masses differed. The bar would rotate until the torsional force in the suspending wire
compensated for the inequality in the centrifugal forces.2 Eötvös never observed
such a rotation of the bar and concluded that the inertial and gravitational masses of
the bodies were identical to within one part in about 108.

R. H. Dicke and his co-workers later refined this experiment. They suspended
their weights with the bar in a North–South direction (Fig. 3.7(b)). As the Earth
turns about its axis, mass A might be attracted more or less strongly toward the
Sun than mass B. We should then observe a diurnal effect with the balance arm
first swinging in one direction and then in the other. The absence of such an effect
showed that gravitational and inertial masses are identical to within about one part
in 1011 (Ro64). Precise observations of the lunar orbit, showing the rate at which
both fall toward the Sun, and knowledge about the differences in the composition of
Earth and Moon, by now have lowered this limit to one part in ∼1013 (Wi04).

We may now ask whether the gravitational mass of matter is the same as that
of antimatter. If there existed galaxies composed of antimatter, would they attract
or repel a galaxy consisting of matter? L. I. Schiff gave a tentative answer to such
questions (Sc58a). He pointed out that many atomic nuclei emit virtual positron–
electron pairs. This means that part of the time a fraction of the total nuclear energy
is to be found in the form of an electron and a matched positron. Such a pair of
particles is continually formed and reassimilated and is never actually emitted.

Schiff pointed out that if the positrons had a negative gravitational mass, then the
ratio of inertial to gravitational mass would be affected for a number of substances
for which the electron–positron virtual pair formation is a major effect. The ratio of
the two kinds of masses would then be different from unity by about 1, 2, and 4 parts
in 107 for aluminum, copper, and platinum, respectively. Experiments with such
substances have been performed, and inequalities of this size are ruled out by the
Eötvös and Dicke experiments. It follows that matter and antimatter ought to have
gravitational masses of the same sign and that galaxies interacting gravitationally
with antigalaxies could not be distinguished on dynamical grounds.

Note that we have really only shown that the inertial and gravitational mass have
the same sign for positrons as for electrons. But we actually know from dynamical
experiments in magnetic fields that the inertial mass of the positron equals that of
the electron, so that our previous conclusion should follow at once. Matter and anti-
matter both have positive mass.

Schiff recognized one difficulty with this argument. We are not certain that vir-
tual electron–positron pairs behave exactly like real pairs. Could it be that the gravi-
tational mass of a real positron differs from that of a virtual positron? Unfortunately,
we will not be absolutely sure until we make a direct measurement of the positron’s
motion in a gravitational field. Antihydrogen atoms have by now been created at ac-
celerators, and plans have been made to trap them and measure their rate of free-fall.
This should settle the issue in the next few years (St04), (Ni95).

2 This experiment works best roughly halfway between the equator and poles, say, Budapest
or Princeton.
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3:8 Inertial Frames of Reference — The Equivalence Principle

We noted earlier that Newton’s laws of motion hold only when the motion is de-
scribed in coordinates that refer to a frame of reference that is either fixed or is
moving at constant velocity with respect to the distant galaxies. Such a reference
frame is known as an inertial coordinate system.

Several perplexing questions arise when we try to understand the significance of
these frames of reference. They can be described by some simple experiments.

(1) Suppose that a man were blindfolded and placed on a merry-go-round. He
could determine quite accurately whether he was being spun around; he would be
able to feel the centrifugal force acting on him when the merry-go-round was mov-
ing. If he adjusted the mechanism until he felt no centrifugal force he would find,
on taking off his blindfold, that the merry-go-round was stationary with respect to
the distant galaxies.

(2) A blindfolded man placed in a rocket ship in interstellar space could adjust
his controls until he felt no forces on himself. On taking a closer look, he would find
that he had adjusted the engine to give zero thrust. He might find that he was moving
at constant velocity with respect to the distant galaxies. Alternatively, however, he
might find that he had strayed into the vicinity of a star and was freely falling toward
it! Albert Einstein first postulated that freely falling, nonrotating coordinate frames
are fully equivalent to Newton’s inertial frames that move at constant velocity with
respect to the distant galaxies. All laws of physics have precisely the same form
in both types of frames. This equivalence principle will prove very useful in our
discussions of relativity in Chapter 5.

When we talk about a motion with respect to the distant galaxies, we really mean
a motion with respect to the mean velocity of all galaxies at very large distances.
Galaxies are receding in all directions but, as far as we can tell, there always exists a
local frame of reference in which the motions of distant galaxies statistically appear
symmetrical, no matter which direction we look.

This suggests that perhaps the local frame of zero acceleration is determined by
the distribution of the galaxies in the Universe. Just how this determination comes
about is a basic unanswered question of the theory of gravitation. The thought that
the overall distribution of mass within the Universe should determine a local in-
ertial framework is due to Ernst Mach and is sometimes called Mach’s principle.
Many related questions involved the same basic thought. “Is the inertial mass of a
body determined by the distribution of matter in the Universe? Is the gravitational
constant determined by the distribution of the distant galaxies? As a result, would
the value of the gravitational constant change with time as the galaxies recede from
each other? Are the atomic constants of physics related to the large-scale structure
of the Universe?” We will consider these questions in Section 11:17.
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3:9 Gravitational Red Shift and Time Dilation

Einstein’s principle of relativity (Section 5:1) states that mass and energy are related
in such a way that any stationary mass m has an equivalent energy mc2 associated
with it (Ei–b). Einstein showed that the separate laws of conservation of mass and
of energy merge into a more general conservation of mass–energy. This predicts a
gravitational red shift for radiation emitted at the surface of a star (Ei11). Consider
two particles, an electron and a positron at rest at a very great distance from a star.
The rest–mass of each particle is m0. If the particles fall in toward the star’s surface
— and both have positive gravitational mass — each will acquire a total mass–
energy

E ≡ mrc
2 =
(
m0c

2 +
m0MG

r

)
= m0c

2

(
1 +

MG

rc2

)
(3-50)

at distance r from the star. The second term in the parentheses represents the conver-
sion of potential into kinetic energy. Now let the two particles be deflected without
loss of energy or momentum, so that they collide head-on, and annihilate. Two pho-
tons, each with frequency

νr =
mrc

2

h
(3-51)

will be formed in this process. These photons are now permitted to escape from r
but, through reflections from stationary mirrors that produce no frequency shifts, we
can make them collide again at a large distance from the star.

In this collision they can form an electron–positron pair. If energy is conserved,
then the photons’ frequency ν0 at a large distance from the star must be

ν0 =
m0c

2

h
. (3-52)

Otherwise there would be either too much or too little energy to recreate a positron–
electron pair at rest. Hence

ν0 =
νr

1 +MG/rc2
. (3-53)

The frequency at a large distance from the star is less than the emitted frequency.
For the SunM ∼ 2×1033 g, the radiusR ∼ 7×1010 cm, andMG/Rc2 ∼ 2×10−6

at the solar surface. For a neutron star whose mass would be about the same, but
whose radius is ∼105 times less, the fractional frequency shift

∆ν

νr
=
ν0 − νr

νr
= −MG

rc2

[
1 +

MG

rc2

]−1

(3-54)

becomes comparable to unity, and the frequency shift ∆ν becomes comparable to
the frequency itself.

We will see in Section 3:10 that the frequency of electromagnetic waves can
give a very accurate measure of time and can therefore be used as a clock. Such a
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clock placed in a strong gravitational field would therefore run more slowly. Quite
generally, the rate at which a clock runs is determined by the potential V(r) at the
position r of the clock. The period P of this clock measured by an observer outside
the potential field, that is, by an observer located at V = 0, appears to be

P0 = Pr

(
1 − V

c2

)
. (3-55)

In Sections 3:11 and 5:14 we outline an experiment that measures this time dilata-
tion as expressed through a delay in the arrival at the Earth of pulsar pulses that have
passed close to the Sun.

3:10 Measures of Time

In describing the orbital motions of planets about the Sun, we have obtained ex-
pressions for position as a function of time. But how is this parameter time actually
measured?

There are a number of ways (Sa68) of measuring time and it is interesting to see
how these methods interrelate. Some rather basic questions of physics are involved.
Let us first describe a set of imaginary clocks. They may not be practical but they
should work in principle.

First Clock

Take an amount of tritium 3H that beta decays into the helium isotope 3He. If the
tritium is kept frozen at a temperature around 10 K, the helium will diffuse out as it
is formed. We weigh the tritium. When the mass has dropped to half its initial value,
we say that a time of one unit, NT, has elapsed. We could set up a clock that struck
each time the remaining mass was reduced by a factor of 2.

Second Clock

Take a quantity of the cesium isotope 133Cs. It has a transition between two hy-
perfine levels of the ground state. We measure the frequency of the radiation (radio
wave) emitted in this transition. The period of this electromagnetic wave can serve
as a unit of time, AT.

Third Clock

We set up a telescope that is always pointed at the local zenith. Each time a given
distant galaxy reappears exactly in the center of the telescope’s field of view, we say
that one unit of time, UT, has elapsed.
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Fourth Clock

We note the plane described by Jupiter as it orbits the Sun. We mark the instant that
the Earth crosses this plane. It does this twice per orbit — once from North to South
and then from South to North. If we define the interval between successive N to S
crossings as one unit of time, ET, we have still another means of measuring time.

We call these measures — NT, AT, UT, and ET — nuclear time, atomic time,
universal time, and ephemeris time. As we have chosen to define them these units
of time, respectively, correspond to ∼12 years, (9,192,631,770)−1 seconds, 1 day,
and 1 year.

The basic differences between the clocks are these: the first clock uses beta
decay, a weak interaction, as its basic mechanism. The second clock uses an elec-
tromagnetic process to measure time. The third clock uses the Earth’s rotation to
measure time; this is an inertial process. Finally, the fourth clock makes use of a
gravitational force to measure time.

Because each of these clocks depends on quite different physical processes, we
worry that they might not measure the same “kinds” of time. There is no reason,
for example, why atomic time and ephemeris time as defined above should describe
intervals having a constant ratio. At present the ratio of these time units is about
3 × 1017 : 1. Will this ratio be the same some 109 yr from now? Or does the
strength of the gravitational field or of the weak interactions change after years in
such a way that one of these clocks becomes accelerated relative to the other?

We can test such questions experimentally. They are of great importance to cos-
mology. For, in order to understand the nuclear history of the Universe and the for-
mation of chemical elements, we have to know how nuclear reaction rates in stars
may have been affected by the overall evolution of the Universe over past æons. This
will appear more clearly after the synthesis of nuclei in stars has been discussed in
Chapter 8.

The important point to realize is that we have enumerated four quite different
ways of defining time.3 UT and ET are related if the general theory of relativity
holds true; and their relationship becomes a test for theories of gravitation.

In practice, comparing the rates of these clocks is difficult. Planetary pertur-
bations make the Earth’s orbit about the Sun irregular. The orbiting Moon, tides,
earthquakes, and other disturbances affect the rotation rate of the Earth. An incom-
plete understanding of these effects makes it hard to compare the UT and ET rates
with time measured by atomic clocks. Eventually, however, such practical difficul-
ties should be overcome and a comparison of time scales may become possible.

3 Actually, there are five ways. Nuclear β and α decay rates are based on weak and strong
nuclear forces, respectively. We will show in Section 11:17 that these two kinds of clock
apparently have run at identical rates over the past few æons.
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3:11 Uses of Pulsar Time

Some binary pulsars — pulsars orbiting compact companions — emit signals with a
periodicity that varies by less than one part in 1010 over an interval of a year (Sa97).
These signals can therefore be used to define a time scale. The mechanism of the
clock is not yet understood but reflects the rotational period of neutron stars. In any
case, its regularity allows us to put it to scientific use. For many purposes we do not
need to know how a clock works as long as its accuracy can be verified.

Many years ago, C. C. Counselman and I. I. Shapiro listed a number of interest-
ing gravitational effects to be studied using pulsars (Co68).

(a) The orbit of the Earth can be determined with great precision. Pulsar emis-
sion acts as a “one-way” radar. Counting pulse rates from different pulsars allows
us to measure the instantaneous velocity of the Earth relative to some arbitrarily
defined inertial frame. Integrating these velocities over a series of time intervals
yields the Earth’s position as a function of time, that is, the shape of the orbit and its
orientation.

Such measurements can also yield data on the positions and masses of the out-
ermost planets. Their motions affect the position of the Solar System’s barycenter
and hence also the orbit of the Earth. The periodicity of these effects is determined
by the orbital periods of the planets, and we should find corresponding periodic
variations in the pulse counts (As71).

(b) A pulsar located near the ecliptic plane appears close to the Sun once each
year. When the light pulses pass very close to the limb of the Sun, they are slowed
down because all clocks are slowed by the presence of a strong gravitational field
and because the speed of light measured locally at the Sun would still appear to be
c. The arrival time of pulses at the Earth are delayed by an amount of order 100µs,
depending only on how close to the Sun the radiation passes. By keeping track of the
arrival times we can compute the delay and see whether the measured delay agrees
with the predictions of relativity theory. To do this, we have to first correct for the
time delay due to the relatively high index of refraction of the solar corona. This
is possible because the delay due to refraction is proportional to ν−2, whereas the
gravitational delay is independent of frequency ν . Several pulsars pass within 1◦ of
the Sun and hence are suitable objects for such tests. We shall discuss this further in
Section 5:14.

(c) Because pulsars are located within the Galaxy, the shear motion of stars in
the Galaxy yields an acceleration relative to the Sun that can be detected by keeping
track of pulse arrival times. The differential rotation of the Galaxy can therefore be
mapped very accurately.

3:12 Galactic Rotation

The mass of the Galaxy is unevenly distributed. The density of matter enclosed in
a sphere of radius r from the Galactic center is greatest near the nucleus. Stars near
the Galactic center tend to have angular velocities θ̇(r) appreciably larger than stars
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at greater distances; that is, dθ̇/dr < 0. Suppose for simplicity that all stars have
idealized circular orbits about the Galactic center. Let the Sun be at distance rs from
the center. Relative to the Sun S, moving with velocity vs (see Fig. 3.8), matter at
Galactic longitude l, and at distance r from the center C has an approach velocity
v(r, l) along the line of sight.

v(r, l) =
[−rsθ̇(rs) sin l + rθ̇(r) cos θ

]
=
[
θ̇(r) − θ̇(rs)

]
rs sin l , (3-56)

where the simple form of the expression on the extreme right is due to the relation
r cos θ = rs sin l, as is evident from Fig. 3.8. We note from (3–56), and from the fact
that dθ̇/dr < 0, that v(r, l) is positive in the quadrants I and III so that stars and gas
along these directions appear to approach and their spectra should be blue-shifted.
In quadrants II and IV stellar spectra should appear red-shifted.

This is actually observed. In 1927 the Dutch astronomer Jan Oort was able to
use this evidence to prove that stars in our Galaxy are in differential rotation about
the Galactic center (Oo27a,b).

At any given Galactic longitude l, the highest velocity should be observed at
point P , where the line of sight is tangential. By noting the maximum velocity at
any given elongation l, we can construct a model of the Galaxy giving both its mass
distribution and distance of the Sun from the Galactic center. The distance to the
center obtained in this way is rs ∼ 8.5 kpc (Fr96). This may be compared to the
more precise distance of 7.94 ± 0.42 kpc obtained from the motion of stars about
the radio source Sgr A* (See Figure 3.5(c)).

Differential rotation tends to shear aggregates of gas and dust as they orbit the
Galactic center. For some time this effect was considered responsible for the ap-
pearance of spiral arms in some galaxies. However, C. C. Lin (Li67) then suggested
that the spiral structure represents a local increase in density and that this enhanced

Fig. 3.8. Notation used for discussion of Galactic differential rotation.
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density travels around a galaxy as a spiral density wave, at a pattern velocity differ-
ent from that of the speed of the stars involved. For the Galaxy this speed is about
13.5 km s−1 times the distance from the center measured in kiloparsecs, kpc. At our
distance from the center, this would be 110 km s−1, whereas the Galactic rotation
(velocity of the stars) is ∼220 km s−1.

3:13 Scattering in an Inverse Square Law Field

When a meteorite approaches the Earth, its orbit can become appreciably changed.
Similarly, a comet passing close to Jupiter can be given enough energy to escape
the Solar System. In both cases the smaller object is scattered or deflected by the
larger body. For a particle initially approaching from direction θ∞ − θ0 (Fig. 3.9),
the orbital trajectory is given by equations (3–34) and (3–40).

1
r

=
MG

h2

[
1 +
(

1 +
2Eh2

M2G2

)1/2

cos(θ − θ0)

]
. (3-57)

At large distances from the scatterer, the asymptotic motion is along directions (see
equations (3–33), (3–42))

cos(θ∞ − θ0) = −
(

1 +
2Eh2

M2G2

)−1/2

= −1
e
, r → ∞ . (3-58)

Fig. 3.9. Scattering in an attractive inverse square law field.
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This has solutions for two values of |θ∞ − θ0 |, one corresponding to the incoming,
the other to the scattered asymptotic direction. The angle through which the object
is deflected is Θ = 2(θ∞ − θ0) − π. We see that

sin
Θ

2
= − cos(θ∞ − θ0) =

1
e
. (3-59)

Let s be the impact parameter (Figs. 3.9, 3.11) and v0 the approach velocity of
the scattered particle at a large distance, r → ∞. Then, from (3–29), h = sv0 is
twice the area swept out per unit time. Since

E =
v2
0

2
, h2 = 2Es2 , (3-60)

and

sin
Θ

2
=

[
1 +
(

2sE
MG

)2
]−

, (3-61)

this leads to

cot
Θ

2
=

2Es
MG

. (3-62)

If any object having an impact parameter between s and s+ ds is scattered into an
angle between Θ and Θ + dΘ, we say that the differential cross-section σ(Θ) for
scattering is given by

2πs ds ≡ −σ(Θ) dΩ = −2πσ(Θ) sinΘdΘ . (3-63)

In this equation the expression on the left represents the area of a ring through
which all particles approaching from a given direction have to flow if they are to be
scattered into the solid angle dΩ enclosed between two cones having half-angles Θ
andΘ+dΘ, respectively. The expression on the right gives the solid angle between
these two cones multiplied by the differential cross-section. The differential cross-
section is therefore just a parameter that assures conservation of scattered particles.
The negative sign appears because an increase in the impact parameter s results in
a decreasing scattering angle Θ. The differential cross-section is proportional to the
probability for scattering into an angle between Θ and Θ + dΘ, because 2πs ds
(see equation (3–63)) is the probability for encounter at impact parameter values
between s and s+ ds. We now can rewrite (3–63) in the form

σ(Θ) =
s ds

sinΘ dΘ
(3-64)

which, together with expression (3–62) for s yields

σ(Θ) =
1
4

(
MG

2E
)2 1

sin4(Θ/2)
. (3-65)
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3:14 Stellar Drag

If a high-velocity star moves through a surrounding field of low-velocity stars, it
experiences a drag because it is slightly deflected in each distant encounter. We can
compute this drag in an elementary way through the use of the scattering theory
derived above.

First, we note that the star’s velocity loss along the initial direction of approach
to a scattering mass — which we will take here to be another star — is

∆v = v0(1 − cosΘ) , (3-66)

where v0 is the approach velocity relative to the scattering center at large distances.
This is not an overall velocity loss; just a decrease in the component along the direc-
tion of approach. The change in momentum is µ∆v where, again, µ is the reduced
mass. The force on the high-velocity star, opposite to its initial direction of motion,
therefore, is

F =
∑

i

µi∆vi

∆t
. (3-67)

Here ∆t is the time during which a change ∆vi takes place; the summation is taken
over all stars i encountered during this time interval. This summation can be re-
placed by an integration over a large aggregate of stars with number density n. In
terms of the probability or cross-section for scattering into angle Θ, at any given
encounter, the force becomes

F = 2πµv2
0n

∫ Θmin

Θmax

(1 − cosΘ)σ(Θ) sinΘdΘ . (3-68)

This assumes that all the deflections due to interactions with individual stars are
small, and that the forces along the direction of motion add linearly. Using equation
(3–63) we have

F = 2πµv2
0n

∫ smax

smin

(1 − cosΘ)s ds . (3-69)

Instead of integrating over all stars, we integrate the impact parameter s over all
possible values for a single star and then multiply by the stellar density n. This is
an equivalent procedure because the probability of encountering a star at impact
parameter s is proportional to s and to n. The extra factor v0 that appears in the
expression takes account of the increasing number of encounters, per unit time, at
large velocities. If we set θ0 ≡ 0 and θ∞ ≡ 0, then

− cosΘ = cos 2θ ≡ 1 − tan2 θ

1 + tan2 θ
, (3-70)

but (see Fig. 3.9)

cot
Θ

2
≡ tan θ =

2Es
MG

=
sv2

0

MG
≡ αs, (3-71)



3:14 Stellar Drag 91

so that, in terms of this newly defined parameter α,

F = 2πµv2
0n

∫
s

2
1 + tan2 θ

ds (3-72)

and

F = 4πµv2
0n

∫
s ds

1 + α2s2
, (3-73)

F =
4πµv2

0n

2α2
ln(1 + α2s2)

]smax

smin

. (3-74)

We define a slowing down time, or relaxation time, τ ,

τ ≡ µv0
F

. (3-75)

In this calculation we have assumed that the star is moving through an assembly
of stationary field stars. As long as the random motion of these stars is low com-
pared to v0, equation (3–74) holds quite well. However, when the random stellar
velocities approach v0, the particle can alternately be accelerated or slowed down
by collisions and the above derivation no longer holds. For the Sun, moving with a
velocity of v0 = 20 km s−1 through the ambient star field, α = 3 × 10−14 cm−1,
n ∼ 10−56 cm−3 , and µ ∼ 1033 g. If smax ∼ 1019 cm, roughly the mean separation
of stars, and smin is much smaller, then F ∼ 1018 dyn.4 However, even with this
large force, the time is τ ∼ 1021 s — far greater than the estimated age of the Uni-
verse. This large value of τ is disconcerting because it is symptomatic of a general
problem in stellar dynamics. We find such aggregates as globular clusters to be in
configurations close to those we would expect in thermodynamic equilibrium. This
would mean that the stars must interact quite strongly to transfer energy to each
other; and yet the above mechanism will not accomplish this at anywhere near a
satisfactory rate, and neither will other mechanisms of the same general class. The
interaction of these stars must be dominated by some other process. We will discuss
this again in Section 3:16. However, we might note that interaction of stars with gas
clouds or clouds of stars produces a larger effect than that of individual stellar en-
counters (Sp51a). If the mass of the cloud is M ∼ 106M� and n ∼ 10−65 cm−3, F
increases by 103, and τ decreases by 103. Here smax might be chosen as ∼ 1022 cm.

Collisions need not always act to slow down particles. When stars in the plane
of the Galaxy interact with the much more massive clouds of gas, they can actually
become accelerated to high velocities. In Table A.6 we show that, relative to the Sun,
older stars have higher root mean squared random velocities than younger stars. This

4 When smax is much larger than the mean separation, encounters begin to overlap in time,
and (3–74) becomes an overestimate of F because the effects of individual stars will tend
to cancel through symmetry in their distribution (Ch43)

... smax ∼ n−1/3 . (3-76)
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may be due to collisions with such clouds. As we will see in Chapter 4 an assembly
of bodies tends to arrange itself in such a way that translational energies are equal
(equipartition of energy). The massive clouds, therefore, tend to pass some of their
energy on to the less massive stars and, in so doing, accelerate them to velocities
higher than the cloud velocity vc.

A quite different class of problems in which the above calculations are useful
deals with charged particles. The inverse square law electrostatic forces allow us
to derive equations quite similar to (3–74) and (3–75), and we can compute the
electrostatic drag on fast electrons traveling through the interstellar medium and on
charged interstellar or interplanetary dust grains moving through a partially ionized
medium. In Section 6:18 we will also see that the distant collisions of electrons and
ions are described by equations such as (3–69) and that the opacity or emissivity
of an ionized plasma can be computed making use of these equations. The radio
emission from hot ionized interstellar gas can then be directly related to the plasma
density, or rather to the collision frequency in a line-of-sight column through the
cloud.

3:15 Virial Theorem

The theorem we will prove here again is statistical. It describes the overall dynamic
behavior of a large assembly of bodies, rather than the precise behavior of any indi-
vidual body belonging to the assembly.

Consider a system of masses mj at positions rj . Let the force onmj be Fj . We
now write the identity

d

dt

∑
j

pj · rj =
∑

j

pj · ṙj +
∑

j

ṗj · rj (3-77)

= 2T +
∑

j

Fj · rj , (3-78)

where T is the kinetic energy of the entire system and the time derivative of the
momentum ṗj is equal to the force Fj . For the moment we do not identify the left
side of the equation with any physically interesting quantity. Taking the time average
of both sides, we obtain

1
τ

∫ τ

0

d

dt

∑
j

pj · rj dt = 〈2T +
∑

j

Fj · rj〉 , (3-79)

where the brackets denote a time average. A particularly interesting problem con-
cerns a bound system in which each member of the assembly remains a member
for all time. Then all the rj values must remain finite because no particle escapes
from the system, and all pj values must remain finite because the total energy of the
system is finite.
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Since
∑

j pj · rj remains finite, the integral of its derivative must also remain
finite for all time. Now, τ , the time over which we average, can be made arbitrarily
large. So, the left side of equation (3–79) approaches zero and we can set

〈2T〉 + 〈
∑

j

Fj · rj〉 = 0 . (3-80)

If the force is derivable from a potential, this equation becomes

〈2T〉 − 〈
∑

j

mj∇V(rj) · rj〉 = 0 , (3-81)

where mjV(rj) is the potential energy of mass mj at position rj . The force then is
a function of position only and can be written in terms of the negative gradient ∇ of
the potential:

Fj = −mj∇V(rj) . (3-82)

If the potential is proportional to rn, the gradient lies along the radial direction and

∑
j

mj∇V(rj) · rj =
∑

j

mj
∂V(rj)
∂rj

rj . (3-83)

Calling the total potential energy of the entire assembly V we obtain

〈T〉 =
n

2
〈V〉, V ≡

∑
j

mjV(rj), −2 < n . (3-84)

This relation runs into difficulty for n < −2, because the total energy 〈T〉+ 〈V〉
would then be positive, indicating that the system would no longer be bound. For an
inverse square law force, as in gravitation or electrostatics, the potential goes as the
inverse first power, n = −1, and

〈T〉 = −1
2
〈V〉 . (3-85)

This theorem is of great importance and finds many applications in astrophysics.
It provides an estimate for the mass of clusters of galaxies, obtained by observing
the spread in radial Doppler velocities among different galaxies in the cluster. The
assumption of an isotropic distribution of velocities then yields a mean kinetic en-
ergy, and equation (3–85) gives the mean potential energy. If a typical cluster di-
ameter is known from the cluster’s distance and from the angle it subtends in the
sky, we can obtain a rough estimate of the total cluster mass on the assumption
that

− V

M
∼ MG

R
. (3-86)

HereM is the cluster mass andR is some weighted cluster radius, somewhat smaller
than the observed radius of the cluster. The estimated cluster mass would normally
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be in error (i.e., too high) by a factor less than ∼2 if the actually observed cluster
radius is used in equation (3–86).

An interesting problem arises when we measure the masses of clusters of galax-
ies making use of the virial theorem. The masses of individual galaxies within the
cluster can be determined from their rotations (Problem 3–12, below). From these
we can compute the potential energy of the entire cluster when the cluster dimen-
sions are derived from the apparent diameter and red-shift distance. An independent
estimate of the potential energy, however, is obtained from (3–85) if the random
velocities of the individual galaxies are taken to compute T. To do this, we note the
variations in red shifts from galaxy to galaxy and estimate the actual random veloci-
ties. Strangely the results of using (3–85) always give values of 〈T〉 and, hence, 〈V〉
that are about an order of magnitude higher than the total potential energy computed
on the basis of individual galactic masses. We conclude that either: (i) there is a lot
of undetected dark matter in clusters; or (ii) the clusters are breaking up; or (iii) we
do not understand dynamics on such a large scale. The problem of dark matter, as
it relates to the mass distribution within galaxies and clusters of galaxies, will be
discussed further in Chapters 9 and 13. Dark matter is a generic term used for any
type of matter making itself felt gravitationally, but not detectable, at least to date,
by direct observational means. Problem 4–5 and the discussion following it treat the
cluster problem from an observational viewpoint.

3:16 Stability Against Tidal Disruption

When a swarm of gravitationally bound particles having a total mass m approaches
too close to a massive object M , the swarm tends to be torn apart. The same fate
can confront a solid body held together by gravitational forces when it approaches
a much more massive object.

The reason is simple. If we consider that the center of mass of the swarm is at
a distance r from the mass M , and is falling straight toward it, then its acceleration
towardM is −MG/r2. Let r′ be the swarm radius. A particle P0 (Fig. 3.10), at the
surface of the swarm nearest to M , would be accelerated at a rate −MG/(r− r′)2

toward M , were it not for a gravitational attraction from the center of the swarm
that tends to accelerate it away from M at a rate mG/r′2. In order for the particle
to be pulled steadily away from the swarm, we must have the condition

MG

(
− 1
r2

+
1

(r − r′)2

)
>
mG

r′2
. (3-87)

Expanding the expression on the left for r′ << r and keeping only terms down to
first order in r′, we obtain

2M
r3

>
m

r′3
. (3-88)

Similarly for a swarm in a perfectly circular orbit about M , disruption occurs
when
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Fig. 3.10. A swarm of gravitationally bound particles — stars, atoms, molecules — can be
tidally disrupted through a close encounter with a massive object M .

3M
r3

>
m

r′3
. (3-89)

PROBLEM 3–3. Derive the result (3–89). In doing this, it is helpful to think of the
swarm as moving without rotation about its center, and to consider its center of mass
as having a centrifugal repulsion per unit mass

Fc = rθ̇2 (3-90)

away from M . This is different from the “repulsion” (r − r′)θ̇2 at P0. As noted
earlier, Newton’s laws of motion hold only in inertial frames of reference. In rotating
systems, where they do not apply, the concept of centrifugal forces is sometimes
useful but needs handling with caution.

The precise ratios of the masses M and m will therefore vary with different
orbits and the rotation of m will also play a role in determining its stability. What
is important to note, however, is that the density of the swarm is a more important
consideration than its actual mass or size taken individually.

There is a second effect that also plays an important role. Again, consider a
direct infall. Here pointsP1 and P2 (Fig. 3.10) would be accelerated radially toward
M and would tend to converge. The effective acceleration of P1 and P2 relative to
each other would be roughly

2
MG

r2
r′

r
=

2MGr′

r3
(3-91)

due to this effect taken by itself. This is important whenever it is larger than the
accelerationmG/r′2 due to the mass of the swarm itself, that is, when (3–88) holds.
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A lateral compression accompanies the tidal disruption and tends to concentrate the
swarm, while the tidal forces attempt to tear it apart. What actually happens under
these combined effects will be better understood in terms of the Liouville theorem,
which we will discuss in Section 4:14.

Tidal disruption seems to play a leading role in many phenomena. Comets that
approach too close to the Sun or even too close to the massive planet Jupiter have
been observed to break up into fragments, and the general nature of the tidal theory
seems to be borne out. Compact stars, like white dwarfs or neutron stars, are able to
accrete material tidally stripped off the outer layers of more massive, but also more
distended giant companions. As we saw in Section 1:11, the Magellanic Stream
attests to tidal action even on the scale of galaxies. Massive galaxies are able to
capture material gravitationally stripped from smaller companions.

The orbits of globular clusters cross the Galactic plane and central regions
where, calculations indicate, the clusters are tidally destroyed, typically with a half-
life of one Hubble time (Gn97). The Galaxy might at earlier epochs have contained
substantially more globular clusters than today. We can now see why the interac-
tion of stars within a globular cluster may only play a limited role in determin-
ing the ultimate velocity distribution of stars in the cluster. The treatment of Sec-
tion 3:14, and the very long star encounter relaxation time τ predicted by equation
(3–75) may not give a true picture of the actual evolution of clusters into the well-
defined, compact, spherical aggregates we observe. Interaction with the Galactic
nucleus may have an appreciable, perhaps dominant, influence on the distribution
of stars in a globular cluster, by tidally stripping away the more loosely bound,
higher-velocity stars from the cluster, leaving the residual cluster containing just its
more tightly bound stars. We will touch on the globular cluster problem again in
Section 4:23.

3:17 Lagrangian Equations

A physical system can be most readily understood in terms of a coordinate system
that most closely mirrors its symmetries and peculiarities. A Cartesian coordinate
system is not particularly convenient for treating a system that has spherical sym-
metry, and for more complex systems a choice of correspondingly more complex
coordinates can greatly facilitate calculations. A scheme for the use of arbitrary
coordinate systems involves working with generalized coordinates. These are vari-
ables that do not need to solely involve position and time. The evolution of a system
may be more readily described in terms of positions, momenta, and time, or some
other choice of variables.

We can relate some standard set of coordinates rj = r1, r2, . . . , rM through a
set of transformation equations

r1 = r1(q1, q2, . . . , qN , t)

r2 = r2(q1, q2, . . . , qN , t)
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. . . (3-92)

rM = rM (q1, q2. . . . , qN , t) ,

where M and N generally are unequal. N maximally equals 3M ; this maximum
is attained if the M particles are totally free to move about and interact. We then
require 3M independent variables to fully define the positions of all M particles. In
contrast, if there are � constraints on the particles, the total number of independent
variables qi diminishes to 3M − �: The Sun is orbited by its set of planets with
their respective moons. The planets are constrained to orbit the Sun, and the moons
are constrained to circle their planets. These constraints lower the total number of
independent variables required to describe the motions of all these bodies within the
Solar System.

The time rate of the variable rj denoted by vj ≡ drj/dt ≡ ṙj is given by the
rules of partial differentiation

vj =
∑

i

∂rj

∂qi
q̇i +

∂rj

∂t
. (3-93)

We now set up the mathematical identity

∑
j

mj r̈j · ∂rj

∂qi
=
∑

j

{
d

dt

(
mj ṙj · ∂rj

∂qi

)
−mj ṙj · d

dt

(
∂rj

∂qi

)}
. (3-94)

We can change the order of differentiation with respect to t and qi in the last term,
and from equation (3–93) obtain

∂vj

∂qj
=

d

dt

(
∂rj

∂qi

)
=
∑

k

∂2rj

∂qi∂qk
q̇k +

∂2rj

∂qi∂t
. (3-95)

Equation (3–93) also implies that

∂vj

∂q̇i
=
∂rj

∂qi
. (3-96)

With this equation (3–94) can be written as

∑
j

mj r̈j · ∂rj

∂qi
=
∑

j

{
d

dt

(
mjvj · ∂vj

∂q̇i

)
−mjvj · ∂vj

∂qi

}
(3-97)

=

⎧⎨
⎩ d

dt

⎛
⎝ ∂

∂q̇i

∑
j

1
2
mjv

2
j

⎞
⎠− ∂

∂qi

⎛
⎝∑

j

1
2
mjv

2
j

⎞
⎠
⎫⎬
⎭ .

Now, equation (3–4) summed over all the components of a force can be rewritten
as ∑

j

(Fj −mj r̈j) = 0 =
∑

j

(Fj −mj ṗj) . (3-98)
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Defining a generalized force whose components are

Qi ≡
∑

j

Fj · ∂rj

∂qi
, (3-99)

and identifying
∑

j(1/2)mjv
2
j in (3–97) with the system kinetic energy T, we can

finally write ∑
i

[
d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
−Qi

]
. (3-100)

For N independent variables qi we then have N independent equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
= Qi . (3-101)

If the force F can be derived from a scalar potential V(qi) as F = mi∇iV(qi),
then Qi = −mi∂V(qi)/∂qi. Such systems are called conservative. From (3–101)
we then have

d

dt

(
∂T

∂q̇i

)
− ∂(T − V)

∂qi
= 0 , (3-102)

and because V ≡∑imiV(qi) is a function of position alone, independent of time,

d

dt

(
∂(T − V)
∂q̇i

)
− ∂(T − V)

∂qi
= 0, i = 1, 2, . . . , N . (3-103)

Equations (3–103) are called the Lagrange equations. We now define a new function
called the Lagrangian, L,

L ≡ T − V , (3-104)

in terms of which we can write the Lagrange equations as

d

dt

(
∂L
∂q̇i

)
− ∂L
∂qi

= 0, i = 1, 2, ...,N . (3-105)

Although much of what we have done in this section revolved around purely
mathematical transformations, we should pay particular attention to the physical
assumptions we made. We assumed that there exists a set of independent general-
ized coordinates qi to which our set of standard coordinates is related by equations
(3–92), and that the system of particles interacts through forces derivable from a
scalar potential function V dependent on position alone.

Let us now look at a system of pointlike masses that interact through forces
derived from potentials solely dependent on position. For each individual mass mi

instantaneously located at some point (xi, yi, zi) we can then write

∂L
∂ẋi

=
∂T

∂ẋi
=

∂

∂ẋi

∑
i

mi

2
(ẋ2

i + ẏ2
i + ż2

i ) = miẋi . (3-106)
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Because V depends on position only, it does not appear in this expression. But we
see that ∂L/∂xi is just the momentum of particle i along the x-direction.

This leads to the concept of a generalized momentum corresponding to general-
ized coordinates qi and defined as

pk ≡ ∂L
∂q̇k

. (3-107)

This is generally referred to as the canonical momentum which, we should note,
does not generally have the dimensions of a linear momentum.

PROBLEM 3–4. Set up the Lagrangian for the same system of particles as in
equation (3–106) but expressed in spherical polar coordinates, where the compo-
nents of the velocity squared are ṙ2i , r

2
i θ̇

2
i , r

2
i sin2 θiφ̇

2
i , and show that the canoni-

cal momenta associated with the coordinates (ri, θi, and φi) are, respectively miṙi,
mir

2
i θ̇i , and mir

2
i sin2 θiφ̇i. Only the first of these is a linear momentum. The last

two are angular momenta. This shows that even for a given system of particles the
choice of coordinates can decide whether a generalized momentum corresponds to
a linear momentum.

If the Lagrangian of a system is not a function of some coordinate qk then equa-
tion (3–105) reduces to

d

dt

(
∂L
∂q̇k

)
=
dpk

dt
= 0 , (3-108)

meaning that pk is constant. The coordinate qk is then said to be cyclic, and the
generalized momentum pk conjugate to qk is said to be conserved.

PROBLEM 3–5. Consider a planet of mass m orbiting a star of mass M that
exerts a potential V(r) = −MG/r at the planet’s position r. Show that φ is a cyclic
coordinate.

The motion of a mass m in the vicinity of another mass M is given by the
Lagrangian

L = T − V =
m

2
(ṙ2 + r2θ̇2 + r2 sin2 θφ̇2) +

MmG

r
. (3-109)

From this we obtain the angular momentum component

pθ =
∂L
∂θ̇

= mr2θ̇ . (3-110)

Differentiating with respect to time and using (3–105), we have

dpθ

dt
=

d

dt

∂L
∂θ̇

=
d

dt
mr2θ̇ =

∂L
∂θ

= m(r2 sin θ cos θ)φ̇2 . (3-111)
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The spherical symmetry of the space surrounding mass M allows us to assign any
value to the coordinate θ at some arbitrary point. Let us pick a point along the
orbiting particle’s trajectory where θ̇ = 0 and assign the value π/2 to θ there.

PROBLEM 3–6. Convince yourself, by carrying out the actual differentiation,
that θ̈ must then also equal zero at this point, which means that θ must remain
constant, θ = π/2. The motion proceeds in an equatorial plane.

In deriving Kepler’s Laws in Section 3:5 we had assumed motion in a plane.
The spherical symmetry of the problem made this an obvious choice, because there
were no forces to impel a planet to abandon the initial plane of its motion about the
Sun. But now we have explicitly shown that the motion of a solitary planet orbiting
a solitary star must be confined to a plane. The symmetry of the motion corresponds
to the conservation of the angular momentum component pθ. Indeed, one can show
that all conservation laws correspond to symmetry properties, a relationship first
demonstrated by Emmy Noether and known as Noether’s theorem.

In the Solar System, with its many orbiting bodies, the most massive planet,
Jupiter, tends to force all the other planets to move in orbits close to its own plane.
But the mutual interactions of the planets lead to deviations from motions strictly
confined to planes. The spherical symmetry of the system is broken once there are
more than two gravitationally attracting bodies.

We will encounter the Lagrangian equations again in Chapter 5 where we will
consider particles orbiting black holes. There, the gravitational fields are strong, and
it is convenient to work with coordinates other than those of a stationary observer
viewing the orbital motions from afar.

Additional Problems

3–7 The orbital period for the Earth moving about the Sun is given by equa-
tion (3–47). Averaged over the Earth’s eccentric orbit, the distance of the Sun,
obtained by the radar method described in Section 2:1, has a mean value of
1.5×1013 cm. Assuming the Earth’s mass, M⊕ M�, show that the Sun’s mass is
M� = 2.0× 1033 g.

3–8 A radar signal reflected from the Moon returns 2.56 s after transmission.
The speed of light is 3.00 × 1010 cm s−1. Assume the period of the Moon to be
roughly 27.3 days. Find the mass of the Earth assuming the Moon’s mass to be
small compared to that of the Earth.

Note: In this way we can determine the mass of any planet with a moon. When
a planet has no moon, its mass is determined by the perturbations it produces on the
orbits of nearby planets. Such a calculation is quite time-consuming, but introduces
no essentially new physical concepts. The calculations proceed within the frame-
work of Newtonian dynamics.
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3–9 Because the Moon and the Earth revolve about a common center of mass, the
apparent motion of Mars has a periodicity of one month superposed on its normal
orbit. The distance of the Moon is D ∼ 3.8 × 105 km. The distance of Mars at
closest approach is L ∼ 5.6 × 107 km. The apparent displacement of Mars over a
period of half a month then is ∼34 sec of arc. What is the mass of the Moon?

3–10 A meteor approaches the Earth with a speed v0 when it is at a very large
distance from the Earth. Show that the meteor will strike the Earth, at least at grazing
incidence, if its impact parameter s (Fig. 3.11) is given by

Fig. 3.11. Impact of a meteorite or a cloud of meteors on the Earth’s atmosphere.

s ≤ [R2 + 2MGRv−2
0 ]1/2 .

3–11 If a cloud of meteors approaches the Earth at relative speed v0, show that
the rate of mass capture is π(R2v0 + 2MGR/v0)ρ, where ρ is the mass density
of the cloud. Both here and in Problem 3–10 we neglect the Sun’s influence on the
meteors.

3–12 A disk-shaped rotating galaxy is seen edge on. By Doppler-shift spectro-
scopic measurements we can determine the speed V with which the stars near the
edge of the galaxy rotate about its center. Show that the mass of the galaxy in terms
of the observed velocity is ∼V 2R/G. State the assumptions made. R is the radius
of the galaxy.

3–13 In the vicinity of young star clusters we occasionally see runaway stars,
O or B stars that evidently were part of the cluster until recently but are receding
rapidly. Blaauw (B�61) suggested that the runaways initially may have been part of
binaries in which the companion exploded as a supernova, leaving only part of its
mass behind. Suppose that the initial motion was circular, with initial orbital velocity
v for the surviving star, whose mass is m. If the initial mass of the companion
was M , and its final mass after the explosion is only M/10, what will be the final
velocity V of the runaway star at large distance from the explosion? Refer v and V
to the system’s center of mass.

3–14 A gravitationally bound body spins rapidly (but not at relativistic veloci-
ties). At what rotational velocity will it break up if its mass is m and its radius is r?
Assume the body remains spherical until breakup — even though this assumption
normally will not hold.
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3–15 Observations on the compact radio source 3C 279, which is occulted by
the Sun once a year, show that radio waves are bent as they pass very close to the
Sun (Hi71). Show that this bending is a consequence of the equivalence principle.
We will discuss the effect more thoroughly in Chapter 5.

Answers to Selected Problems

3–1.

ṙ = − 1
y2
θ̇
dy

dθ
= −hdy

dθ
,

r̈ = −hθ̇d
2y

dθ2
=

−h2

r2
d2y

dθ2
.

Substituting in (3–30), we see that

d2y

dθ2
+ y =

MG

h2
.

Substitution of y = B cos(θ − θ0) +MG/h2 satisfies the equation.

3–2. mr̈ = GmM⊕/(R⊕ + H)2 at a height H  R⊕. If we take
M⊕ = ρ⊕(4/3)πR3

⊕, where the symbols represent the Earth’s mass, density, and
radius, we can estimateG from the measured acceleration,G ∼ g[ρ⊕(4π/3)R⊕]−1.

3–3. At the center of mass of the swarm, the centrifugal and gravitational forces are
equal: (rθ̇)2 = GM/r. A particle p at the swarm’s near surface, will experience a
centrifugal acceleration away from M , smaller than that of the swarm’s center by
MGr′/r3. It will also experience a stronger gravitational acceleration toward M ,
by

MG

r2

[
−1 +

r2

(r − r′)2

]
.

For disruption to occur these accelerations must be stronger than mG/r′2. Expand-
ing this inequality for r << r′ gives (3–89)

3M
r3

>
m

r′3
.

This solution assumes no rotation of the swarm.

3–4. This follows from the Lagrangian

L =
m

2
(ṙ2i + r2i θ̇

2
i + r2i sin2 θiφ̇

2
i ) − V(ri, θi, φi) . (3-112)

3–5. Expression (3–112) inserted into (3–105) demonstrates that pφ is constant,
meaning that φ is cyclic.

3–8. As in the suggested approach to Problem (3–7), make use of equation (3–47)
to arrive at an answer.
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3–9. Let m be the lunar mass and M⊕ the terrestrial mass. The distance R of the
Earth from the center of mass is then given by

RM⊕ = (D −R)m.

The apparent displacement of Mars is 2R/L, where L is the distance to Mars. Hence
2R = 1.7×10−4L. R = 4.8×103 km and withM⊕ = 6.0×1027 g we can evaluate
m as ∼7.4 × 1025 g.

3–10. Call V the velocity the meteor has at grazing incidence, that is, when it hits
the Earth tangentially. Then this velocity is perpendicular to the radius vector R. We
can therefore write conservation of angular momentum as

sv0 = RV .

Conservation of energy per unit meteor mass gives

V 2

2
=
MG

R
+
v2
0

2
.

Eliminating V from these equations we obtain the expression

s =
(
R2 +

2MGR

v2
0

)1/2

. (3-113)

All meteors with impact parameter less than s can also hit the Earth. This leads to
the desired expression.

3–11. The number of meteors hitting Earth per second is given by the density of
meteors in space, times the volume of the cylinder of radius s swept up in unit time:

πs2 · v0 · ρ .
The impact parameter s is given in Problem 3–10.

3–12. Assume circular motion. The mass of the galaxy M acting on a star at its
periphery is then given by the relation between kinetic and potential energy per unit
mass of the star, as in (3-44),

V 2 =
MG

R
.

3–13. This problem is somewhat complex. Before the explosion the surviving star’s
kinetic energy mv2

0/2 equals half its potential energy mMG/2r, where r is the
separation between the stars. If the explosion is so rapid that this separation does
not appreciably change before the ejecta of the exploding star expand beyond r, the
binding energy on m is reduced to mMG/10r, so that its kinetic energy mV 2/2
now equals 9mMG/10r+mv2

0/2, which can be solved for V . In addition, however,
the exploding star initially had momentum relative to the binary system’s center
of mass. If the explosion is spherically symmetric the ejecta escape with 90% of
this momentum, so that the surviving two stars suffer a recoil. In addition, some
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supernovae appear to eject mass asymmetrically, leading to a further recoil of the
remnant M/10, some of which will be transferred gravitationally tom.

3–14. The centrifugal force per unit mass exceeds the gravitational attraction
rω2 > mG/r2; ω >

√
mG/r3 .

3–15. Imagine an observer falling toward the Sun in a spaceship. Light rays passing
by the Sun enter the window of his cabin. The equivalence principle states that he
should see the light moving in a straight line. But because he is accelerating toward
the Sun, this means that the rays must also be following a path curving toward the
Sun.



4 Random Processes

4:1 Random Events

If a bottle of ether is opened at one end of a room, we can soon smell the vapors at
the other end. But the ether molecules have not traversed the room in a straight line,
nor in a single bound. They have undergone myriad collisions with air molecules,
bouncing first one way, then another in a random walk that takes some molecules
back into the bottle from which they came, others through a crack in the door, and
yet others into the vicinity of an observer’s nose where they can be inhaled to give
the sensation of smell.

In general, molecules diffuse through their surroundings by means of two pro-
cesses: (i) individual collision with other atoms and molecules; and (ii) turbulent and
convective bulk motions that involve the transport of entire pockets of gas. These,
too, are the mechanisms that act to mix the constituents of stellar and planetary at-
mospheres. Both processes give rise to random motions that can best be statistically
described.

In an entirely different context, think of a broadband amplifier whose input ter-
minals are not connected to any signal source. On displaying the output on an oscil-
loscope, we would find that the trace contains nothing but spikes, some large, others
smaller, looking much like blades of grass on a dense lawn. An exact description of
this pattern would be laborious; but a statistical summary in terms of mean height
and mean spacing of spikes can be provided with ease and may in many situations
present all the information actually needed.

The spikes are the noise inherent in any electrical measurement. If we are to
detect, say, a radio-astronomical signal fed into the amplifier, we must be able to
distinguish the signal from the noise. That can only be done if the statistics of the
noise are properly understood.

Again, consider a third situation, a star embedded in a dense cloud of gas. Light
emitted at the surface of the star has to penetrate through the cloud if it is to reach
clear surroundings and travel on through space. An individual photon may be ab-
sorbed, re-emitted, absorbed again, and re-emitted many times in succession. The
direction in which the photon is emitted may bear no relation at all to the direction
in which it was traveling just before absorption. The photon may then travel about
the cloud in short, randomly directed steps, until it eventually reaches the edge of
the cloud and escapes. This random walk can be described statistically. We can es-
timate the total distance covered by the photon before final escape and, at any given
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time in its travel, we can predict the approximate distance of the photon from the
star.

These three physically distinct situations can all be treated from a single mathe-
matical point of view. In its simplest form each problem can be reduced to a random
walk. We picture a man taking a sequence of steps. He may choose to take a step
forward, or a step backward; but, for simplicity, we will assume that his step size
remains constant. If the direction of each step is randomly determined, say by the
toss of a coin, the man will execute a random walk. The toss of the coin might
tell him that his first step should be backward, the next forward, the next forward
again, backward, backward, forward, and so on. After 10 steps, how far will the
man have moved from his initial position? How far will he be after 312 steps or
after 10,000,000? We cannot give an exact answer, but we can readily evaluate the
probability of his ending up at any given distance from the starting point.

4:2 Random Walk

Consider a starting position at some zero point. We toss a coin that tells the man
to move forward or backward. He ends up at either the +1 or the −1 position (Fig.
4.1). If he ends up in the +1 position, the next toss of the coin will take him to the

Fig. 4.1. Probability P (m, n) of terminating at position m after n steps.

+2 or the 0 position, depending on whether the toss tells him to move forward or
back. Similarly from the −1 position he could move to 0 or −2.

There exist two possible ways of arriving back at the zero position, and only
one possible way of getting to the −2 or to the +2 position. Because all of these
sequences are equally probable, there is a probability of 1

4
that the man ends up in

the +2 position, a probability of 1
4 that he ends up at −2, and a probability of 1

2 that
he ends up in the zero position after two steps. The zero position is more probable
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because there are two distinct ways of reaching this position, whereas there is only
one way to get to the +2 or −2 positions when only two steps are allowed.

Let us denote by p(m, n) the number of ways of ending up at a distance of m
steps from the starting point, if the man executes a total of n steps. We will call m
the deviation from the starting position. We will call p(m, n) the relative probability
of terminating at distance m after n steps. The absolute probability P (m, n) of
terminating at positionm, after n steps is displayed in Fig. 4.1 and is

P (m, n) =
p(m, n)∑
k p(k, n)

=
number of paths leading to positionm

sum of all distinct paths leading to any position, k
. (4-1)

The numerators p(m, n) of the fractions in Fig. 4.1 have a binomial distribution;
they are the same numbers that appear as coefficients in the expansion[

1
x

+ x

]n
= xn + nxn−2 +

n(n− 1)
2!

xn−4 +
n!xn−2r

(n− r)!r!
+ · · ·+ 1

xn
. (4-2)

Knowing this, we can easily evaluate the sum of coefficients in the series
∑

k p(k, n).
It is the sum of the coefficients in the binomial expansion and can be obtained by
setting x = 1 on the right side of equation (4–2).

Substituting x = 1 on the left side of (4–2) shows that the sum of terms must
have the value 2n:

n∑
k=−n

p(k, n) = 2n (4-3)

and

P (m, n) =
p(m, n)

2n
. (4-4)

We note also that if the exponent of a given term in equation (4–2) represents the
deviation m, in Fig. 4.1, then the coefficient of that term represents the relative
probability p(m, n). In that sense we can rewrite (4–2) as

(
1
x

+ x

)n

=
n∑

k=−n

p(k, n)xk . (4-5)

Every second term of this series has a coefficient zero. If n is odd, there is no possi-
bility ofm being even, and vice versa. We now wish to determine the mean deviation
from the zero position after a random walk of n steps. By this we mean the sum of
distances reached in any of the 2n possible paths that we could take, all divided by
2n. Since there are p(k, n) ways of reaching the distance k, the numerator of this
expression is

∑
k kp(k, n) and we see that the mean deviation 〈k〉 is
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〈k〉 ≡ 2−n
n∑

k=−n

kp(k, n)

=
sum of all possible terminal distances after n steps

number of all possible paths using n steps
. (4-6)

We notice from Fig. 4.1 and from the binomial distribution (4–2) that the relative
probability p(k, n) of having a deviation k equals the relative probability of having
deviation −k : p(−k, n) = p(k, n). Because the summation in (4–6) is carried out
over values from −n to n, there will be an exact cancellation of pairs involving
k = m and −m, and the only uncancelled term is the one having k = 0. This
shows that the value of 〈k〉 must be zero also. The mean deviation from the starting
position is zero, no matter how many steps we take.

This does not mean that the absolute value of the deviation is zero. Far from it.
But there are equally many ways of ending up at a positive as at a negative distance
and the average position is right at the starting point itself.

This much is evident from symmetry. However, we usually need to know some-
thing about the absolute distance reached after n steps. For example, we want to
know the actual distance from a star that a photon has traveled after n absorptions
and re-emissions in a surrounding cloud. A useful measure of such distances is the
root mean square deviation, known also as the standard deviation σ

σ ≡ 〈k2〉1/2 =

[∑n
k=−n k

2p(k, n)∑n
k=−n p(k, n)

]1/2

=
[

sum of (distances)2

sum of all possible paths

]1/2

.

(4-7)
This is obtained by first taking the mean of the deviation squared 〈k2〉, and then
taking the root of this mean value to obtain a deviation in terms of a number of steps
of unit length. If we did not take the square root, the quantity obtained would have
to be measured in units of (step)2; this is an area, rather than a length or distance.
To evaluate the sum

n∑
k=−n

k2p(k, n) (4-8)

we can employ a simple technique. We substitute the quantity x = ey in equation
(4–5) and differentiate twice in succession with respect to y. In the limit of small
y-values, we then obtain

n∑
k=−n

k2p(k, n) =
d2

dy2

n∑
k=−n

p(k, n)eky = lim
y→0

d2

dy2
(e−y + ey)n

= [n(n− 1)(e−y + ey)n−2(ey − e−y)2 + n(e−y + ey)n]y=0

= n2n . (4-9)

In summary, we can write
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n∑
k=−n

k2p(k, n) = n2n . (4-10)

Equations (4–3) and (4–10) can now be substituted into (4–7) to obtain a standard
deviation

σ = n1/2 . (4-11)

After n steps of unit length the absolute value of the distance from the starting
position is approximately n1/2 units.

The following four problems widen the applications of the random walk con-
cept.

PROBLEM 4–1. For a one-dimensional random walk involving steps of unequal
lengths, prove that the mean position after a given number of steps is the starting
position.

Note that for a finite number of different step lengths, this walk can be reduced
to a succession of random walks, each walk having only one step length.

PROBLEM 4–2. Prove that the root mean square deviation for a walk involving the
sum of different numbers ni of steps of length λi is

σ = N1/2λrms , (4-12)

where N =
∑

i ni and λrms is the root mean square value of the step length

λrms =
[∑

i niλ
2
i

N

]1/2

. (4-13)

Such random deviations are said to add in quadrature.

PROBLEM 4–3. Show that the root mean square deviation in a three-dimensional
walk with step length L0 is s1/2L0 after s steps. To show this, take the three Carte-
sian components of the ith step (see Fig. 4.2) as

L0 cos θi, L0 sin θi cosφi, L0 sin θi sinφi . (4-14)

The mean square deviations along the three coordinates are, respectively,

σ2
z =

s∑
i=1

L2
0 cos2 θi , σ2

x =
s∑

i=1

L2
0 sin2 θi cos2 φi ,

(4-15)

σ2
y =

s∑
i=1

L2
0 sin2 θi sin2 φi .
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Fig. 4.2. Polar coordinate system used in describing the three-dimensional random walk.

These components can be added by the Pythagorean theorem to give the overall
mean square deviation, also called the variance or second moment, as

σ2 = sL2
0 . (4-16)

A similar situation arises if we have a volume V subdivided into equal compart-
ments v. A man begins to randomly put either one marble or else no marble at all
into successive compartments. When he has done this for all the compartments, he
starts all over again. He follows this routine 2n times. At the end of this exercise,
the mean number of marbles in each compartment is n and the standard deviation
for the marbles in any one compartment, by (4–11), is σ = n1/2. Suppose, next, that
we combine the marbles from m successive compartments v into larger bins of vol-
ume mv. Now, the mean number of marbles per bin is N = mn, and the standard
deviation is N1/2. However, for an absolute comparison, it is often useful to divide
the standard deviation by the mean. This ratio is called the coefficient of variation,
V, defined as V ≡ ∆/N = (N)−1/2 ∝ (mv)−1/2 . Thus we see that the larger the
compartment we select within the volume V, the smaller is the coefficient of vari-
ation of particles that we will find in the compartment. A set of larger aggregates
appears to be more homogeneous, in the fractional differences found among them,
than individual smaller aggregates. We will encounter this situation in Chapter 13,
where we will be concerned with the distribution of structures condensing out of a
primordial medium that started out very hot when the Universe was young, and later
fragmented into galaxies and clusters of galaxies as it cooled.

PROBLEM 4–4. A hot star is surrounded by a cloud of hydrogen that is partly
ionized, partly neutral. Radiation emitted by the star at the wavelength of the Lyman-
α spectral line can be absorbed and re-emitted by the neutral atoms. Let the mean
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path traveled by a photon between emission and absorption have length L. Let the
radius of the cloud be R. About how many absorption and re-emission processes
are needed before the photon finally escapes from the cloud? We will return to this
problem in Section 9:12, where we consider a random walk when the atoms move
with high random velocities.

The random walk concept provides an essential basis for all radiative transfer
computations. We will tackle such problems later in discussing the means by which
energy can be transported from the center of a star, where it is initially released, to
the surface layers and then through the star’s atmosphere out into space. In the gen-
eral theory of radiative transfer the opacity of the material is inversely proportional
to the step length we assumed for the random walk above. The added complication
that arises in most practical problems is that the mean energy per photon progres-
sively drops as energy is transported outward from the center of a star. Energy ini-
tially released in the form of hard gamma rays eventually leaves the stellar surface
as visible and infrared radiation. One gamma photon released in a nuclear reaction
at the center of the star provides enough energy for about a million photons emitted
at the stellar surface. The walk from the center of a star, therefore, involves not a
single photon alone but also all its many descendants.

4:3 Distribution Functions, Probabilities, and Mean Values

In Section 4:2 we calculated the mean deviation and root mean square deviation
after a number of steps in a random walk. Often we are interested in computing
mean values for functions of the deviation and for distributions other than binomial
distributions. There is a general procedure for obtaining such values.

Suppose a variable x can take on a set of discrete values xi. Let the absolute
probability of finding the value xi in any given measurement be P (xi). If we pick a
function F (x) that depends only on the variable x, we can then compute the mean
value that we would obtain for F (x) if we were to make a large number of mea-
surements. This mean is obtained by multiplying F (xi) by the probability P (xi)
that the value xi will be encountered in any given measurement. Summing over all
i values then yields the mean value 〈F (x)〉,

〈F (x)〉 =
∑

i

P (xi)F (xi) . (4-17)

Sometimes the absolute probability is not immediately available but the relative
probability p(xi) is known. We then have the choice of computing P (xi) as in
equation (4–1), or else we can proceed directly to write

〈F (x)〉 =
∑

i p(xi)F (xi)∑
i p(xi)

, (4-18)
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where the denominator gives the normalization that is always needed when relative
probabilities are used.

If x can take on a continuum of values within a certain range, the integral ex-
pressions corresponding to equations (4–17) and (4–18) are

〈F (x)〉 =
∫
P (x)F (x) dx =

∫
p(x)F (x) dx∫
p(x) dx

, (4-19)

where the integrals are taken over the range of the variable for which a mean value
〈F (x)〉 is of interest. Sometimes this range is −∞ < x <∞.

We note that the expressions (4–6) and (4–7) already have the general form
required by equations (4–17) to (4–19). In equation (4–6) the function F (x) is just
x itself, whereas in (4–7) it is x2. We have merely substituted a new symbol x, for
the values previously denoted by the position symbol k.

4:4 Projected Length of Randomly Oriented Rods

Let a system be viewed along a direction defining the axis of polar coordinates (θ, φ)
(Fig. 4.3). A rod of lengthL has some arbitrary orientation θ with respect to the axis,
and its projected length transverse to the line of sight is L sin θ, independent of φ,
0 ≤ φ < 2π.

L

L si
nΘ

dΘ
Ø

L sinΘ dØ

Θ

Fig. 4.3. Polar coordinate system for discussion of projected lengths.



4:4 Projected Length of Randomly Oriented Rods 113

We wish to determine the mean value of the observed length, the average being
taken over all possible orientations of the rod. The probability of finding the rod with
an orientation that lies within an increment dθ at angle θ is proportional to the area
that the strip dθ defines on the surface of a sphere of unit radius. The normalized
probabilityP (θ) is

P (θ) dθ =
1
2π

∫
p(θ, φ) dθ dφ = sin θ dθ . (4-20)

We see that this is a properly normalized probability because

∫ π/2

0

P (θ) dθ = − cos θ
∣∣∣∣
π/2

0

= 1 ; (4-21)

that is, the probability of finding the rod with some orientation between 0 and π/2 is
unity.1 The probability of finding the rod with projected length L sin θ is therefore
sin θ, and the mean value of the projected length averaged over all position angles
is ∫ π/2

0
P (θ)L sin θ dθ∫ π/2

0
P (θ) dθ

=
∫ π/2

0

L sin2 θ dθ =
π

4
L . (4-22)

Here, the integral in the numerator is a summation over the lengths obtained over
all orientations, and the integral in the denominator assures an average value by
dividing the numerator by the whole range of probabilities. This division is not
strictly necessary because we already have normalized correctly. However, had we,
for example, wished to find the mean projected lengths only for those rods having
inclinations to the polar axis in the range 0 < θ ≤ π/4, the limits of integration
both in the numerator and denominator would be 0 and π/4, and the integral in the
denominator would no longer be trivial. Reversing the problem, we can ask for the
actual value of a length S when only the random projected lengths can be observed
to have mean value D. Then

S =
4〈D〉
π

(4-23)

by simple inversion of the argument developed in (4–22). We can ask a slightly dif-
ferent question, “Given a particular observed value of D, what is the mean of all
the values S could have?” To answer this, we average D/ sin θ over the interval
0 ≤ θ ≤ π/2 for a fixed value of φ because the orientation φ is implicitly the direc-
tion along which D has been measured. This average has an infinite value because
(sin θ)−1 becomes large as θ approaches zero. The value of 〈1/S〉 however is finite.

Similarly we can use our approach to decide whether elliptical galaxies are pro-
late (cigar-shaped), or oblate (disk-shaped). To make such an analysis, we do have
to assume that all elliptical galaxies have roughly the same shape. According to
this view, the globular galaxies would just be ordinary ellipticals viewed along a
symmetry axis.

1 The limits of integration are 0 ≤ φ < 2π, 0 ≤ θ ≤ π/2, since a rod with orientation
(θ, φ) is equivalent to one with orientation (−θ, φ + π).



114 4 Random Processes

PROBLEM 4–5. When a series of binary galaxies is observed, the total mass of
each pair can be estimated roughly by measuring the projected separation between
the galaxies and the projected radial component of their motions about each other.
If (see Fig. 4.4) R is the distance to a pair as determined by its mean red shift,

Fig. 4.4. Diagram to illustrate estimation of the total mass found in binary galaxies.

and α is the angular separation, then we can obtain the projected separation dp.
The difference between the red shifts of the two galaxies gives the projected orbital
velocity component vp. Assuming that the galaxies move in circular orbits about
each other, show that the mass of the pair is statistically given by

Mpair =
〈v2〉
G〈1/r〉 ∼

3π
2

〈v2
p〉

G〈1/dp〉 , (4-24)

where the approximation in the expression assumes that the projection of the ve-
locity vectors is independent of the projection of the separation dp — which is ac-
tually incorrect for circular motion. With these assumptions, however, show that
〈v2

p〉 ∼ 〈v2〉/3 and that 〈1/r〉 = (2/π)〈1/dp〉. Note that 〈r〉 �= 〈1/r〉−1. Because
the projection angle in this case is not independent for r and v, alternative forms of
(4–24) should actually be employed to take this correlation into account.

When we talk about clusters of galaxies, the same considerations apply, because
the virial theorem (3–85) again sets the mean potential energy equal to twice the
(negative of the) kinetic energy. The mass of the entire cluster is then substituted
on the left side of equation (4–24). The right side gives the mean squared velocities
of the cluster galaxies and their mean reciprocal distances from the cluster center.
For sizeable clusters of galaxies, dispersion velocities are found to be ∼103 km s−1

in the central parts, leveling off at distances of a few megaparsec, Mpc (Fa96). As
discussed in Section 3:15, when the cluster mass is estimated in this way, it always
turns out to be some 10 times higher than the sum of the masses of the individual
galaxies determined as in Problem 3–12. We will return to this puzzle in Chapter
9, where we will find a need to postulate either the existence of dark matter or a
deviation from an inverse square law of gravitational attraction over megaparsec
distances.
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4:5 The Motion of Molecules

An assembly of molecules surrounding an interstellar dust grain exerts pressure on
the grain’s surface. This pressure arises because the molecules are moving randomly
and sometimes collide with the dust. A molecule initially moving toward the grain
is deflected at the grain’s surface and recedes following the collision. Because the
particle’s velocity is changed, its momentum p also is altered. For a brief interval the
surface, therefore, exerts a force on the molecule because, by definition, a force is
required to produce the change of momentum. This follows from Newton’s equation
(3–4), which can be rewritten as

F = mr̈ = ṗ . (3–4)

If the grain exerts a force on a molecule during a given time interval τ , the molecule
too must be reacting on the grain in that time. The sum of all the forces exerted
by all the individual molecules impinging on unit grain area at any given time then
constitutes the pressure — or force per unit area — acting on the dust.

To calculate the pressure we must first decide how many molecules hit a grain
per unit time. Figure 4.5 shows a spherical polar coordinate system by means of
which we can label the direction from which the particles initially approach. That
direction is given by angles (θ, φ). If there are n(θ, φ, υ) molecules per unit volume
coming from an increment of solid angle dΩ = sin θ dθ dφ about the direction
(θ, φ) with a speed υ to υ+dυ, then the number of particles incident on unit surface
area in unit time is ∫ ∫ ∫

υ cos θn(θ, φ, υ) sin θ dθ dφ dυ . (4-25)

Fig. 4.5. Spherical polar coordinates for computing pressure.
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The factor cos θ has to be included because the volume of an inclined cylinder that
contains all the incident particles is the product of the base area and the height
(Fig. 4.6).

Expression (4–25) is proportional to υ because particles with larger speeds can
reach the impact area from greater distances in any given time interval.

Fig. 4.6. Inclined cylindrical element containing all molecules striking the surface from di-
rection θ, with speed υ, in unit time interval.

If we assume that each molecule is reflected specularly — as from a mirror —
then the angle of incidence is equal to the angle of reflection from the surface, and
the total change in momentum for a reflected particle is

∆p = −2p cos θ . (4-26)

Only the momentum component normal to the surface changes in such a reflection
and this gives rise to the factor cos θ. We can now compute the pressure that is just
(the negative of) the total change of momentum suffered by all molecules incident
on unit area in unit time.

P =
∫ 2π

0

dφ

∫ ∞

0

dυ

∫ π/2

0

dθ (2p cos θ) υ cos θ n(θ, φ, υ) sin θ . (4-27)

In an isotropic gas the number of molecules arriving from unit solid angle is
independent of θ and φ and we can write

n(θ, φ, υ) dυ =
n(υ)
4π

dυ . (4-28)

Here n(υ) is the number density of molecules with speeds in the range υ to υ + dυ
and the factor 1/4π is a normalization constant that arises because 4π steradians are
needed to describe all possible approach directions.
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Expression (4–28) allows us to separate out a velocity-dependent part of the
integrand in (4–27). It is independent of the direction coordinates θ and φ. If υ  c
— where c is the speed of light — then p = mυ, where m is the mass of a molecule.
We can then write ∫ ∞

0

n(υ)υ2 dυ ≡ n〈υ2〉 , (4-29)

where n is the number density of particles per unit volume regardless of speed and
direction, and 〈υ2〉 is the mean squared value of the velocity. Equation (4–29) is
simply a definition of the mean squared velocity.

The other part of the integral in (4–27) can now be written as

1
2π

∫ 2π

0

∫ π/2

0

cos2 θ sin θ dθ dφ =
1
3

= 〈cos2 θ〉 . (4-30)

This integral defines the mean value of cos2 θ averaged over a hemisphere
0 ≤ θ ≤ π/2. This is the hemisphere from which all particles striking the wall
must approach. Because of symmetry about θ = π/2, the mean squared value of the
cosine function actually is 1

3 even if we integrate over all possible directions, rather
than just one hemisphere.

Substituting equations (4–29) and (4–30) into (4–27) we can rewrite the expres-
sion for pressure as

P =
nm〈υ2〉

3
. (4-31)

Writing the product of the pressure P with the volume V that encloses N parti-
cles of the assembly, we then have the expression

PV =
Nm〈υ2〉

3
= NΘ , (4-32)

where N = nV and we define Θ ≡ m〈υ2〉/3 which, as Section 4:6 will show, is
proportional to the temperature.

PROBLEM 4–6. The random velocity of galaxies is thought to amount to
υ ∼ 100 km s−1. Their number density is n ∼ 10−1 Mpc−3. If typical galaxies
have a mass of 3 × 1044 g, what is the cosmic pressure due to galaxies? This pres-
sure contribution has an effect on the dynamics of the Universe. Chapters 11 to 13
discuss the role of pressure on cosmic expansion or contraction.

PROBLEM 4–7. The number density of stars close to the Sun is n ∼ 10−57 cm−3.
The Sun’s velocity relative to these stars is υ ∼ 2× 106 cm s−1 and we can take the
cross-section for collision with another star to be σ ∼ 5 × 1022 cm2. In the Jeans
theory of the birth of the Solar System, such an encounter was considered respon-
sible for the formation of the planets. How probable is it that the Sun would have
formed planets in P = 5 × 109 yr? How many planetary systems would we expect
altogether in the Galaxy if there are 1011 stars and if the Sun is representative?
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4:6 Ideal Gas Law

Tenuous gases obey a simple law at temperatures far above the temperature of con-
densation. This law relates the temperature of a gas to its pressure and density. Since
it becomes exact only at high temperatures and low densities, it represents an ideal-
ization that a real gas can only approach. We speak of the ideal gas law. In practice,
deviations from ideal behavior are small for a large variety of gases in many differ-
ent situations, and the law is very useful.

To understand this law, we must first know what is to be meant by temperature.
We can easily “feel” whether a body is hot or cold; but it is not simple to describe this
feeling in terms of a measurable physical quantity. One way of measuring tempera-
tures is in terms of a device — for example, an ordinary mercury bulb thermometer.
When the thermometer is dipped into a bowl of water that feels hot, the mercury ex-
pands out of the bulb and rises in the capillary tube. When the thermometer is placed
into a cold bowl of water the mercury contracts. We can attach an arbitrary scale to
the capillary portion of the thermometer and take readings to obtain the temperature
in terms of the location of the mercury meniscus in the capillary. To show just how
arbitrary such a scale may be, we need only recall that there have been at least five
different temperature scales in common use in the Western world.

Choosing a given mercury thermometer as a standard, we can make observations
of the behavior of gases and eventually arrive at a relation between the density,
pressure, and temperature of a given gas. This relation is called an equation of state.
It has the functional form

F (T, P, ρ) = 0 . (4-33)

The density is sometimes expressed in terms of its reciprocal, the volume per unit
mass, or more often in terms of the molar volume, or volume per mole of gas. The
mole is a quantity of matter represented by N = 6.02 × 1023 molecules. N is
called Avogadro’s number. Avogadro’s number is the number of atoms of the carbon
isotope 12C weighing exactly 12 grams — one gram-atomic-weight of 12C.

Writing the molar volume as V, we obtain the ideal gas law as

PV = RT , (4-34)

where R is a constant called the gas constant. At constant pressure the volume
of a given amount of gas increases linearly with temperature. At fixed volume the
pressure rises linearly with temperature. Some gases, notably helium, behave very
nearly like an ideal gas and can, therefore, be used to define a gas thermometer tem-
perature scale. The important point to realize is that temperature has to be defined
operationally in terms of a convenient device.

We note the similarity between equations (4–32) and (4–34). When N in equa-
tion (4–32) is chosen to be Avogadro’s number N , we find that

RT

N = Θ =
m〈υ2〉

3
. (4-35)

We can define a new constant k = R/N , called Boltzmann’s constant. Equation
(4–35) then becomes
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3
2
kT =

m〈υ2〉
2

. (4-36)

The right side of equation (4–36) is the mean kinetic energy per particle in the
assembly, and the temperature is therefore nothing other than an index of the mean
kinetic energy. In a hot gas the molecules move at high velocity; in a cooler gas they
move more slowly. The Boltzmann constant k has to be experimentally determined
by direct or indirect measurement of the kinetic energy of molecules in a gas at a
given temperature: k = 1.381× 10−16 erg K−1.

Equation (4–32) can now be rewritten as

PV = NkT or P = nkT . (4-37)

This is straightforward as long as we deal with one particular kind of gas or one
given type of molecule. But what happens if the gas consists of a mixture of dif-
ferent atoms or molecules? The kinetic theory developed thus far predicts that the
total pressure should still be determined by the total number density of atoms and
molecules as given by equation (4–37). If there are j different kinds of particles
present in thermal equilibrium, each with number density ni, the complete relation
would read

P =
j∑

i=1

Pi =
j∑

i=1

nikT = nkT , (4-38)

where Pi is the partial pressure exerted by atoms or molecules of type i alone.
Equation (4–38) expresses Dalton’s law of partial pressures, named after the English
chemist John Dalton, who first noted the effect in 1801: The total pressure of an ideal
gas is the sum of the partial pressures of the various constituents.

PROBLEM 4-8. Interstellar atomic hydrogen is often found in neutral, HI clouds
whose temperature is 100 K. What is the root mean squared velocity at which the
hydrogen atoms travel? If the number density n = 1 cm−3 , what is the pressure in
interstellar space?

PROBLEM 4–9. These clouds also contain dust grains that might characteristically
have diameters 5 × 10−5 cm and unit density. Treating the dust as though it were
an ideal gas, what would be the random velocity of dust grains in equilibrium at
temperature T ?

PROBLEM 4–10. If the gas had systematic velocity υ relative to the dust grains,
how much momentum would be transferred to each dust grain per unit time, and
what is the acceleration? Assume that the gas density n = 1 cm−3,
υ = 106 cm s−1, and that the gas atoms stick to the grain in each collision.

PROBLEM 4–11. What would be the rate of mass gain for this grain? How soon
would its mass increase by 1%?
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PROBLEM 4–12. In an ionized hydrogen (HII) region, protons and electrons move
randomly. If the temperature of this interstellar gas is 104 K, calculate electron and
proton velocities.

4:7 Radiation Kinetics

Electromagnetic radiation is transmitted in the form of photons — discrete quanta
having momentum p and energy E . The experimentally determined relationship be-
tween the spectral frequency ν — color of the radiation — and the energy and
momentum is

p =
hν

c
, (4-39)

E = hν , (4-40)

where h is Planck’s constant and c is the speed of light.
We can substitute expression (4–39) into the pressure equation (4–27), replacing

υ by c, and neglecting the integration over velocity because all photons have the
same speed c. Expression (4–27) then reads

P (ν) dν =
∫ 2π

0

dφ

∫ π/2

0

dθ
2hν
c

cos θ c cos θ n(θ, φ, ν) sin θ dν . (4-41)

The two factors c cancel, and hν can be replaced by E . For an isotropic radiation
field, n(θ, φ, ν) = n(ν)/4π, and use of equation (4–30) leads to

P (ν) =
n(ν)E

3
=
hνn(ν)

3
. (4-42)

If quanta of j different spectral frequencies are present, expression (4–42) becomes

P =
U

3
, (4-43)

where U is the total energy density summed over all spectral frequencies:

U =
j∑

i=1

nihνi . (4-44)

PROBLEM 4–13. In Section 4:13 we will see that the energy density of electro-
magnetic radiation at a temperature T is 7.57 × 10−15T 4 erg cm−3 . The Universe
is permeated by a microwave background radiation field at T = 2.73K. What is the
pressure due to this radiation and how does it compare to the pressure exerted by
galaxies calculated in Problem 4–6?
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PROBLEM 4–14. At Earth the radiation energy incident from the Sun on unit area
per unit time is 1.37× 106 erg cm−2 s−1. This quantity is called the solar constant.
Find the radiative repulsive force on a 10−2 cm diameter black (totally absorbing)
grain, at the distance of Earth from the Sun.

PROBLEM 4–15. A spherical grain of radius s = 10−4 cm absorbs 1
3

of the solar
radiation incident on its surface and scatters the remainder isotropically. Calculate
the ratio of gravitational attraction to radiative repulsion from the Sun, assuming
that the grain has density 6 g cm−3 . Show that this ratio is constant as a function of
distance from the Sun.

PROBLEM 4–16. If the repulsive force of radiation on a grain is 1
3 of the attraction

to the Sun due to gravitation, we can define an “effective” gravitational constant
Geff = 2

3G where G is the gravitational constant. This will characterize the motion
of the grain. What is the orbital period of such a grain moving along Earth’s orbit?
How does its orbital velocity compare to that of Earth?

4:8 Isothermal Distributions

We say that a gas is isothermal if its temperature is the same throughout the volume
it occupies. Consider an isothermal, gravitationally bound, spherically symmetric
gas configuration in space. The hydrostatic pressure change dP between positions
r (Fig. 4.7) and r + dr is given by the gravitational force acting on matter between
r and r + dr:

dP = −dr ρ(r)∇V(r) . (4-45)

Here ρ(r) = n(r)m and V(r) is the gravitational potential due to the mass enclosed
by the sphere r. For an ideal gas (see equation (4–38)) P/ρ = kT/m. Dividing this
expression into equation (4–45) we have

dP

P
= − m

kT
∇V(r) dr

Fig. 4.7. Pressure–distance relation for a spherically symmetric configuration.
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which integrates to
P = P0e

−mV(r)/kT . (4-46)

Reapplying the ideal gas law, we can also obtain the densities

n = n0e
−mV(r)/kT or ρ = ρ0e

−mV(r)/kT . (4-47)

The exponential term appearing in equations (4–46) and (4–47) is called the Boltz-
mann factor. It plays an important role throughout the theory of statistical ther-
modynamics and, as we will see in Section 4:23, gives a useful starting point for
describing the distributions of molecules in protostars, and stars in globular clus-
ters.

4:9 Atmospheric Density

Using equation (4–47), we can readily find the density distribution in the atmosphere
of a star, planet, or satellite. In what follows we will keep referring to the parent body
as a planet, but the theory holds equally well for a star, moon, or any other massive
body.

The gravitational potential at any location in the atmosphere is given by

V(r) = −MG

r
, (4-48)

where r is the distance measured from the center of the planet and M is its mass.
Expression (4–48) also assumes that the atmosphere is tenuous so that M can be
assumed to be constant and independent of r. Let R be the planet’s radius, and
consider a point at height x above the surface. The difference between the potential
at height x and at the surface is

V(R+ x) − V(R) = − MG

R+ x
+
MG

R
=
MGx

R2
, x  R . (4-49)

Equation (4–47) then becomes

n = n0e
−(mMG/kTR2)x = n0e

−mgx/kT , (4-50)

where n0 now represents the density at the surface and MG/R2 ≡ g is the surface
gravity of the planet. It is clear that the atmospheric density decreases exponentially
with height. We can define a scale height

∆ ≡ kTR2

mMG
=
kT

mg
. (4-51)

The density at height x + ∆ is reduced by a factor e below the value at height x.
The scale height is small for low-temperature gases composed of heavy molecules
— m large — and for dense parent bodies — large M , small R.
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PROBLEM 4–17. Show that an atmosphere consisting of a combination of gases
has a variety of scale heights, one for each gas component. Show that the total
pressure is

P =
∑

i

Pi =
∑

i

Pi0e
−(migx/kT ), (4-52)

consistent with Dalton’s law, and that the total density is

ρ =
∑

i

nimi =
∑

i

ni0mie
−(migx/kT ) , (4-53)

where the subscript 0 denotes a value at the base of the atmosphere. Assume no
atmospheric convection. (Convection normally requires bulk motion of entire vol-
umes of gas and gives rise to winds that do not allow complete separation of dif-
ferent gaseous constituents. The concept of scale height then needs to take this into
account.)

At the low densities found in Earth’s upper atmosphere, there is some separation
of gases with different scale heights. Helium, for example, appears in appreciable
concentrations only at high altitudes. In the lower atmosphere three features com-
plicate any analysis. There are winds, temperature gradients, and atmospheric water
vapor. The vapor is near the condensing point and a local atmospheric temperature
drop can give rise to condensation and a decrease in pressure. This gives rise to
winds. More important, the lower atmosphere is not isothermal and is subject to a
variety of thermal gradients that can either induce or suppress convection.

PROBLEM 4–18. The mass of the atmosphere is negligible compared to the mass
of our planet, m⊕. If the gravitational attraction at the surface of Earth is 980 dyn
g−1, calculate the scale height of the atmosphere’s main constituent, molecular ni-
trogen N2, at a temperature of 300 K.

4:10 Particle Energy Distribution in an Atmosphere

The exponential decline of particle density with height is an important clue to the
velocity distribution of particles. We note that molecules at a height x1, having an
upward-directed velocity component υx = (2gh)1/2, have enough energy to reach
a height x1 +h. Whether a given molecule with this instantaneous velocity actually
reaches height x1 +h cannot be predicted. The molecule might collide with another
one, and lose most of its energy. However, as long as thermal equilibrium exists,
and the gas temperature remains stable, we can be sure that, for every molecule
that loses energy through a collision, there will be a restituting collision at some
nearby point in which some other molecule gains a similar amount of energy. This
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concept, sometimes referred to as detailed balancing, allows us to neglect the effect
of collisions in the remainder of our argument.

Because the temperature is the same at all levels of an isothermal atmosphere,
the velocity distribution must also be the same everywhere, and only the number of
particles changes with altitude. The ratio of the particle densities at heights x1 + h
and x1 (see equation (4–53)) is exp(−mgh/kT ). Since the particles encountered
at height x1 + h have all come up from the lower height x1, to which they will
eventually return — fall back — we can be certain that the fraction of particles
passing through a plane at height x1 and having speeds greater than υh = (2gh)1/2

is going to be precisely that fraction of particles having enough energy to reach
altitudes above x1 + h. We can therefore express the two-way flux of particles with
vertical velocity υx greater than υh as

N(υx > υh)
N(υx > 0)

=
[∫ ∞

h

e−mgx/kT dx

/∫ ∞

0

e−mgx/kT dx

]

= e−mgh/kT = e−mυ2
h/2kT . (4-54)

Note that N is not a number density; it is flux, a number of particles crossing unit
area in unit time.

Collisions make the velocity distribution isotropic. Hence, we consider a veloc-
ity distribution f(υ) that is normalized by the integral∫ ∫ ∫ ∞

−∞
f(υx , υy, υz) dυx dυy dυz = 1 . (4-55)

As a trial solution for the function f , we can use an exponential υx dependence, like
that given by equation (4–54). The isotropy requirement then demands a similar
dependence on υy and υz , and equation (4–55) gives the full function as

f(υx, υy, υz) =
( m

2πkT

)3/2

e−(m/2kT )(υ2
x+υ2

y+υ2
z) , (4-56)

where the coefficient is a normalization factor required by (4–55). This function is
separable in the variables υx, υy , and υz . To test whether it also obeys equation
(4–54) we note that

N(υx > υh)
N(υx > 0)

=

∫∞
υh
υxe

−(m/2kT )υ2
x dυx∫∞

0
υxe−(m/2kT )υ2

x dυx

= e−mυ2
h/2kT . (4-57)

The quantity υx in the integrand plays the same role here as in equation (4–27).
It takes into account that, in unit time, the higher velocity particles can reach a
given surface from a larger distance and from a larger volume. We can write the
distribution (4–56) in terms of the speed

υ = (υ2
x + υ2

y + υ2
z )1/2 . (4-58)

We then obtain
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f(υ) =
( m

2πkT

)3/2

e−mυ2/2kT . (4-59)

PROBLEM 4–19. Satisfy yourself that the normalization condition for f(υ) is

4π
∫ ∞

0

f(υ)υ2 dυ = 1 . (4-60)

Show also that, in terms of momentum, the distribution function is

f(p) =
1

(2πmkT )3/2
e−p2/2mkT (4-61)

and ∫ ∞

0

4πf(p)p2 dp = 1 . (4-62)

Note that equations (4–56), (4–59), and (4–61) all are independent of the grav-
itational potential initially postulated. The equations derived here therefore have
much wider applicability than just to the gravitational problem. We will discuss this
further in Section 4:15.

The velocity and momentum distribution functions (4–59) and (4–61) are called
Maxwell–Boltzmann distributions, after James Clerk Maxwell and Ludwig Boltz-
mann, two of the nineteenth century founders of classical kinetic theory. The mo-
mentum distribution is plotted in Fig. 4.8. These distribution functions have ex-
tremely wide applications.

Fig. 4.8. Maxwell–Boltzmann momentum distribution.
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PROBLEM 4–20. If the Moon had an atmosphere consisting of gases at 300 K
calculate the mass of the lightest gas molecules for which 3kT/2 < MmG/R.
m is the mass of the molecule; M and R are the mass and radius of the Moon,
respectively, 7.3 × 1025 g and 1.7 × 108 cm. Note that the quantity on the left of
the inequality is related to the escape velocity at the Moon. What is this velocity?
Actually, heavier molecules than those with mass m, calculated above, can escape
from the Moon, because: (a) in a Maxwell–Boltzmann distribution, gases have many
molecules with speeds larger than the mean speed; and (b) because the side of the
Moon facing the Sun reaches temperatures of ∼400 K.

Despite their great usefulness, Maxwell–Boltzmann statistics cannot be applied
under certain conditions, such as those encountered at high densities in the centers of
stars. Neither do they apply to radiation emitted by stars. There, we need to consider
quantum effects that have no classical basis. The next few sections describe these
effects.

4:11 Phase Space

The quantum effects that lead to deviations from classical statistical behavior always
involve particles that are identical to each other. We might deal with electrons that
have almost identical positions, momenta, and spin; or we might have photons with
identical frequency, position, direction of propagation, and polarization.

For electrons an important restriction comes into play. The Pauli exclusion prin-
ciple forbids any two electrons from having identical properties. Neutrons, protons,
neutrinos, and all other particles with odd half-integral spin ( 1

2 ,
3
2 , . . .) also obey

this principle. Photons and pions, on the other hand, have integral or zero spin, and
any number of these particles can have identical momenta, positions, and spins. The
first group of particles — those that obey the injunction of the Pauli principle —
are called Fermi–Dirac particles or fermions; the others are called bosons and their
behavior is governed by Bose–Einstein statistics.

Thus far we have not stated what we mean by “identical.” Clearly we could
always imagine an infinitesimal difference in the momenta of two particles, or in
their positions. Should such particles still be termed identical, or should they not?
The question is essentially answered by Heisenberg’s uncertainty principle, which
denies the possibility of physically distinguishing two particles if the difference in
the momentum δp, multiplied by the difference in position δr, is less than Planck’s
constant h. This restriction derives from the uncertainty in the simultaneous mea-
surement of momentum and position components for any given particle

∆px∆x ∼ �, 〈(∆x)2〉 ≡ 〈(x−〈x〉)2〉 = 〈x2 −〈x〉2〉, 〈(∆px)2〉 = 〈p2
x −〈px〉2〉 ,

(4-63)
where � ≡ h/2π and h is Planck’s constant, h = 6.626 × 10−27 erg s. The same
constraints hold for ∆py∆y and ∆pz∆z.



4:11 Phase Space 127

We can show, quantum mechanically, that two particles are to be considered
identical if their momenta and positions are identical within values

δpx δx = h, δpy δy = h, δpz δz = h, δx δy δz δpx δpy δpz = h3 , (4-64)

provided their spins are also identical.
In this description each particle is characterized by a position (x, y, z, px, py, pz)

in a six-dimensional phase space. It occupies a six-dimensional phase cell (Figs. 4.9
and 4.10) whose volume is δx δy δz δpx δpy δpz = h3. Particles within one phase
cell are identical — physically indistinguishable — whereas those outside can be
distinguished. Because δx is the dimension of the phase cell, it must be at least
twice as large as ∆x, the root mean square deviation from the central position. The
same relation holds between δpx and ∆px. That is why the right side of equation
(4–63) involves � while equation (4–64) contains the larger value, h. Figure 4.9
illustrates these differences.

We can now ask how many electrons could fit into a box with volume V ? The
answer depends on how high a particle momentum we wish to consider. If mo-
menta up to a maximum value pm are permitted, the available volume in phase
space is 2(4π/3)p3

mV . The factor 2 accounts for two distinct spin polarizations,
since electrons whose spins differ can always be distinguished and therefore must
belong to different phase cells. This makes the number of available phase cells
[(8π/3)p3

mV ]/h3, which also is the maximum number of electrons that could oc-
cupy the box. Sometimes we may prefer to talk about frequency space instead of
momentum space. Defining the particle frequency ν , by ν ≡ pc/h, we obtain the
number of phase cells with frequencies between ν and ν + dν as [(8π/3)ν3

mV ]/c3.

Fig. 4.9. Relation among phase cell dimensions, distribution of positions and momenta, and
uncertainties in these variables. Only the simplest of a large family of distribution functions
corresponding to different energies are shown.
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Fig. 4.10. Phase space is a six-dimensional hypothetical space having three momentum and
three spatial dimensions. Projected onto the px − x plane, individual cells always present an
area h. Although their shapes may be quite arbitrary, as shown, it is often useful to think of
them as square or rectangular since this makes computations simpler. In Section 4:14 (Fig.
4.13) we will see how an initially rectangular cell becomes distorted.

In general, the number of phase cells with momenta in a range p to p + dp, or
equivalently ν to ν + dν is

Z(p) dp = 2V
4πp2 dp

h3
of Z(ν) dν = 2

[
4πν2 dν

c3

]
V . (4-65)

Z(p) — and equivalentlyZ(ν) — are referred to as the partition function.
At the center of a star, ionized matter is sometimes packed so closely that all

the lowest electron states are filled. Further contraction of the star can then force
the electrons to assume much higher momenta than the value (3kTm)1/2 normally
found in tenuous gases. Such a closely packed gas of fermions is said to be degener-
ate. We will study this form of matter in Section 4:15 and in Chapter 8, where very
dense cores of stars are discussed.

4:12 Angular Diameters of Stars

The fact that two photons sometimes occupy the same phase cell allows us to mea-
sure the angular diameter of stars. The idea is this: two photon counters are placed a
distanceD apart, transverse to the direction of the star. IfD is small enough, we have
the possibility that one photon from a cell will hit one detector, while the other pho-
ton hits the other detector, the simultaneous arrival being detected by a coincidence
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Fig. 4.11. The Hanbury Brown–Twiss interferometer.

counter. Let the diameter of the star be d and its distance R (Fig. 4.11). The angle it
subtends is θ = d/R. The photon pair impinging on either detector has a distribution
in momentum, along the direction of D, amounting to∆pD = pθ = (hν/c)θ where
ν is the frequency of radiation to which the detector is sensitive. But the nonzero
value of ∆pD makes it necessary that D itself be small so that photons reaching
either detector may be in the same phase cell. That is, it is necessary that

D∆pD ∼< h, or
Dhν

c
θ ∼< h, or Dθ ∼< λ , (4-66)

where λ = c/ν is the wavelength of the radiation. By increasing D a decreasing
coincidence rate is observed, and for values of D at which coincidences no longer
occur the angular diameter is θ ∼< λ/D. The stellar angular diameter is

θ ∼ d/R ∼ λ/D (4-67)

in such observations. This technique was first discovered by R. Hanbury Brown and
R. Q. Twiss (Ha54). A second, related method makes use of the stellar interferom-
eter constructed by Albert A. Michelson in 1920 to measure the angular diameter
of Betelgeuse. In this interferometer only photons occupying the same phase cell
coherently interfere.

4:13 The Spectrum of Light Inside and Outside a Hot Body

Any warm opaque body is permeated by a radiation bath. Atoms, molecules, or
ions are continually absorbing and re-emitting quanta of light. From time to time
a photon approaches the edge of the body and escapes. This diffusion of photons
from the interior of the body out to its boundary, and the subsequent escape into
empty space, is an important process in stars. Energy generated at the center of the
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star slowly diffuses outward and escapes. The escaping radiation gives the star its
luminous appearance.

To understand this phenomenon in some detail we need to deduce the spectrum
of the radiation as a function of temperature. Consider a photon gas embedded in
material at temperature T . The radiation is in thermal equilibrium with the material
if there is ample opportunity for the photons to interact with the atoms through
scattering or absorption and re-emission. Two factors have to be considered:

(a) Photons are Bose–Einstein particles and can aggregate in single phase cells.
(b) If the spectral frequency of the photons aggregating in a phase cell is ν ,

and if there are n photons in the cell, we can consider the assembly of photons in
this phase cell to be in a state with energy (n + 1

2)hν . We sometimes speak of a
quantum oscillator in the nth state. Even when a phase cell is completely empty, in
the ground state, a residual vacuum energy hν/2 is present.

We can compute the probability of finding a quantum oscillator in the nth ex-
cited state. The relative probability of that state is given by the Boltzmann factor
e−(n+1/2)hν/kT . The absolute probability is given by dividing the relative probabil-
ity by the sum of all the relative probabilities:

P (ν, T ) =
e−(n+1/2)hν/kT∑
n e

−(n+1/2)hν/kT
=

e−(nhν/kT )∑
n e

−nhν/kT
, (4-68)

where the vacuum energy drops out. In these terms we can give the average energy
〈E〉 per phase cell corresponding to frequency ν . We sum the energies of all the
oscillators and divide by the total number of oscillators. Writing x ≡ hν/kT , we
obtain

〈E〉 =
∑
n

(
n+

1
2

)
hνe−nhν/kT

[∑
n

e−nhν/kT

]−1

=
kT (xe−x + 2xe−2x + 3xe−3x + · · ·)

1 + e−x + e−2x + e−3x + · · · +
hν

2
. (4-69)

The denominator in the first term of the second expression in equation (4–69) is
(1−e−x)−1, as can be seen by noting that the denominator multiplied by (1−e−x)
is unity. To evaluate the numerator, we use the same binomial expansion formula
twice in succession.

kT{x(e−x + e−2x + e−3x + · · ·)+x(e−2x + e−3x + · · ·)+x(e−3x + · · ·)+ (· · ·)}

= kT

{
xe−x

1 − e−x
+

xe−2x

1 − e−x
+

xe−3x

1 − e−x
+ · · ·

}
= kT

xe−x

(1 − e−x)2
. (4-70)

In these terms

〈E〉 =
kTxe−x

1− e−x
+
hν

2
=

kTx

(ex − 1)
+
hν

2
=

hν

(ehν/kT − 1)
+
hν

2
. (4-71)
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Knowing the number of phase cells per unit volume, 8πν2 dν/c3, and the mean
energy per phase cell, we can write the energy density of photons as a function of
frequency and temperature. This is the blackbody radiation spectrum:

ρ(ν, T ) dν =
8πν2 dν

c3

(
hν

ehν/kT − 1
+
hν

2

)
,

(4-72)

n(ν, T ) dν =
8πν2

c3

(
1

ehν/kT − 1

)
dν .

We will neglect the hν/2 term for now, and concentrate on the remainder of
the expression, which can give rise to observable astronomical signals.2 Integrated
over all frequencies from 0 to ∞ the second term in parentheses in equation (4–72)
would give rise to an infinite vacuum energy. Disregarding this term and integrating
equation (4–72) over all frequencies from zero to infinity, we obtain the total energy
density and number density of photons in terms of the generic formula (Gr80):∫ ∞

0

x
−1

eµx − 1
dx =

1
µ

Γ (�)ζ(�) [µ > 0, � > 0] , (4-73)

where Γ (�) = (� − 1)! when � is an integer > 0, and ζ(�) is the Riemann zeta
function,

∑∞
m=1 m

−
,

ρ(T ) =
8
15
π5

c3
k4

h3
T 4 = aT 4 = U = 7.57× 10−15T 4 erg cm−3,

(4-74)

n(T ) =
8π
c3

∫ ∞

0

ν2 dν

ehν/kT − 1
= 16π

(
kT

hc

)3

ζ(3) ≈ 20.29T 3 photons cm−3 ,

where ζ(3) = 1.20206.
The coefficient of the T 4 term in equation (4–74) is a well-known definite inte-

gral. It is often denoted, as in equation (4–74), by the symbol a, the radiation density
constant. We can also define another useful constant σ ≡ ac/4 = 5.670× 10−5 erg
cm−2 K−4 s−1, the Stefan–Boltzmann constant. This constant allows us to write the
energy emitted per unit area of a hot blackbody in unit time, as

2 The term hν/2 cannot be observed in photon absorption or emission; but it is real never-
theless. Pulling apart two plane metallic surfaces separated by a small gap � to increase
this to � + d� requires the application of a force. The work done results in the creation
of ground state photons with wavelengths λ = �/2 to (λ + dλ) = (� + d�)/2, whose
wavelengths would have been excessively long to fit into the original gap �. This is the van
der Waals force between plates and the effect is called the Casimir effect, which is small
but measurable (La97). From (4–72) we would expect the ground state energy change to
be proportional to λ−4 or �−4, and the force given by its gradient to be proportional to
�−4. The value of the force is F = π2c�/240�4 (Ca48). The numerical factor in the de-
nominator is so large because, as the gap increases, the remaining volume of the Universe
outside the gap correspondingly decreases, and these two effects nearly cancel.
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W = σT 4 . (4-75)

To see this, we can think of photons that escape from the surface as representative
of the density of photons immediately within the surface of the body. Only those
photons with velocities directed outward through the surface can be considered.
So, only one-half of the photons come into consideration. These photons have an
average velocity component normal to the surface equal to c〈cos θ〉 where θ is the
angle of emission with respect to the direction normal to the surface. We therefore
have to evaluate 〈cos θ〉 averaged over all possible angles. This is

〈cos θ〉 =
1
2π

∫ 2π

0

∫ π/2

0

cos θ sin θ dθ dφ =
sin2 θ

2

∣∣∣∣
π/2

0

=
1
2
,

(4-76)

... c〈cos θ〉 =
c

2
.

But because only half the photons are outward directed, the total flux is
(1/2)(c/2)(aT 4) = acT 4/4 = σT 4, as previously stated.

PROBLEM 4–21. Note that all this is strictly correct only if the index of refraction,
n, in the medium is n = 1. For arbitrary values of n, show that

ρ(T ) = n3aT 4 .

This is more generally the case inside a star. Show also what happens if the index of
refraction is frequency dependent — which it always is.

The spectrum of most stars is closely approximated by a blackbody spectrum
with individual spectral emission and absorption lines superposed. To the extent that
the blackbody approximation holds, it is possible to ascertain the temperature of the
star’s photosphere where most of the light is emitted. Using two different wide-
band filters, say the B and V filters often used in observations, we can determine
the ratio of intensities in these spectral ranges. This ratio is uniquely related to the
temperature. The temperature derived in this way is called the color temperature,
Tc. A useful formula is (A�63):

Tc =
7300

(B − V ) + 0.73
. (4-77)

PROBLEM 4–22. Using the effective wavelengths given in Table A.1 of Appendix
A, compare the ratio of blue and visual radiation densities and magnitudes predicted,
respectively, by equations (4–72) and (4–77) for a star at temperature 6000 K (spec-
tral class G) and one at 10,000 K (spectral class A). Check the values given by
(4–77) against Figure A.5.
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Another means of defining temperature involves the luminosity of the star. Be-
cause the total power emitted per unit area is a function of temperature alone, we can
calculate an effective temperature Te of the star if both its luminosity and surface
area can be determined:

L = σT 4
e 4πR2 . (4-78)

If the distance of the star is known from observations of the kind described
in Chapter 2, the stellar radius can be obtained using the Michelson or Hanbury
Brown–Twiss interferometers discussed in Section 4:12. From (4–78) it is readily
seen that

log
L

L�
= 4 log

Te

Te�
+ 2 log

R

R�
, (4-79)

where Te� ∼ 5, 780 K and R� = 6.96 × 1010 cm are the solar values. When the
Hertzsprung–Russell diagram is plotted in terms of the logarithm of luminosity and
effective temperature, as in Fig. 1.4, stars with identical radii lie on lines of constant
slope, as required by equation (4–79).

It is worth mentioning two typical astrophysical situations in which temperature
is a useful concept.

(a) Temperatures in the Solar System

The temperature of a black interplanetary object is determined by the energy equi-
librium equation

L�
4πR2

πr2 = σT 44πr2 , (4-80)

where L� is the solar luminosity,R is the distance from the Sun, and r is the radius
of the object. If the mean efficiency for absorption (in the visible) is εa and the mean
efficiency of reradiation (at infrared wavelengths) is εr , we have

T =
(
εa

εr

L�
16πσR2

)1/4

. (4-81)

We note that:

(i) At the Earth’s distance

T ∼
(
εa

εr

)1/4( 4 × 1033

16π(5.7× 10−5)2.3 × 1026

)1/4

∼ 282
(
εa

εr

)1/4

K . (4-82)

(ii) A gray body (εa = εr) has the same temperature as a black one.
(iii) For increasing distance from the Sun T ∝ R−1/2.
(iv) If the thermal conductivity of the body is small and its rotation slow, as for

the Moon, the subsolar point assumes a temperature

T ∼
(
εa

εr

L�
R24πσ

)1/4

,

which is (4)1/4 ∼ 1.4 higher than the temperature of an equivalent, rapidly rotating
or highly conducting body.
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(b) Radio-Astronomical Temperatures

Some characteristics of radio-astronomical measurements can be understood in
terms of temperatures. At very low frequencies, ν  kT/h — often called the
Rayleigh–Jeans limit — the energy density in a source can be written (equation
(4–72)) as

ρ(ν) =
8πkTν2

c3
=

8πkT
cλ2

, (4-83)

where λ ≡ c/ν is the wavelength. The energy emanating from a surface in unit time,
unit solid angle and unit area normal to the surface, and in unit frequency interval
∆ν = 1 at frequency ν , is called the specific intensity I(ν). This is the surface
brightness of the source,

I(ν) =
cρ(ν)
4π

=
2ν2kT

c2
=

2kT
λ2

. (4-84)

We shall usually express I(ν) in units of ergs s−1 sterad−1 cm−2 Hz−1. The amount
of radiant energy passing through unit area per unit time, integrated over all radi-
ant frequencies is called the energy flux and has units erg cm−2 s−1. If a specific
intensity I(ν) is measured in an observation then, regardless of whether the source
is thermal, we can pretend that a temperature parameter can be assigned to the ob-
servation. This is called the brightness temperature Tb and is defined at frequency ν
as

Tb(ν) ≡ I(ν)c2

2kν2
=
I(ν)
2k

λ2 . (4-85)

Tb then is the temperature of an ideal blackbody whose radiant energy in the partic-
ular energy range ν to ν + dν is the same as that of the observed source (Ry71)*. A
related concept is that of antenna temperature — which has nothing to do with the
temperature that the antenna actually assumes under ambient climatic conditions.
To examine it we must first consider some practical properties of antennas. In gen-
eral, an antenna absorbs different amounts of power depending on the direction of
the source. If we draw a directional diagram of an antenna, it usually has the shape
of Fig. 4.12. The response A(θ, φ) of the antenna is called its effective area. The
power absorbed is

P ≡ 1
2

∫
A(θ, φ)I(ν, θ, φ) dν dΩ (4-86)

and for a small source,

P (ν, θ, φ) dν =
1
2
F (ν)A(θ, φ) dν, F (ν) =

∫
I(ν) dΩ . (4-87)

Here F (ν) is the flux density at the antenna, and the factor 1
2 comes about because

the antenna accepts only one component of polarization. If A is independent of the
angle φ, and a diagram like Fig. 4.12 is drawn, A(θ) normally has a very large value
in one particular direction, θ = 0, and the large lobe around this direction is called
the main lobe. The smaller lobes in the diagram are called side lobes. Back lobes



4:13 The Spectrum of Light Inside and Outside a Hot Body 135

Fig. 4.12. Directional diagram of an antenna, showing a main lobe and a set of sidelobes. The
angle θ is the beam width (see text).

can also occur. A well-designed radio telescope has a narrow main lobe for greatest
positional accuracy and minimized sidelobes to minimize the confusion produced
by sources outside the desired field of view.

We can define a mean value of the effective area of the antenna taken over all
directions as

〈A〉 ≡ 1
4π

∫
A(θ, φ) dΩ ; (4-88)

then the gain of the antenna is the dimensionless quantity

G(θ, φ) ≡ A(θ, φ)
〈A〉 , (4-89)

which gives the ratio of the effective area in a given direction to the mean effective
area. The functionG has a maximum value in the direction θ = φ = 0 in a properly
designed instrument. The beamwidth is the angle θ between points in the directional
diagram at which A(θ, φ) = A(0, 0)/2.

In these terms, we can now return to the concept of antenna temperature Ta.
If a source has directional and specific intensity I(ν, θ, φ), then a radio telescope
with effective area A(θ, φ) receives an amount of power given by (4–86). If we
now disconnect the antenna and, instead, connect a resistor at temperature T to
the receiver, the resistor can be shown experimentally and theoretically to produce
thermal noise power in an amount

P = kT∆ν , (4-90)

where∆ν is the receiver bandwidth. We can therefore define an antenna temperature
Ta, so that

Ta =
1

k∆ν
· 1
2

∫
A(θ, φ)I(ν, θ, φ) dν dΩ . (4-91)

This equation is useful for practical reasons. It is relatively easy to compare the
power received from a celestial source to that received from a resistor switched to
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the receiver input in place of the antenna. The noise in (4–90) is sometimes called
Johnson noise or Nyquist noise. J. B. Johnson (Jo28) and H. Nyquist (Ny28), respec-
tively, supplied the experimental data and theoretical explanation leading to (4–90).

4:14 Boltzmann Equation and Liouville’s Theorem

Let us define a function f(r,p, t) as the density of particles in phase space. The
number of particles in volume element dr at position r, having momenta that lie in
some momentum-space volume dp around momentum p, is f(r,p, t) dr dp. We
ask how the function f evolves with time. Since each particle in the assembly can
be described in terms of three momentum and three spatial coordinates, the general
form of the equation reads

∂f

∂t
+
∑

i

∂f

∂ri

dri

dt
+
∑

i

∂f

∂pi

dpi

dt
=
df

dt

∣∣∣∣
collisions

. (4-92)

The left side of this equation gives the time rate of change of particles in the volume
element dr dp as a function of the coordinates ri, pi, i = 1, 2, 3, . . . , n, for an n
particle assembly. As the particles move, the surface enclosing them in phase space
becomes distorted and the expression gives the rate of change of density through
this distortion and through any other effects. The right side gives the loss or gain of
particles through collisions. Equation (4–92) is called the Boltzmann equation.

To see how the evolution proceeds for a collisionless process in which the right
side of equation (4–92) is zero, we draw a simple two-dimensional picture. In Fig.
4.13 we have an assembly of particles initially confined between positions r1 and r2

and between momentum values pa and pb. Some time later, the momentum values
are unchanged, but the particles have moved so that the higher momentum particles
are now at positions between r′1 and r′2 while the lower momentum particles are at
positions between r′′1 and r′′2. However, because the base and height of the enclosing

Fig. 4.13. Evolution of a collisionless assembly of particles in two-dimensional phase space.
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area has not changed, the number density of particles per unit area has remained
constant.

A similar argument holds when forces are applied to the particles. In that case
the momenta of particles are not constant and the parallelepiped in Fig. 4.13 will also
be displaced in a vertical direction. However, a similar argument can then be applied
to show that the area covered by the particles still remains constant and the density
of particles in this two-dimensional representation is unchanged. This is particularly
easy to see if the force is the same on all particles. In that case, dp/dt is uniform and
the difference in values pa − pb is maintained constant. When different forces are
exerted on different constituents of the gas, the area occupied by each constituent
remains constant. These results also hold when there are gradients in the force fields.

A further extension of the argument can be applied to the full six-dimensional
distribution. Unless there are some means for creating or destroying particles in the
assembly — through collisions or particle–antiparticle pair formation — the density
of particles will be constant along the trajectory in the six-dimensional space.

This is the sense of Liouville’s theorem: The six-dimensional space density of
particles in an assembly remains unchanged unless collisions occur:

df/dt = 0 . (4-93)

Liouville’s theorem has interesting applications to cosmic-ray particles, which move
through the Galaxy, guided by magnetic field lines (see Section 6:6 for further dis-
cussion of this topic). Many of these particles are so energetic that they must be able
to escape from the magnetic fields permeating the Galaxy. Their density in space
outside the Galaxy could, therefore, be the same as the density that we measure in
the vicinity of the Earth, provided the particles had enough time since their creation
to traverse distances comparable to those of remote clusters of galaxies. Under these
conditions, the spatial density of cosmic rays in extragalactic space would be the
same as that measured at the Earth. This argument need not be true for low-energy
particles if these particles can remain bottled up in local magnetic fields within our
Galaxy.

The highest energy cosmic rays, whose energies range up to 1020 eV cannot be
magnetically confined to the Galaxy. An extragalactic component could originate in
gamma-ray bursts, active galactic nuclei, clusters of galaxies, or in as yet unidenti-
fied sources. The Liouville theorem tells us that the local density of at least these
particles should be an indication of their extragalactic density. A slight caveat to this
must, however, be kept in mind. Figure 1.16 and a discussion we will postpone to
Section 5:10 show that particles at such high energies cannot travel large distances
across the Universe before they are destroyed in collisions with microwave back-
ground radiation photons. Liouville’s theorem may then permit us to say only that
the observed flux of these high-energy cosmic rays represents their prevalence just
in our local part of the Universe, rather than everywhere in the cosmos.

Finally we should still mention the problem discussed in Section 3:16, where a
swarm of particles moves through a gravitational field. There we were concerned
with tidal disruption of globular clusters, but noted that while the clusters became
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extended along a direction pointing toward the Galactic center, the gravitational
forces also tended to produce a compression lateral to that direction. This compres-
sion produces additional transverse velocities making the evolutionary pattern quite
complex. Liouville’s theorem, however, gives us at least one solid guide toward un-
derstanding the overall development. It tells us that whatever detailed dynamical
arguments we apply — such as those of Section 3:16 — the results must always
agree at least with Liouville’s requirement of a constant phase space density.

4:15 Fermi–Dirac Statistics

In a Fermi–Dirac assembly a phase cell can contain only one particle or none. For
any given assembly there exists a Fermi energy EF up to which all states are filled at
zero temperature. At T > 0, excitation from a filled level at energy αkT to a higher
state of energy E can take place. α is called the degeneracy parameter. The relative
probabilities of being at energy E and αkT are, respectively,

e−(E−αkT )/kT and 1 . (4-94)

The relative probability of occupancy of a state of energy E , in an assembly at tem-
perature T , therefore, is

eα−E/kT

1 + eα−(E/kT )
=

1
1 + e(E/kT )−α

. (4-95)

Here we have not specified the energy αkT , but we can see that at very low temper-
atures, T ∼ 0, αkT must approach EF because the Fermi function

F (E) = [1 + e(E−EF )/kT ]−1 (4-96)

has the form shown in Fig. 4.14.
We define the Fermi energy EF as that energy for which F (E) = 1

2 . Note that
for T = 0, the exponent in (4–96) has a large absolute value, whenever E −EF �= 0,
so that

F (E) = 1 for E < EF ,

(4-97)

F (E) = 0 for E > EF .

This gives rise to the step function in Fig. 4.14. Whenever all the available energy
levels are filled — which means whenever T = 0 — we say that the gas of fermions
is completely degenerate. When T > 0, the step is seen to roll off more gently. The
product of the probability F (E) and E gives a mean value for the energy contained
in all phase cells corresponding to an energy E . Filled, as well as empty, cells have to
be considered to obtain this value. From (4–94), the mean energy for cells at energy
E is
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Fig. 4.14. The Fermi function F (E).

mean value =
E

1 + e(E/kT )−α
. (4-98)

We know that the number of states in the momentum range p to p+ dp is

Z(p) dp =
8πp2V dp

h3
. (4–65)

But

E =
p2

2m
, dE =

p

m
dp ,

... Z(E) dE =
8π
h3
V
√

2mEmdE =
4πV
h3

(2m)3/2E1/2 dE . (4-99)

The overall mean energy of the particles integrated over all values E is therefore

〈E〉 =

∫∞
0
Z(E)F (E)E dE∫∞

0
Z(E)F (E) dE . (4-100)

Again, setting αkT equal to the Fermi energy EF for an assembly of particles at
temperature T = 0, we obtain

〈E〉T=0 =

[∫ EF

0

E3/2 dE
][∫ EF

0

E1/2 dE
]−1

=
3
5
EF . (4-101)

One can show that for T > 0, EF < EF0 , the Fermi energy drops slightly.
For E − EF � kT , that is, in the limit of large particle energies, we have

F (E) ∼ e−(E−EF )/kT , (4-102)

which approaches a Boltzmann distribution for very energetic fermions.
At the center of stars degenerate conditions often exist. This is true mainly for

electrons because at a given energy E , p =
√

2Em is less, by a factor
√
mp/me, for
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electrons than for protons. The lower energy electron states therefore become fully
occupied — degenerate — much more readily than proton states.

PROBLEM 4–23. Suppose the Universe is filled with completely degenerate neu-
trinos up to an energyΦν at a neutrino temperature Tν = 0. Show that, for negligibly
low neutrino rest-mass, the mass density of neutrinos ρν (the energy density divided
by c2), is

ρν =
3πΦ4

ν

h3c5
. (4-103)

Note that neutrinos exist in only one spin state (Wa67) but that there are three neu-
trino species. If the corresponding antineutrinos are present as well, the mass density
doubles.

To see why electrons and protons, which are actually fermions, appear to have
the characteristics of Maxwell–Boltzmann particles in many astrophysical situations
we note that we can derive the velocity distribution for classical particles in a way
similar to the derivation of the Fermi–Dirac distribution. Assume that particles can
occupy arbitrary positions in momentum and configuration space. This is equivalent
to saying that the phase cells are infinitesimally small. We can obtain such a system
by pretending that Planck’s constant goes to zero as a limit: h → 0. This makes
EF = 0 since arbitrarily many particles can have zero and near-zero energies, and
the probabilities in (4–94) become e−E/kT and 1. We now write the number of
particles in the assembly, having momenta near p:

n(p) dp ∝ 8πp2V

h3
dp e−p2/2mkT . (4-104)

Integrating over all p values,

n = C

∫ ∞

0

8πV
h3

p2e−p2/2mkT dp , (4-105)

where C is a dimensionless proportionality constant. This is an error function inte-
gral whose value is the total number of particles in the volume

n = C
8πV
h3

(
1
4

√
π(2mkT )3

)
.

Hence

C =
nh3

2V (2πmkT )3/2
, (4-106)

so that

n(p) =
4πnp2e−p2/2mkT

(2πmkT )3/2
,

a result already obtained in (4–61).
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The Maxwell–Boltzmann statistics apply in all problems dealing with the mo-
tion of particles in the atmospheres of stars and planets, with nondegenerate matter
in the interior of stars, and with gas and the random motion of dust grains in in-
terplanetary and interstellar space. These statistics also apply in some problems of
stellar dynamics in which the stars can be thought of as members of an interacting
assembly. Galaxies moving within a cluster are also believed to obey the M–B statis-
tics. The formulas developed in the next sections therefore have wide applications
in astrophysics.

4:16 The Saha Equation

At high temperatures atoms in thermal equilibrium are often multiply ionized. Con-
sider two populations of particles labeled r and r + 1, respectively, representing an
atomic species A in states of ionization r and r + 1. We can think of a reaction
Ar � Ar+1 + e− that might be driven to the right by ionizing photons and colli-
sions, and to the left by the recombination of electrons with ions. Quite generally,
the number densities of populations are then related by an expression similar in form
to equation (4–50), but now written as nr+1/nr = [g′r+1/gr] exp−[E/kT ], where
g′r+1 and gr are the degeneracies — the statistical weights — in the upper and lower
ionization states and E is the total energy difference between upper and lower states.
This energy includes the kinetic energy p2/2me given to the electron if an energy
E were imparted to the particle in ionization state r. So far, however, we have not
considered that each state of ionization also comprises several states of excitation.
Calling the excitation of the particle in the rth state i, and that in the [r + 1]st state
j, we write the Saha equation

nr+1,j

nr,i
=
g′r+1,j

gr,j
exp−[(χr + Er+1,j − Er,i + p2/2me)/kT ] , (4-107)

where χr is the energy required to ionize the atom from the lowest excitation level
in the rth state of ionization to the corresponding level in the (r + 1)st state, me

is the electron mass, and Er+1,j and Er,i, respectively, are the excitation energies
within the corresponding ionization states.

Now, g′r+1,j consists of the product of two degeneracies, gr+1,j and g′e, where
gr+1,j is the degeneracy of the ionized particle in state [r + 1, j], and ge is the
electron degeneracy given by the number of states available for the liberated electron
to enter upon ionization with kinetic energy p2/2me. This electron degeneracy is
(see (4–65)) just g′e = Z(p) dp/neV = 4πgep

2 dp/neh
3, corresponding to the

number of phase space states available in volume V and momentum range p to
p + dp to a single electron when the electron density is ne. Here ge = 2 is the
electron spin degeneracy.

Recalling equations (4–105) and (4–106) and integrating equation (4–107) over
all values of p, we obtain

nr+1,jne

nr,i
=
gr+1,jge

gr,i

[2πmkT ]3/2

h3
exp−

[
χr + Er+1,j − Er,i

kT

]
. (4-108)
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We will need this expression in Chapter 8 to calculate the opacity inside a star and
the time required for radiation to traverse the distance from the star’s center to its
surface.

PROBLEM 4–24. In the solar corona, collisional excitation of atoms predominates
over other processes of excitation. Among the identified spectral lines are those of
CaXIII (12 times ionized calcium) and CaXV (14 times ionized). The ionization
potentials of these ions are 655 and 814 eV, respectively. The lines from CaXIII are
considerably stronger than those of CaXV. This fact alone can tell us very roughly
what the temperature of the corona is. What is it?

4:17 Mean Values

Once the energy, frequency, or momentum distribution of particles in an assembly
are known, mean values of various functions of these parameters can be computed.
For particles obeying Maxwell–Boltzmann statistics, the mean value of a function
F (p) is

〈F (p)〉 =

∫∞
0
Z(p)F (p)e−p2/2mkT dp∫∞
0 Z(p)e−p2/2mkT dp

. (4-109)

This equation has precisely the form of equation (4–19). The integrand in the de-
nominator is the probability of finding a particle with any momentum p.

These integrals of the error function type all have the form∫ ∞

0

xn−1e−ax2
dx =

Γ (n/2)
2an/2

. (4-110)

where the Gamma function is Γ (n) = (n− 1)! and Γ (1
2) =

√
π.

PROBLEM 4–25. Two frequently encountered quantities are 〈|p|〉 and 〈p2〉. The
first of these is the mean magnitude of the momentum. The mean momentum 〈p〉 is
zero because momenta along different directions cancel. Show that

〈|p|〉 =

∫∞
0

|p|p2e−p2/2mkT dp∫∞
0 p2e−p2/2mkT dp

=
1
2(2mkT )2Γ (2)

1
2(2mkT )3/2Γ (3

2)
=

√
8mkT
π

. (4-111)

Show also that

〈p2〉 =

∫∞
0
p4e−p2/2mkT dp∫∞

0
p2e−p2/2mkT dp

= 3mkT . (4-112)

PROBLEM 4–26. In Section 6:18 we will make use of the quantity 〈1/v〉. Show
that
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1
v

〉
=

√
2m
πkT

. (4-113)

PROBLEM 4–27. By observing the shape of a spectral line in astronomical spec-
troscopy we can only determine velocities of atoms along a line of sight. To derive
the temperature of a gas whose mean squared random velocity 〈v2

r 〉 along the line
of sight is known, we therefore have to know how 〈v2

r 〉 and T are related. For a
Maxwell–Boltzmann distribution show that

〈v2
r 〉 = kT/m. (4-114)

The analogous integrals required for computing mean values for energies or mo-
menta for fermions or bosons involve the Fermi–Dirac or Bose–Einstein distribution
functions.

4:18 Fluctuations

Random processes invariably exhibit deviations from a mean. These fluctuations
can be expressed in terms of the mean square deviation, which is always positive.
It is obtained by taking the deviation of each value from the mean, squaring that
deviation, and then averaging over all deviations. For energy E

〈(∆E)2〉 = 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2 . (4-115)

For a Maxwell–Boltzmann distribution, we can write

〈E2〉 − 〈E〉2 =

∫∞
0
Z(E)E2e−E/kTdE∫∞

0
Z(E)e−E/kTdE −

(∫∞
0
Z(E)Ee−E/kTdE∫∞

0
Z(E)e−E/kTdE

)2

. (4-116)

By carrying out a partial differentiation with respect to temperature T , the right side
of this equation is seen to equal

kT 2 ∂

∂T

(∫∞
0
Z(E)Ee−E/kTdE∫∞

0
Z(E)e−E/kTdE

)
= kT 2 ∂

∂T
〈E〉 . (4-117)

We, therefore, obtain the energy fluctuation in a Maxwell–Boltzmann distribution
as

〈(∆E)2〉 = kT 2 ∂〈E〉
∂T

, (4-118)

an expression known as the Einstein–Fowler equation.

PROBLEM 4–28. Show that the relation (4–118) also holds for blackbody radia-
tion.
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4:19 The First Law of Thermodynamics

The first law of thermodynamics expresses the conservation of energy. If a gas is
heated the supplied energy can act in one of two ways. It can raise the gas temper-
ature, or it can perform work by expanding the gas against an externally applied
pressure. Symbolically we write3

−dQ = dU + PdV, (4-119)

where all quantities are normalized to one mole of matter and where the left-hand
side gives the amount of heat −dQ supplied to the system; dU is the change in inter-
nal energy and P dV is the work performed. The nature of this last term is easily
understood if we recall that work is involved in any displacement D against a force
F . If the change in volume dV involves, say, the displacement of a piston of area A,
then the force applied is F = PA and the distance the piston moves is D = dV/A.

The internal energy U of the gas is the sum of the kinetic energy of translation
as the molecules shoot around; the kinetic and potential energy involved in the vi-
brations of atoms within a molecule; the energy of excited electronic states; and the
kinetic energy of molecular rotation.

Q is the heat content of the system. The heat Q that must be supplied to give rise
to a one degree change in temperature is called the heat capacity of the system. The
heat capacity depends on the amount of work that is done. If no work is involved
— which means that the system is kept at constant volume — all the heat goes into
increasing the internal energy and

cv =
[−dQ
dT

]
V

=
dU

dT
. (4-120)

The subscript V denotes constant volume.
Sometimes we need to know the heat capacity under constant pressure condi-

tions. For an ideal gas, this relation is quite simple. In differential form, the ideal
gas law (4–34) reads

P dV + V dP = RdT (4-121)

so that the first law becomes

−dQ =
(
dU

dT
+R

)
dT − V dP . (4-122)

For constant pressure

cp =
dU

dT
+R . (4-123)

For an ideal gas we therefore have the important relation

3 −dQ is not an exact differential. This means that the change of heat −dQ depends on how
the change is attained. For example, it can depend on whether we first raise the internal
energy by dU , and then do work P dV , or vice versa.
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cp − cv = R = Nk . (4-124)

This follows from (4–120) and (4–123). N is Avogadro’s number and the heat
capacities are figured for one mole of gas.

We have already stated that the internal energy involves the translation, vibra-
tion, electronic excitation, and rotational energy of the molecules. We can ask our-
selves how these energies are distributed in a typical molecule. We know that the
probability of exciting any classical particle to an energy E is proportional to the
Boltzmann factor e−E/kT . This is true whether E is a vibrational, electronic, rota-
tional, or translational energy. For an assembly of classical particles, then, the mean
internal energy per molecule depends only on the number of ways that energy can
be excited, that is, the number of degrees of freedom multiplied by kT/2. This fac-
tor kT/2 is consistent with our previous finding that the total translational energy,
which has three degrees of freedom, is (3

2
)NkT per mole. Each translational degree

of freedom, therefore, has energy 1
2
kT and each other available degree of freedom

in thermal equilibrium will also be excited to this mean energy. This is called the
equipartition principle.

PROBLEM 4–29. Show that an interstellar grain in thermal equilibrium with gas
at T ∼ 100 K rotates rapidly. If its radius is a ∼ 10−5 cm and its density is ρ ∼ 1,
show that the angular velocity is about ω ∼ 105·5 rad s−1.

The equipartition principle is a part of classical physics. It does not quite agree
with observations; the actual values can be explained more easily by quantum me-
chanical arguments. The difference between classical and quantum theory hinges to
a large extent on what is meant by “available” degrees of freedom. The electroni-
cally excited states of atoms and molecules normally are not populated at low tem-
peratures. Hence, at temperatures of the order of several hundred degrees Kelvin,
electronic states do not affect the heat capacity. Even the vibrational states then
make a relatively small contribution to the heat capacity because vibrational ener-
gies usually are large compared to rotational energies. Aside from the translational
contribution, it is therefore the low-energy rotational states which, at low temper-
atures, make a major contribution to the internal energy and the specific heat at
constant volume.

The rotational position of a diatomic molecule can be given in terms of two co-
ordinates θ and φ. It therefore has two degrees of rotational freedom. A polyatomic
molecule having three or more atoms in any configuration except a linear one re-
quires three coordinates for a complete description and therefore has three degrees
of rotational freedom. A diatomic or linear molecule makes a rotational contribution
of kT to the heat capacity and a nonlinear molecule contributes 3kT/2. Even these
relatively simple rules hold only at low temperatures. At higher temperatures rota-
tional states with progressively higher quantum numbers are excited and a quantum
mechanical weighting function has to be introduced to take into account the number
of degenerate (identical) states that can be excited.
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We will be interested in the heat capacity of interstellar gases where temper-
atures are low and many of the above-mentioned difficulties do not arise. Let us
define the ratio of heat capacities, respectively, at constant pressure and volume as
cp/cv ≡ γ. Then by (4–124) we have

γ ≡ cp
cv

=
cv + Nk

cv
. (4-125)

For monatomic gases we deal with the translational internal energy and cv =
3kN/2, so that γ = 5

3
. For diatomic molecules two rotational degrees of freedom

are available in addition to the three translational degrees, so that cv = 5kN/2 and
γ = 7

5 .

4:20 Isothermal and Adiabatic Processes

The contraction of a cool interstellar gas cloud or, equally well, the expansion of
a hot ionized gas cloud can proceed in a variety of ways. Some cosmic processes
involving the dynamics of gases can occur quite slowly at constant temperature.
These are called isothermal processes. The internal energy does not change and
the heat put into the system equals work done by it. Another type of process that
describes many rapidly evolving systems is the adiabatic process in which there is
neither heat flow into the gas nor heat flowing out, −dQ = 0.

−dQ = cv dT + P dV = 0 . (4-126)

For an ideal gas

cv dT +
RT

V
dV = 0 and cv

dT

T
+ (cp − cv)

dV

V
= 0 . (4-127)

Integrating, we have

logT + (γ − 1) logV = constant , (4-128)

or
TV γ−1 = constant ,

PV γ = constant, and (4-129)

P (γ−1)T γ = constant .

These are the adiabatic relations for an ideal gas. They govern the behavior, for
example, of interstellar gases suddenly compressed by a shock front heading out
from a newly formed O star or from an exploding supernova. We will study these
phenomena in Chapter 9.

For thermalized electromagnetic radiation the internal energy in volume V is

U = aT 4V. (4-130)
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This is just the energy density. The pressure has one-third this value, by (4–43), and
for volume V we can describe an adiabatic process by

−dQ = dU + P dV = 4aT 3V dT +
4
3
aT 4 dV

= 3V dP + 4P dV = 0 , (4-131)

P ∝ V −4/3, γ =
4
3
, (4-132)

Because of its role in adiabatic processes, the ratio of heat capacities of a gas
γ is referred to as its adiabatic constant. In the hot interstellar medium where, to a
good approximation, we deal only with radiation, monatomic, diatomic, or ionized
particles, γ ranges from 4

3 to 7
5 or 5

3 depending on whether radiation or gas particles
dominate the pressure. In very cold gas clouds dominated by molecular hydrogen,
γ may have a value as high as 5

3 because the temperature is insufficiently high to
excite the molecules to rotate or vibrate. However, in shocked molecular regions,
with which we shall deal in Chapter 9, the temperature of a molecular cloud can
rise sufficiently to excite both rotational and vibrational states and γ can approach
8
6 because then cv = 6kN/2. A reduction of γ below 4

3 can also be the trigger for
pre-supernova collapse, as we will see in Section 8:12.

4:21 Entropy and the Second Law of Thermodynamics

Equation (4–43) tells us that the pressure of thermal radiation is just one-third of the
radiation density given in (4–130). We can therefore write the first law of thermo-
dynamics as

−dQ ≡ T dS = dU + P dV = 4aT 3V dT +
4aT 4

3
dV , (4-133)

where the first equality is a definition of the entropy S. Although −dQ is not an exact
differential, dS is.

PROBLEM 4–30. Show that the radiation entropy can be obtained from (4–133) as

S =
4aT 3V

3
. (4-134)

The second law of thermodynamics asserts that the entropy of a closed system
can at best remain constant, but will normally increase during any physical process.
In this context it is interesting to see what Liouville’s theorem tells us about the use
of telescopes in concentrating light beams onto small detectors. In many applica-
tions we could obtain very high instrumental sensitivity if light from some cosmic
source could be concentrated onto the smallest possible detector. Let the solid angle
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subtended by the astronomical object be Ω and let the telescope area be A. Then
Liouville’s theorem states that the smallest detector area onto which the light could
be focused is

a =
AΩ

4π
, (4-135)

and that is only possible if light can be made to impinge on the detector from all
sides. Usually we are able to make light fall onto the detector only from some
smaller solid angle Ω′ < 4π so that the minimum area of the detector becomes

a =
AΩ

Ω′ . (4-136)

A violation of this restriction would imply that the radiation temperature at the
source was lower than at the detector and that radiation was actually flowing from
a cooler to a hotter object. This would violate the second law of thermodynamics
which states that heat cannot flow freely from a cold to a hot object, because the
combined entropy of the two objects would then be lowered.

4:22 Formation of Condensations and the Stability of the
Interstellar Medium

We think that the stars were formed from gases that originally permeated the whole
Galaxy, and that galaxies were formed from a medium that initially was more or
less uniformly distributed throughout the Universe.

There is strong evidence that star formation is going on at the present time. Many
stars are in a stage that can only persist for a few million years because the stellar
luminosity — energy output — is so great that these stars soon would deplete their
available energy and evolve into objects with entirely different appearance. These
bright stars are generally found in the vicinity of cool, dusty, molecular clouds, and
appear to have formed from this dense gas.

We now ask how a molecular cloud could collapse to form a star. To answer this
question we can study the stability of the cloud and its dependence on the ratio of
heat capacities γ.

Consider an assembly of molecules. Their kinetic energy T per mole is

T =
3
2
(cp − cv)T , (4-137)

or

T =
3
2
(γ − 1)cvT . (4-138)

The internal energy is
U = cvT. (4-139)

Hence

T =
3
2
(γ − 1)U . (4-140)
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By the virial theorem (3–85) we then have

3(γ − 1)U + V = 0 (4-141)

as long as inverse square law forces predominate among particles. This means that
the equation holds true both when gravitational forces are important and where
charged particle interactions dominate the behavior on a small scale (see Section
4:23 below). Sometimes it can even hold when light pressure from surrounding stars
acts to drive dust grains toward each other.

If the total energy per mole is

E = U + V (4-142)

we have from equation (4–141) that

E = −(3γ − 4)U = −
(

3γ − 4
3(γ − 1)

V

)
. (4-143)

Three results are apparent (Ch39)*:

(a) If γ = 4
3

, E is always zero independent of the configuration of the cloud.
Expansion and contraction are possible and the configuration is unstable. This case
corresponds to a photon gas (4–130) and to molecular hydrogen at sufficiently high
temperatures to excite both rotational and vibrational excited states. In its early
stages, a planetary nebula has radiation-dominated pressure acting to produce its ex-
pansion (Ka68). It should therefore be only marginally stable. Similarly, a shocked
interstellar molecular cloud should exhibit signs of instability, and this appears to
be supported by the observation that protostars and young stars are often observed
in clouds that also exhibit prevailing shocks.

(b) For γ = 1, V is always zero for any E value and again no stable configuration
exists.

(c) For γ > 4
3

, equation (4–143) shows that E is always negative and the system
is bound. If the system contracts and the potential energy changes by ∆V then

∆E = +
(3γ − 4)
3(γ − 1)

∆V = −(3γ − 4)∆U . (4-144)

An amount of energy −∆E is lost by radiation

−∆E = − 3γ − 4
3(γ − 1)

∆V , (4-145)

while the internal energy increases by

∆U = − 1
3(γ − 1)

∆V (4-146)

through a rise in temperature.
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As a protostar contracts to form a star it therefore becomes progressively hotter.
Two factors are worth mention:

(a) When theories of the kind developed here are applied on a cosmic scale, say,
to formation of galaxies or clusters of galaxies, we run into difficulties in defin-
ing the potential V. The zero level of the potential can no longer be defined using
Newtonian theory alone, and some more comprehensive approach such as that of
general relativity should be used. This considerably complicates the treatment of
the problem.

(b) In practice, star formation may be preferentially induced by external events.
This is indicated by the observed formation of massive stars in regions where other
stars have just formed and where pressures from the surrounding medium are setting
in. Formation, especially of massive stars, may result from the compression of cool
gas clouds in collisions of galaxies, or where supersonic stellar winds, supernova
explosions, or intense ultraviolet radiation from nearby hot stars shock these clouds.
We will discuss such processes in Chapters 9 and 10. The stability of an isolated
medium, as treated above, may therefore not be strictly relevant to the discussion.
The angular momentum of a cloud or the magnetic fields threading it, also plays a
role. Nevertheless, conditions stable as judged by their ratio of heat capacities γ tend
to resist compression, whereas intrinsically unstable configurations more readily
collapse under pressure.

4:23 Ionized Gases and Clusters of Stars and Galaxies

The behavior of large clusters of stars or galaxies can be described statistically much
as we describe the behavior of gases. There are many striking similarities between
the physics of ionized gases (plasma) and aggregates of stars or galaxies. These
similarities come about because Newton’s gravitational attraction can be written in
a form similar to Coulomb’s electrostatic force:

Newton’s force Coulomb’s force

(iG1/2m1)(iG1/2m2)
r2

Q1Q2

r2
.

(4-147)

Here the gravitational analogue to electrostatic charge is the product of mass, the
square root of the gravitational constant, and the imaginary number, i. The cor-
respondence can be extended to include fields, potentials, potential energies, and
other physical parameters. The primary difference between gravitational processes
and electrostatic interactions is that electric charges can be both positive and nega-
tive whereas the sign of the gravitational analogue to charge is always the same —
mass is always positive. Let us first derive some properties of assemblies of gravita-
tionally interacting particles and then make a comparison to plasma behavior.
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Clusters of Stars and Galaxies

If we take a spherical distribution of particles — a set of stars or galaxies the attrac-
tive force acting on unit mass at distance r from the center is

F (r) = − 1
r2

∫ r

0

4πGr2ρ(r) dr . (4-148)

This means that
d

dr
r2F (r) = −4πGr2ρ(r) (4-149)

and setting the force per unit mass equal to a potential gradient

F (r) = −∇V(r) = − d

dr
V(r) (4-150)

we have
1
r2

d

dr
r2
d

dr
V(r) = +4πGρ(r) . (4-151)

This is Poisson’s equation. Substituting from equation (4–47) we have the Poisson–
Boltzmann equation for a gas at temperature T :

1
r2

d

dr
r2
dV

dr
= +4πρ0Ge

−[mV(r)/kT ] . (4-152)

The potential appearing in the exponent on the right of this equation was ob-
tained through an integration of ∇V(r) that led to equation (4–46). The behavior of
an assembly of stars or galaxies would, therefore, be no different if some constant
potential present throughout the Universe were added to V(r). This is essentially
the point that was already raised in Section 4:22 in connection with the stability of
uniform distributions of gas.

PROBLEM 4–31. Show that the substitutions

mV(r)
kT

≡ ψ and r ≡
(

kT

4πρomG

)1/2

ξ , (4-153)

where ψ and ξ are dimensionless, turn equation (4–152) into

1
ξ2

d

dξ

(
ξ2
dψ

dξ

)
= e−ψ . (4-154)

We now have to decide on the boundary conditions that have to be imposed on
this differential equation. At the center of the cluster there are no forces and the
first derivative of V or ψ must be zero. Because the potential can have an arbitrary
additive constant, we can set the potential to be zero at the center. In terms of the
new variables these two conditions are
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ψ = 0 and
dψ

dξ
= 0 at ξ = 0 . (4-155)

Taken together with equation (4–154) they lead to a solution that has no closed form
(Ch43)*.

PROBLEM 4–32. Show that in the limit of very small and of large ξ values the
respective solutions are (Ch39)

ψ ∼ 1
6
ξ2 − 1

120
ξ4 +

1
1890

ξ6 + · · · , ξ  1 , (4-156)

ψ ∼ ln
(
ξ2

2

)
, ξ2 > 2 . (4-157)

This can be verified by substitution in equations (4–154) and (4–155). From this, the
radial density and mass distributions can be found (Ch43). The density distribution
is plotted in Fig. 4.15.

One difficulty with this plot and with the asymptotic solution (4–157) is that the
density ρ0e

−ψ is proportional to ξ−2. This causes the total mass integrated to large
distances to become infinite. We therefore need a cut-off mechanism that will re-
strict the radius of a cluster of stars to a finite value. In Chapter 9 we will see how an
external pressure can also lead to a finite size and to a structure for cold interstellar
gas clouds consonant with observations.

Fig. 4.15. Plot of density ρ, curve 1, and areal density σ, curve 2, against radial distance ξ
from the center of a distribution. For a cluster, σ/σ0 represents the star density drop with
radial distance, as measured directly on a photographic plate. ρ0 and σ0 represent values at
the center. ρ/ρ0 = exp(−ψ), ξ = (4πρ0mG/kT )1/2r. (From Principles of Stellar Dy-
namics by S. Chandrasekhar (Ch43). Reprinted through permission of the publisher, Dover
Publications, Inc., New York.)
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Ionized Gases

It is interesting to compare these results to those obtained for ionized gases —
plasma — in which both positive and negatively charged particles are present. The
derivation of the Poisson–Boltzmann equation was in no way based on particle
charges. It concerned itself only with an inverse square law force and a uniform
mass distribution that could equally well have been a charge distribution. Using the
density for an assembly of dissimilar particles (see equation (4–53)), the Poisson–
Boltzmann equation can be written as

1
r2

d

dr
r2
dV

dr
= −4π

∑
i

ni0qie
−qiV/kT (4-158)

for plasma. Here qi is the charge of particles of type i. If we restrict ourselves to
large interparticle distances — a condition that holds in intergalactic, interstellar,
and interplanetary space — then

qiV  kT , (4-159)

and we can use the Taylor expansion

e−qiV/kT = 1 − qiV

kT
+

1
2

(
qiV

kT

)2

+ · · · . (4-160)

Neglecting quadratic and higher terms, the charge density on the right of (4–158)
then becomes

ρ =
∑

i

ni0qi − V

kT

∑
i

ni0q
2
i . (4-161)

The first term vanishes because of charge neutrality for the bulk of the plasma. Note
that this term does not vanish in the gravitational case; there it is dominant. The
second term in (4–161) can be written as

ρ = −Ve2

kT

∑
i

ni0Z
2
i where qi = eZi . (4-162)

Substituting in (4–158) we have

1
r2

d

dr

(
r2
dV

dr

)
=

4πe2V

kT

∑
i

ni0Z
2
i (4-163)

or
d

dr

(
r2
dV

dr

)
= r2V

(
1
L2

)
, (4-164)

where
1
L2

=
4πe2

kT

∑
ni0Z

2
i . (4-165)
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L has the dimension of a length. It is called the Debye shielding length and is a
distance over which a charged particle embedded in a plasma can exert an apprecia-
ble electrostatic field. Beyond that distance its electrostatic influence rapidly dimin-
ishes. For fully ionized hydrogen, L = 6.90(T/n)1/2 cm.

One reason why the shielding length is of interest in astrophysics is because
it points out the impossibility of maintaining an electric field over any large scale.
A field cannot be influential over distances much larger than L. Even for tenuous
interstellar gas clouds with ni0 = 10−3 cm−3, Zi = 1, and T = 100 K, L turns out
to be about 20 meters. This is completely negligible compared to typical interstellar
distances ∼1 pc.

Electrostatic forces may be important in large-scale processes, but only when
they appear in conjunction with large-scale magnetic fields that can prevent the flow
of charged particles along the electric field lines and therefore prevent the charge
separation required for electrostatic shielding. The behavior of plasmas in the pres-
ence of magnetic fields is treated in the theory of magnetohydrodynamic processes
(Co57), (Sp62). We will consider these processes in Chapters 6, 9, and 10.

Answers to Selected Problems

4–2. Suppose we take ni steps of length λi. The mean square deviation then is niλ
2
i ;

and a similar result holds for all step sizes. Hence the final mean square deviation is∑
i niλ

2
i = N〈λ2〉.

4–4. For escape the deviation has to be ∼n1/2 steps of lengthL. Hence n ∼ R2/L2.

4–5. For a given value of Rα, the value of 1/r averaged over all θ-values is

〈1
r
〉 =

〈sin θ〉
Rα

=
2

πRα
〉 .

If we also average over different values of 1/Rα we obtain

〈
1
r

〉
=

2
π

〈
1
Rα

〉
and Total mass =

〈υ2〉
G〈1/r〉 =

3π〈υ2
p〉

2G〈(Rα)−1〉 .

4–6.
nm〈υ2〉

3
∼ 4 × 10−17 dyn cm−2 .

4–7. The collision probability per star pair in unit time is nυσ s−1. In P seconds
the probability is nυσP per star pair, or about 1.5× 10−11 that the Sun would have
formed a planetary system in the time available. If there are 1011 stars altogether, 1.5
pairs, or 3 solar systems would have formed in this way in 5× 109 yr. However, we
know of more than 100 planetary systems within <30 pc of the Sun. Their number
density already is too high to be accounted for by the Jeans hypothesis.

4–8. P ∼ 10−14 dyn cm−2 .
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4–9. υ ∼ (3kT/M)1/2 ∼ 0.8 cm s−1 forM = 4πρr3/3 ∼ 7 × 10−14 g.

4–10. The momentum transfer rate is πr2nυ2m = dp/dt = 3.3 × 10−21 g
cm s−2. The mass of the grains is given in Problem 4–9 and, hence, dυ/dt =
5 × 10−8 cm s−2. This gives the initial acceleration. However, as a grain gains ve-
locity and mass, the acceleration decreases toward a value of zero, which is reached
when the grain reaches velocity υ.

4–11. The mass gain dM/dt = πr2nυm = 3 × 10−27 g s−1. At this rate the grain
would gain 1% of its mass in 2 × 1011 s, a few thousand years.

4–12. 〈v2〉 = 3kT/m; vP ∼ 1.6× 106 cm s−1; ve ∼ 6.7× 107 cm s−1;

4–13. P ∼ 1.4× 10−13 dyn cm−2.

4–14. If n is the number of photons passing through unit area per unit time, the
pressure is

P =
∫
n(ν)hν dν

c
.

The force on the grain is its area, multiplied by P ,

P =
1.37× 106

3 × 1010
= 4.6× 10−5 dyn cm−2 , F = 3.6× 10−9 dyn. (4-166)

4–15. For isotropic scattering we average the function (1−cos θ) over all solid angle
increments to get the mean momentum transfer. Thus

P =
E
3c

+
2E/3c

4π

∫ ∫
(1 − cos θ) sin θ dφ dθ ,

with θ chosen as zero in the forward scattering direction and E the energy incident
on the grain per unit area and time. Thus P = E/c and the grain has a force of
1.4 × 10−12 dyn acting on it at Earth’s distance from the Sun. The gravitational
force ismM�G/R2; herem is the particle mass, M� is the solar mass, andR is the
distance of the Sun from Earth: m = (4πρs3)/3 = 2.5× 10−11 g, the gravitational
force is 1.5×10−11 dyn and the radiative repulsion is about 10% of the gravitational
attraction. The ratio of gravitational to radiative force remains constant because both
diminish as the R2.

4–16. From the equation for the period of a grain in an elliptic orbit

τ =
2πa3/2

(MGeff)1/2
.

We note that the period depends on the square root of the effective gravitational
constant. For Geff = 2

3G the period of the grain will be (3
2)1/2 yr, that is,

1.22 yr. The orbital velocity will be υE/1.22, where υE is Earth’s orbital veloc-
ity; that speed will be roughly 24 km s−1. The collision velocity of Earth with such
a grain would therefore be ∼ 5 km s−1.

4–18. The thinness of the atmospheric layer implies that g is constant throughout.
Hence the scale height h is determined by equation (4–51) and h ∼ 106 cm.
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4–19. Note that this involves an error function integral whose value is, for example,
given later in this chapter in equation (4–110).

4–20.m ∼ 2 × 10−24 g, and υ ∼ 2.4 km s−1.

4–21. Consider Snell’s law of optics, which states that radiation incident on the in-
terface between vacuum and a medium with refractive index n obeys the relation
n sin θn = sin θ0 , where θ0 is the angle that a ray incident on the interface makes
with the normal, and θn is the corresponding angle of the ray after it enters the
medium. In thermal equilibrium, the amount of radiation crossing in each direc-
tion is the same. But radiation incident on the interface from the medium at angles
θn > sin−1(1/n) is totally reflected and cannot exit. The rate at which radiation
exits from the medium is, therefore, restricted both by this limiting angle and the
speed c/n at which it is incident on the interface. The outgoing radiation rate corre-
sponding to the incident rate given by (4–76) is

c

n
〈cos θ〉 =

c

2πn

∫ 2π

0

∫ sin−1(1/n)

0

cos θ sin θdθdφ =
c

2n3
.

For balance between incident and exiting radiation, the radiation density in the
medium must then be n3 times higher than on the vacuum side.

4–23. For each of the three neutrino species

Z(p) dp =
4πp2 dp

h3
· V, p =

E
c
, dp =

dE
c
. ... Z(E) dE =

4πE2 dE
h3c3

V.

The total energy density and mass density for all three species, respectively, are

E
V

= 3
∫ Φν

0

EZ(E) dE
V

=
3πΦ4

ν

h3c3
and ρν =

E
c2V

=
3πΦ4

ν

h3c5
.

4–24. kT ∼ 655 eV ∼ 10−9 erg,

T ∼ 10−9 erg
1.38× 10−16 erg K−1

∼ 8 × 106 K.

We reason that kT ∼ excitation energy; the higher ionized state gives rise to a
weak line because T is not sufficiently high to lead to frequent ionization to this
level. That is, for the higher ionized state kT < ionization energy. For the lower
ionized states kT is probably more comparable to the ionization energy. Actually T
is ∼ 1.5 × 106 K in the corona.

4–28. This can be demonstrated by writing 〈E〉 as the first expression in (4–69),
writing the analogous summation for 〈E2〉, and taking the partial derivative of 〈E〉
with respect to T . Although this holds for just one frequency ν , we can linearly
sum mean square deviations as in (4–16) to show that (4–118) holds over the entire
blackbody spectrum.

4–30. Equation (4–133) leads to dS = (4a/3)d(V T 3), which gives the desired
result with an additive constant of integration which needs to be zero to keep the
entropy proportional to the volume.
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5:1 The Relativity Principle

In discussing Newton’s laws of motion in Sections 3:4 and 3:8, we were careful to
note that they held only under restricted conditions. All motions had to be described
with respect to inertial frames of reference — frames at rest or moving at constant
velocity with respect to the mean motion of ambient galaxies.

Under these conditions not only Newton’s laws but all other laws of physics are
obeyed. This general statement — first formulated by Einstein — is called the prin-
ciple of relativity. It implies that an observer cannot determine the absolute motion
of his inertial frame of reference — only its motion relative to some other frame. The
principle also has many other important consequences which, taken together, form
the basis of the theory of special relativity (Ei–a). As also mentioned in Section
3:8, Einstein broadened the concept of the inertial frame beyond Newton’s scope
of a frame moving at constant velocity with respect to fixed stars. He showed that
we can include coordinate frames fixed in any freely falling, nonrotating bodies.
Althougy such local inertial frames may accelerate with respect to frames that are
far from any attracting massive objects, they are fully equivalent to them as far as
the principle of relativity is concerned. Finally, Einstein postulated that the speed of
light is the same in all reference frames, whether they move or are stationary. This
actually is a consequence of the relativity principle. If this speed were not the same,
an observer could determine whether he was at rest or moving.

We should note that the relativity principle is founded on observations. It could
not have been predicted from logic alone.

In recent centuries, long before Einstein’s birth, there has always been an aware-
ness that some sort of relativity principle might exist. Even the wording of the
principle was similar to Einstein’s, though its implications were quite different. In
Galileo’s time, the speed of light was believed to be infinite as measured in any
reference frame. This implied that the instantaneous transmission of signals and
messages over large distances should be possible. Because any velocity added to an
infinite velocity still gave infinite speed, it was clear that no matter how an observer
moved he would always see light traveling at the same, infinite, speed. Similarly all
other laws of physics seemed to hold identically in any of Newton’s inertial frames.

Then in 1666 Ole Rømer discovered that the speed of light is finite, though large.
This tended to detract from the Galilean relativity principle because it seemed that
an observer moving into the direction of a light source would see the light wave
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moving faster than an observer moving away from the source. But at the end of the
nineteenth century Albert A. Michelson and others discovered that the speed of light
was identical in all the moving reference frames they were able to check. Indepen-
dently Einstein postulated a new principle of relativity similar to Galileo’s except
that the speed of light now was finite and equal in all reference frames. To some
extent this concept had already been present, for several decades, in the electromag-
netic theory of James Clerk Maxwell, but the required constancy of the speed of
light was considered a weakness of the theory, not its strength.

As we will see, Einstein’s relativity principle also led him to conclude that no
physical object could travel at a speed in excess of light, c = 2.998 × 1010 cm
s−1; the concept of an infinite velocity had no correspondence in physical moving
objects.

The theory of relativity has the task of formulating the laws of physics in such a
way that physical processes can be accurately described in any moving coordinate
system. This study conveniently divides into two parts. The first theory is more
restricted. It deals with physical processes as viewed from inertial reference frames
and specifically excludes any consideration of gravity. This is special relativity. The
second, more general theory incorporates not only special relativity but also the
study of gravitational fields and arbitrarily accelerated motions. It is therefore called
the general theory of relativity.

5:2 Relativistic Terminology

Suppose a physical process occurs in a system at rest with respect to some inertial
reference frame K′. An observer O in some other inertial frame K views this pro-
cess. If K and K′ are moving at large velocities V , relative to each other, observer
O will see events inK′ distorted both in space and in time, but the special theory of
relativity will allow him to reconstruct events as they would occur in his own system
K. This is a very useful property of relativity theory. We will find many applications
of it in astrophysics where high velocities are often encountered. The special theory,
however, goes beyond this limited function of reconstructing clear pictures from ap-
parently distorted observations. It gives new insight into the relation between time
and space, and among momentum, energy, and mass; it justifies the impossibility of
massive bodies moving through space at velocities exceeding the speed of light and
yields many other new results.

To make full use of the theory, we will need to take a few preparatory steps. We
must define new concepts and formulate them mathematically.

(a) To the extent that it is valid, the special theory abolishes an absolute standard
for a state of rest. It states that there is no way of defining zero speed in an absolute
way. Bodies may be at rest — but only relative to some other body or frame of
reference.

We know that this statement need not be quite true. A preferred natural state of
rest does exist for any locality in the Universe. It is the state of rest relative to the
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mean motion of ambient galaxies. This was not known at the time relativity theory
was established. It tends to weaken the statement we formulated above, and allows
us to state only that an absolute standard of rest is inconsequential to special relativ-
ity. The theory draws no distinction between absolute rest and constant velocity.

(b) In relativity we will talk about events that have to be described both by a
place and a time of occurrence. We need four coordinates to define an event —
three space coordinates and a time coordinate.

Correspondingly there exists a hypothetical four-dimensional space having spa-
tial and time coordinates. In this space, events are represented by world points (x,
y, z, t). Any physical process can be described as a sequence of events and can
be represented as a grouping or continuum of world points in the four-dimensional
space–time representation. Each physical particle can be represented by a world line
in this four-dimensional plot. Even if its spatial coordinates (x, y, z) remain constant
in a given reference frame, a particle’s location in time will progress along its world
line.

Einstein realized that the constancy of the speed of light c necessitated a revision
of the concepts of distance and time. A mirror M1, stationary with respect to an
observer O, could be said to be at a distance c(t1 − t0)/2 if the reflection of a light
pulse emitted by the observer at time t0 reached him at time t1. A second, stationary
mirrorM2, then was equidistant from O if its reflection of the same light pulse also
returned at identical instant t1. Conversely, if two flashes of light reached O at the
same instant t1 from equidistant points S1 and S2, they could be said to have been
emitted simultaneously. Einstein made this the definition of simultaneity.

Figure 5.1 shows an observer O at rest with respect to equidistant light sources at
points S1 and S2. Another observer O′ is at rest with respect to equidistant mirrors
M ′

1 and M ′
2 and in motion with respect to O at relative velocity V . The straight line

S1S2 is collinear with the line M ′
1M

′
2 and the vector direction of V . Observers O

and O′ thus pass by each other and can synchronize their watches at the instant their
positions coincide. They respectively designate this instant t0 and t′0.

When flashes of light are simultaneously emitted at S1 and S2 at time t0, they
will arrive simultaneously at observer O but not at O′, who will have moved to the

Fig. 5.1. Diagram to describe measurements carried out by observers O and O′ in motion at
relative velocity V . M ′

1 and M ′
2 are stationary mirrors equidistant from O′. Sources S1 and

S2 are equidistant from O and emit flashes of light. S1, S2, M ′
1, M ′

2, and V all are collinear.
O′ is moving to the right relative to O.
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right during the time it took light to cover the distance. O′ will observe the flash of
light from S2 reaching him before the flash from S1.

Suppose O′ emits a series of carefully clocked light pulses that are reflected by
mirrorsM ′

1 and M ′
2. One of these pulses reflected from M ′

2 returns to him simulta-
neously with the arrival of a flash from S2. Somewhat later, another pulse, reflected
by M ′

1 reaches him simultaneously with a flash emitted at S1. Observer O notifies
O′ that the flashes from S1 and S2 were emitted simultaneously. Since O′ knows
M ′

1 and M ′
2 to be equidistant from him, he infers that M ′

2 passed S2, before M ′
1

passed S1. From this he concludes that the distance between S1 and S2 is shorter
than the distance between M ′

1 and M ′
2.

By symmetry, observer O concludes the exact opposite. Quite generally, the
lengths of rods and distances between points along the direction of motion appear
contracted when viewed by an observer in relative motion.

The same considerations also affect measures of time. Observers O′ and O both
see each other in relative motion at velocityV . Observer O′ clocks pointM ′

1 passing
first by S1 and then by S2 at times separated by an interval [S1S2]/V . Observer O
measures the elapsed time between these events in the same way. But he judges the
distance [S1S2] between light sources to be longer than that measured by O′ and,
therefore, the time elapsed appears to him longer than the time interval measured
by O′. To O, the clock used by observer O′ appears to run slower than his own.
Observer O′ again concludes the opposite. Time appears dilatated in a coordinate
frame in motion relative to an observer.

Given these apparently conflicting measurements, which indicate that neither
time intervals∆t nor lengths∆x have absolute values independent of the motion of
an observer, Einstein pointed out how we might still make sense of our observations.
The principle of relativity offers a simple guide. If the laws of physics are indepen-
dent of the observer’s inertial reference frame, then one consequence should be that
the wave front from a flash of light propagating through vacuum should expand
spherically, independent of the observer’s motion. We will return to this expanding
wave, below, to see how this helps us to make sense of measurements made by ob-
servers in relative motion. However, we first need to define a number of additional
concepts.

(c) Two distinct events labeled a and b are separated by an interval, sab, of length

s2ab = −[(xa − xb)2 + (ya − yb)2 + (za − zb)2 − c2(ta − tb)2] . (5-1)

This suggests that we could define a new coordinate τ = ict, where i is the imagi-
nary number, to obtain (5–1) in the form

s2ab = −[(xa − xb)2 + (ya − yb)2 + (za − zb)2 + (τa − τb)2] . (5-2)

This form brings out a symmetry between time and space coordinates. Equation
(5–2) is just the Pythagorean expression for the separation of two points in a four-
dimensional flat space. Such a space is also called a Euclidean space, and the par-
ticular four-dimensional space described in (5–1) is known as a Minkowski space
(Mi08). Equation (5–2) helps to point out some of the properties of space and time
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coordinates. The time coordinate in the formulation (5–2) is an imaginary quantity,
whereas the spatial coordinates are real. Unfortunately, the substitution τ = ict is
not very useful. Special relativity, in its full form, deals with quantities that are best
described in tensor notation. But that notation cannot be properly used if time is
taken to be an imaginary quantity. Rather, as we will see, x, y, z, and ct should be
considered to be components of a four-vector in a space that is said to have signature
(+ + +−), meaning that the Pythagorean expression for the square of the interval
between events is the sum of the squares of the spatial components of the separation,
with the square of the time increment subtracted.

(d) We can formulate equation (5–1) in differential form

ds2 = −(dx2 + dy2 + dz2 − c2 dt2) , (5-3)

where ds is called the line element.
(e) The interval between two events is said to be timelike if s2ab > 0 and spacelike

if s2ab < 0. When s2ab just equals zero, we see from either equation (5–1) or (5–3),
that

υ2
x + υ2

y + υ2
z ≡ υ2 = c2 . (5-4)

The surface containing all intervals sab = 0, or line elements ds = 0 is called the
light cone. It contains all trajectories going through a point (x, y, z, t) with the speed
of light. A two-dimensional projection of this cone is shown in Fig. 5.2, where we
have chosen coordinates y = z = 0 and the projection of the surface

x2 + y2 + z2 = c2t2 (5-5)

now becomes x = ±ct with slope

dt

dx
= ±1

c
. (5-6)

Fig. 5.2. World diagram to show the relation between different kinds of events.
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Consider an observer placed at the origin of the coordinate system. All lines
representing physical particles must indicate velocities υ < c and, therefore, are
contained in that part of the light cone containing the t-axis. The lower half of the
diagram represents the past. The upper half contains all world points lying in the fu-
ture. The two parts of the diagram containing the x-axis are absolutely inaccessible
in the sense that velocities greater than the speed of light would be required to reach
them.

It is interesting that the concept of absolute past and future depends on the fact
that the speed of light cannot be exceeded. If it could, we would be able to travel to
a sufficiently distant point and “catch up” with light that had been emitted, say, in
the supernova of 1054 A.D. With a sufficiently good telescope we could then “look
back” and see the star just prior to explosion. The event could thus be brought into
our “present,” but it would still be inaccessible to us in the sense that we would
not be able to influence the event in any way. This problem is looked at further in
Section 5:12.

(f) The time read on a clock moving with the reference frame of an observer is
called the proper time for that frame; and the length of an object measured in that
frame is called the proper length.

5:3 Relative Motion

Let us now consider two inertial frames of reference K and K′, whose axes x, y, z
and x′, y′ , z′ are parallel (Fig. 5.3). Relative to K, K′ moves with velocity V along
the x-axis. An event has coordinates (x, y, z, t) as measured by an observer at rest
in system K, and coordinates (x′, y′, z′, t′) as measured by an observer at rest in
K′.

Fig. 5.3. Notation for moving coordinate frames.
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At some time t = t′ = 0, let the origins of the two reference frames coin-
cide. The subsequent motion will not affect the identity of the y- and z-components:
y′ = y and z′ = z; but t and x will be related to t′ and x′ through a more compli-
cated set of relations, the Lorentz transformations, which read (Lo–):

x =
x′ + V t′√
1 − V 2/c2

, y = y′, z = z′, t =
t′ + V (x′/c2)√

1 − V 2/c2
,

or (5–7)

x1 = (x′1 + βx′4)γ(V ), x2 = x′2, x3 = x′3, x4 = (x′4 + βx′1)γ(V ),

where we have set x ≡ x1, y ≡ x2, z ≡ x3, ct ≡ x4, β ≡ V/c, and
γ(V ) ≡ (1 − β2)−1/2. The second of the two formulations (5–7) shows the sym-
metry between space and time coordinates. γ(V ) is called the Lorentz factor.

These equations can be derived and follow directly from the principle of relativ-
ity and the constancy of the speed of light. Here we will only show that the equations
are consistent with some of the predictions of the principle. For example, since the
speed of light is the same in systems K and K′, we would expect that a light wave
emitted at t = t′ = 0 — that is, when the origins of the coordinate systems coincide
— would propagate spherically in both systems.

PROBLEM 5–1. Equation (5–5) describes the propagation of a spherical wave front
in the coordinate system K. Show that according to (5–7), the corresponding equa-
tion describing the propagation of the wavefront in K′ is

x′2 + y′2 + z′2 = c2t′2

making this wave appear spherical too. This is the validation of equations (5–7)
along the lines we were proposing at the end of Section 5:2(b).

Another consequence of the relativity principle is that formulae expressing x′,
y′, z′, and t′ in terms of x, y, z, and t can be obtained easily by changing V to −V .

PROBLEM 5–2. Show that this procedure is valid by actually solving equations
(5–7) for x′, y′, z′, and t′.

We also want to examine whether the speed of light will always appear to be c,
viewed from any reference frame. We can answer this question by discussing how
velocities transform according to equations (5–7). Let us write the expressions in
differential form:

dx = (dx′ + V dt′)γ(V ), dy = dy′, dz = dz′, (5-8)

dt =
(
dt′ + (V/c2) dx′

)
γ(V ) .
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This allows us to write the derivatives

υx =
dx

dt
=

dx′ + V dt′

dt′ +
V

c2
dx′

=
υ′x + V

1 + υ′x
V

c2

,

υy =
dy

dt
=

υ′y(
1 + υ′x

V

c2

)
γ(V )

, (5-9)

υz =
dz

dt
=

υ′z(
1 + υ′x

V

c2

)
γ(V )

.

These equations prescribe the composition (addition) of velocities. If υ′z = υ′y = 0,
and we write υ′x = υ′ , then equations (5–9) show that υy = υz = 0 and υx = υ
where

υ =
υ′ + V

1 +
υ′V
c2

. (5-10)

When all motions are along the x-axis, a velocity measured as having a value υ′ in
reference frame K′, will appear to have velocity υ in a frame K. The velocities υ,
υ′, and V are related by equation (5–10). V is the velocity ofK′ relative to K (Fig.
5.3).

Three cases are of interest:

(a) If υ′ = V = c, then substitution shows that υ = c.
(b) If υ′ < c and V = c, or if υ′ = c and V < c, then υ = c. This also can be

shown by substitution in equation (5–10). It means that the speed of light is constant
and has a value c in all inertial frames of reference.

(c) Finally, if υ′ < c and V < c, then υ < c.

PROBLEM 5–3. Show that the result (c) is always true by writing υ′ = (1 − δ)c,
V = (1 −∆)c where 0 < δ, ∆ < 1.

PROBLEM 5–4. If the speed of light is infinite, Galilean relativity results. Give the
transformations equivalent to (5–7) to (5–9) and obtain the law of composition of
velocities. These expressions should be consistent with Newtonian physics.

Expression (5–10) is interesting because it also shows that a particle traveling at
a speed less than the speed of light can never be accelerated to a speed equaling c.
To see this, suppose that the particle initially was moving with velocity V . It is now
given an extra velocity υ′ that is also less than c. From case (c), above, we see that
the resultant velocity is always less than c. We can keep adding small increments to
the particle’s velocity, but to no avail. It will always move at a speed less than the
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speed of light. Highly energetic cosmic-ray particles travel at very nearly the speed
of light. When accelerated, they move a little faster, but never faster than c.

The Lorentz transformation leaves the interval s between two events invariant,
but this is done at the expense of changes in the apparent time and spatial separations
of events. If a clock is at rest at position x = 0 in K, then the proper time for
observer O at rest in frame K is given by t, whereas O′ at rest in K′ measures

t′ =
(
t− V

x

c2

)
γ(V )

∣∣∣∣
x=0

= t γ(V ) . (5-11)

Actually, we are not interested in an absolute time, only in time intervals ∆t =
t1 − t2 and ∆t′ = t′1 − t′2, where the equations (5–11) reduce to

∆t′ =
∆t√

1 − V 2/c2
≡ ∆t γ(V ) . (5-12)

To the observer O′, O’s clock appears to be going slower. He notes a time dilatation
or time dilation in moving reference frames. The relation between ∆t and ∆t′ is
independent of the choice of position, x. The choice x = 0 was not necessary.

In Problem 5–9 we will see that this time dilation can prolong the decay time of
fast-moving, unstable, cosmic-ray particles by many orders of magnitude. The time
dilation is a dominant effect for the decay of such particles.

We can similarly derive the change in spatial separation between simultaneously
observed events. If the positions of two points at rest in the K system are xa and xb

as measured by observer O at rest in K, the proper length of a line joining the two
points is ∆x = xb − xa. O′, the observer at rest in K′, measures the separation of
the two points at some given time t′. We use the equations

xa = (x′a + V t′)γ(V ), xb = (x′b + V t′)γ(V ) , (5-13)

where t′ is the same in both expressions because O′ sees both points simultaneously.
The spatial separation observed from the K′ frame, then, is

∆x′ = x′a − x′b = (xa − xb)

√
1 − V 2

c2
=

∆x

γ(V )
. (5-14)

Because the square root term is always less than unity the length measured by O′ is
shorter than the proper length. We call this the Lorentz contraction (Lo–).

The Lorentz contraction is found only along the direction of motion, while the
transverse dimensions y and z according to equations (5–7) remain unaffected. This
could at first sight lead us to believe that a moving sphere should appear flattened
into an oblate ellipsoid, and that a cube would appear distorted in some way depen-
dent on its orientation with respect to the moving axes.

This view was held for more than half a century after the discovery of the spe-
cial relativistic transformations by Lorentz and Einstein. But in 1959 Terrell (Te59)
suggested that a sphere should always appear spherical, a cube cubical, and so on.
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He showed that the Lorentz transformations, though producing some distortions,
primarily act to change the apparent orientation of the object by effectively rotating
it.

To see how this comes about, suppose that a cube is moving with velocity V
along the x-direction. This motion is relative to an observer O′ who looks at the
cube in a direction transverse to its motion.

We will be interested in the apparent length of the edges 1, 2, and 3. Let the
length of each edge be L, as measured by an observer O at rest with respect to the
cube, and let edge 1 be perpendicular both to the direction of motion and to the
direction of the observer (Fig. 5.4).

Fig. 5.4. The sides of a rapidly moving cube.

When observer O′ sees both edges 1 and 4 simultaneously — as she would
when taking a photograph — she does not observe photons that were simultaneously
emitted at these two edges. The light reaching her from edge 1 was emitted at a time
L/c earlier than light arriving from edge 4. But at that earlier time, edge 1 occupied
position 1′. A photograph will therefore show a view of the cube with the far edge
occupying position 1′ and the near edge occupying position 4. The projected length
of side 2 is the projected distance between 1′ and 4, namely Lυ/c.

This factor does not enter in discussing the length of edge 4, because all points
along this edge simultaneously emit those light rays that later are simultaneously
observed. Side 4 is perpendicular to the direction of motion and its length is left
unchanged by the Lorentz transformation; the Lorentz transformations also leave
sides 1 and 2 unchanged. But side 3 is shortened by a factor

√
1 − (V 2/c2) (see

equation (5–14)).
A photograph will show sides 1, 2, and 3 having lengths L, LV/c, and L/γ(V ),

respectively. If we define an angle φ by V/c = sinφ, then it is easy to see that these
sides have apparent lengths, L, L sinφ, and L cos φ. The cube appears rotated by an
angle φ.

Although this is true for a small, distant cube at its point of nearest approach,
there are added distortions if the same cube is seen, say, earlier in its trajectory.
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Light arriving from the leading, nearest edge is then emitted later — when the cube
is closer — than light from edge 4, the trailing edge. The near edge therefore ap-
pears disproportionately long. In general, the cube appears both distorted and rotated
(Ma72a)*.

That the appearance of a sphere should remain spherical already follows from
Problem 5–1. However, just as for the cube, a moving observer would see the sphere
rotated.

5:4 Four-Vectors

Let us now turn to the relationship between the world diagrams of two observers O
and O′ moving with inertial frames K and K′. As in Fig. 5.3 we will take K′ to be
moving in the direction of K’s positive x-axis with velocity V relative to K. The
origin of coordinates will then have components y = y′ = 0 and z = z′ = 0 at all
times.

Let us also choose the origins of K and K′ to coincide at some time given by
(5–11) as t = t′ = 0. This means that x = x′ = 0 at that time. As seen by O, the
origin of K′ then has the world line t′, shown in Fig. 5.5. The line passes through

Fig. 5.5. Minkowski diagram showing characteristics of a moving inertial coordinate system
K ′ as seen by another inertial observer.

the origin and has a slope
c dt

dx
=

c

V
. (5-15)

That t′ actually is the time axis for O′ follows from the first and last equations of
the top row of expressions in (5–7) if we set x′ = 0. Again, if we set t′ = 0 in these
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two equations, we see that the slope of the x′-axis in O’s world diagram must be
c dt/dx = V/c. The angle ψ between the ct- and ct′-axes therefore equals the angle
between the x- and x′-axes:

ψ = tan−1 V

c
. (5-16)

The light cone bisects both the spaces K and K′ in this diagram, often called
the Minkowski diagram (Ro68)*.

A vector in the four-dimensional spaces K and K′ appears equally long to both
observers. If the vector joins events (0, 0, 0, 0) and (x1, y1, z1, t1) as seen by O, it
will join (0, 0, 0, 0) and (x′1, y

′
1, z

′
1, t

′
1) as seen by O′. But because we can always

choose the x-direction to coincide with the direction of motion, we can again set
y = y′, z = z′, so that the lengths squared of the two vectors become

L2 = {c2t2 − (x2 + y2 + z2)}
= {[(ct′ + V x′/c)2 − (x′ + V t′)2]γ2(V ) − (y′2 + z′2)} (5-17)

= {c2t′2 − (x′2 + y′2 + z′2)} = L′2 ,

L = L′. (5-18)

The vector therefore has the same length, judged by either observer. Such a vector
with components x, y, z, ct is called a four-vector. Four-vectors play a particularly
important role in special relativity — first because the theory’s natural setting is a
four-space, and second because the length of four-vectors is invariant with respect
to coordinate transformations. This means that one observer measures exactly the
same vector magnitude as any other. But since relativity postulates that the laws of
physics are invariant in all inertial frames, these invariant lengths assume a special
significance in the formulation of the laws of physics.

We note that the length L specified here corresponds to the interval s defined in
equation (5–1). This interval therefore is an invariant. If two events 1 and 2 occur in
one and the same place for an observer O′, we see that ∆s212 = c2∆t212 − ∆l212 =
c2∆t′212 > 0. The square of the interval, ∆s212, is positive because the elapsed time
∆t′212 is a real quantity. In O’s frame ∆l12 is the spatial separation. We see that if an
interval between events is timelike, there exists a frame in which the events occur in
the same place. If the interval is spacelike we can similarly show that a frame exists
in which the two events are simultaneous.

The general transformation of a four-vector with components A1, A2, A3, and
A4 reads (see (5–7))

A1 = [A′
1 + βA′

4 ]γ(V ), A2 = A′
2, A3 = A′

3,

A4 = [A′
4 + βA′

1]γ(V ) .
(5-19)

We will find, for example, that the four-momentum with components (px, py, pz ,
E/c) transforms as a four-vector. So also does a four-vector (Ax, Ay , Az , φ) having
the electromagnetic vector and scalar potentials as components. We will encounter
this later in Section 6:13. There are many other such four-vectors that correspond
to useful physical parameters. Conversely, special relativity requires all physical
entities to have a four-dimensional structure.



5:5 Aberration of Light 169

5:5 Aberration of Light

Next, we will want to use the Lorentz transformations to see how the measurement
of angles depends on the relative motion of an observer. We will find here that the
measurement of an angle — or rather the sine or cosine of an angle — does not
at all involve the measurements of two lengths. Rather it requires the simultaneous
measurement of two velocities. This comes about because a distant observer O must
make his angular measurements using light signals received from an object, and the
law of composition of velocities determines the angles these light rays subtend at
the observer. Suppose a particle has a velocity vector that lies in the xy-plane. The
velocity υ has components υx = υ cos θ and υy = υ sin θ along the x- and y-axes of
the reference frame K. Viewed by an observer at rest in the frame K′, the velocity
components are υ′y = υ′ sin θ′ and υ′x = υ′ cos θ′. The velocity transformation
equations then allow us to write

tan θ =
υy

υx
=

υ′ sin θ′

[υ′ cos θ′ + V ]γ(V )
. (5-20)

When we deal with a light ray, υ′ = c = υ, and the angles subtended by the light
ray transform as

tan θ =
sin θ′

[V/c+ cos θ′]γ(V )
. (5-21)

Fig. 5.6. Aberration of light. A telescope (stationary in some coordinate frame K ′) moves
with velocity V , relative to a star. When the starlight enters, the telescope is in position 1. By
the time the light has traveled the length of the instrument, the telescope has moved to position
2. All this time the telescope is pointed into direction θ′, with respect to the x′-axis. But an
observer whose telescope was at rest with respect to the star’s reference frame K would have
to point it at angle θ relative to x. Aberration is also found in Newtonian physics for a finite
speed of light c. This is already indicated by the magnitude of the effect, which is of order
V/c, whereas purely relativistic corrections are always of order V 2/c2 and, therefore, are
smaller. A relativistic correction needs to be applied to the Newtonian aberration in order to
obtain the true aberration angle.
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From (5–9) we see that for υ = υ′ = c, υx, and υy alone lead to

sin θ =
sin θ′

γ(V )[1 + β cos θ′]
, cos θ =

cos θ′ + β

1 + β cos θ′
. (5-22)

When V  c and the terms in β2 are negligible, the sine equation becomes

[sin θ+ β sin θ cos θ′] = sin θ′ . (5-23)

The aberration angle∆θ = θ′ − θ in the position of a star seen through a telescope
is then

∆θ ∼ β sin θ for ∆θ  1, β  1 . (5-24)

If light travels in a direction opposite to that in which the telescope moves, sin θ′ has
a negative value, that is, θ′ < θ, as shown in Fig. 5.6. This angle is of great practical
importance in observational astronomy. If a star is to be observed at different times
of the year, the direction in which the telescope must be aligned needs to be changed.

PROBLEM 5–5. The orbital velocity of Earth about the Sun is 30 km s−1, which
means that the velocity of Earth changes by 60 km s−1 over a six-month interval.
Taking V ∼ 60 km s−1 shows that for a star in the zenith this angle is

∆θ ∼ V

c
∼ 60

3 × 105
∼ 40′′ of arc ,

which is readily measured.

The aberration of light was first observed in 1728 by James Bradley. His finding
gave conclusive proof that Nicolaus Copernicus had been right, in 1543, when he
asserted that Earth orbits the Sun, rather than the Sun orbiting Earth.

5:6 Momentum, Mass, and Energy

The velocities we have discussed thus far are three-dimensional velocities. In rela-
tivity, however, the proper form to use is a four-vector because, as emphasized in
Section 5:4, four-vectors have an invariant magnitude. We define a four-velocity
with components

ux ≡ dx

ds
, uy ≡ dy

ds
, uz ≡ dz

ds
, ut ≡ c

dt

ds
. (5-25)

Because

ds =
√
c2 dt2 − dx2 − dy2 − dz2 =

cdt

γ(υ)
, (5-26)

the four-velocities (5–25) become
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ux =
dx

dt

1
c
√

1 − (υ/c)2
=
υxγ(υ)
c

, uy =
υyγ(υ)
c

, uz =
υzγ(υ)
c

, ut = γ(υ)

or (5-27)

ui = [γ(υ) dxi/dt]c−1 .

The square of the magnitude of u is:(
cdt

ds

)2

−
(
dx

ds

)2

+
(
dy

ds

)2

+
(
dz

ds

)2

≡ u2
t − (u2

x + u2
y + u2

z) . (5-28)

We see that u is a dimensionless quantity that does not have the units of velocity:
cm s−1. But we may introduce a new quantity Ui ≡ cui, which would have the
more familiar dimensions and still preserve Lorentz invariance. For particles with
rest-mass m0 we can then write

m0

2
[
U2

t − (U2
x + U2

y + U2
z

)]
= L . (5-29)

Equations (5–28) and (5–29) exhibit an invariance property that we will need below.
The magnitude of (5–28) is 1 for particles with rest-mass and 0 for electromagnetic
radiation and gravitational waves. Corresponding to this, L = m0c

2/2 or 0, respec-
tively. As can be seen from equations (3–109), equation (5–29) displays the proper-
ties of a Lagrangian L in the absence of a force field. Frequently we are interested
in a particle’s momentum. This can be written in the form

p = m0vγ(υ) (5-30)

and involves three components that correspond to the quantities

− dL
dUx

= m0Ux = px , − dL
dUy

= m0Uy = py , −m dL
dUz

= m0Uz = pz .

(5-31)
The linear momentum accounts for the first three components of a four-vector whose
fourth component has the form m0Ut. In relativity the fourth component is a mea-
sure of the particle energy E

dL
dUt

= m0Ut = pt =
E
c
. (5-32)

The complete relativistic momentum four-vector then has components

(px, py, pz, E/c). (5-33)

It is clear that in the limit υ  c, the first three components give the classical
momentum p = m0v. However, the energy takes on the new form

E =
m0c

2√
1 − υ2

c2

= m0c
2γ(υ) . (5-34)
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At zero velocity this reduces to

E = m0c
2, (5-35)

an expression now known to be accurate to at least one part in a million (Ra05),
stating that mass and energy are equivalent (Ei–b)*. It is this equivalence that al-
lows stars to radiate. The nuclear reactions that give rise to stellar radiation always
involve a mass loss that liberates energy in the form of photons or neutrinos. As the
star radiates it conserves mass–energy by becoming less massive. Interestingly, Ein-
stein not only realized that a radiating body would lose mass, he also emphasized
that radiation conveys mass from an emitting to an absorbing body. Even though
electromagnetic radiation has no rest-mass, it does carry mass and is deflected by
gravitational fields las are other massive bodies, as we will see in Section 5:14.

For small velocities equation (5–34) can be approximated by the expansion

E = m0c
2 +

1
2
m0υ

2 + · · · , (5-36)

where the second term represents kinetic energy. The next higher term would be
of order m0υ

4/c2. In mechanical or chemical processes m0 remains essentially
constant and we normally see changes only in the m0υ

2/2 term. This is why that
term has classically been so important even though it is far smaller than the energy
contained in a particle’s mass.

Equation (5–34) shows that E → ∞ as υ → c, which means that an infinite
amount of work would be required to accelerate a particle to the speed of light. As
with all special relativistic effects, this statement is valid in inertial frames but need
not be true for others. This is why there is no conflict with the observations that
distant galaxies travel at nearly the speed of light and that some may pass across the
cosmic horizon when their speed, relative to our galaxy, exceeds the speed of light.
Such a horizon is called an event horizon because, if there is some event that may
be occurring in the galaxy just as it crosses the speed of light velocity threshold, this
is the last event occurring in the galaxy that we shall ever witness. Because these
distant galaxies are at rest in reference frames that are accelerated relative to ours,
special relativity does not hold, and we can make no general statements about speed
limitations unless we talk in terms of a less specialized theory, such as the general
theory of relativity.

Two important relations should still be noted. First, equations (5–30) and (5–34)
show that

p =
E
c2

v . (5-37)

Second, writing the four-vector components as

pi = m0cui, (5-38)

we obtain the magnitude of the four-momentum vector

−(p2
x + p2

y + p3
z − p2

t ) = −p2 +
E2

c2
= m2

0c
2 (5-39)
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which again is invariant. Equation (5–39) can be rewritten as

E2 = p2c2 +m2
0c

4 . (5-40)

Since photons have zero rest–mass, and velocity c, (5–37) and (5–40) become

p =
E
c
. (5-41)

The relations (5–37) and (5–40) are of particular importance in cosmic-ray physics,
where particle energies may be as high as ∼ 1020 eV. The rest–mass of a proton
with this energy is only 931 MeV, but the total energy of a cosmic-ray proton can
be ∼1011 times its rest-mass energy. This feature allows a cosmic-ray primary, inci-
dent on the top layers of the Earth’s atmosphere, to undergo collisions that produce
billions of shower particles whose total rest-mass exceeds that of the primary pro-
ton by many orders of magnitude. The classical concept of conservation of mass is
violated here, but the more encompassing principle of conservation of mass–energy
remains intact.

5:7 The Doppler Effect

Since energy is the fourth component of a four-vector (p, E/c), it transforms, by
equations (5–19) and (5–33), as

E = γ(V )[E ′ + V p′x] (5-42)

when the relative motion is along the x-direction.
If we wish to see how photon energies transform, we note that for a ray directed

at an angle θ′ with respect to the x′-axis (5–41) leads to

E =
E ′ + (E ′V/c) cos θ′√

1 − (V/c)2
= E ′[1 + β cos θ′]γ(V ) . (5-43)

The angle θ′ is that shown in Fig. 5.6, but we have to recall that the direction of
the photon’s travel is opposite to the viewing direction. We know from (4–40) that
E = hν . Using this in equation (5–43) gives,

ν = ν ′(1 + β cos θ′)γ(V ) (5-44)

which gives the Doppler shift in frequency for radiation emitted by a moving source
(Fig. 5.7). In contrast to the classical prediction, we see from (5–22) that there is
a red shift even when the motion of the source is purely transverse (cos θ = 0,
cos θ′ = −V/c). This corresponds to a time dilation — a frequency decrease. When
the source radiates in a direction opposite to its direction of motion, β cos θ′ < 0,
and ν < ν ′γ(V ). When it radiates in the forward direction, ν > ν ′.

Quasars have large cosmological red shifts symbolic of their great distances
across the expanding Universe and their correspondingly large recession velocities.
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Fig. 5.7. The Doppler effect. A detector moves at velocity V , relative to a light source. It starts
measuring the frequency of radiation at time t′1 and finishes at time t′2. During this interval
it is receding from the source, moving from position x′

1 to x′
2. A wave that would just have

reached x′
1 by time t′2 is therefore not counted, nor are any waves lying between x′

1 and x′
2,

at time t′2. The detector therefore senses a lower frequency ν′. This explanation provides for
the first-order Doppler shift proportional to V/c, which is also present classically. The correct
relativistic expression contains an additional factor (

√
1 − V 2/c2)−1 given in equation (5–

44).

Their spectra generally exhibit Lyman-α emission lines at a strongly red-shifted fre-
quency ν0 and a series of absorption lines, for the same transition at higher frequen-
cies ν0+∆1, ν0+∆2, . . . corresponding to spectral shifts at velocities of hundreds or
thousands of kilometers per second. The clouds responsible for the absorption are
called Lyman-α absorbers, and the densely packed series of narrow Lyman-α ab-
sorption lines sometimes seen in a quasar’s spectrum, due to many absorbing clouds
along the line of sight, are referred to the Lyman-α forest.

5:8 Poynting–Robertson Drag on a Grain

Consider a grain of dust in interplanetary space. As it orbits the Sun it absorbs
sunlight, and re-emits this energy isotropically. We can view this two-step process
from two different viewpoints.

(a) Seen from the Sun, a grain with mass m absorbs light coming radially from
the Sun and re-emits it isotropically in its own rest-frame. A re-emitted photon car-
ries off angular momentum proportional: (i) to its equivalent mass hν/c2, (ii) to the
velocity of the grain Rθ̇; and (iii) to the grain’s distance from the Sun R. Consider-
ing only terms linear in V/c, and neglecting any higher terms, we see that the grain
loses orbital angular momentum L about the Sun at a rate

dL =
hν

c2
θ̇R2,

1
L
dL =

hν

mc2
, (5-45)

for each photon whose energy is absorbed and re-emitted, or isotropically scattered,
in the grain’s rest-frame.

(b) Seen from the grain, radiation from the Sun arrives at an aberrated angle θ′

from the direction of motion, instead of at θ′ = 270◦ (see equations (5–22)). Hence,
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cos θ =
cos θ′ + (V/c)

1 + (V/c) cos θ′
= 0, cos θ′ = −V

c
. (5-46)

Here V is θ̇R, the grain’s orbital velocity, and the photon imparts an angular mo-
mentum pR cos θ′ = −(hν/c2)R2θ̇ to the grain.

For a grain with cross-section σg

dL

dt
= − L�

4πR2

σg

mc2
L , (5-47)

where L� is the solar luminosity.
Either way, the grain’s velocity decreases on just absorbing sunlight. From the

first viewpoint, this happens because the grain gains mass, which it then loses on
re-emission; from the second, it is because the grain is slowed down by the transfer
of angular momentum.

PROBLEM 5–6. A grain havingm ∼ 10−11 g, σg ∼ 10−8 cm2 circles the Sun at 1
AU. Calculate the length of time needed for it to spiral into the Sun — to reach the
solar surface — assuming that the motion throughout is approximated by circular
orbits.

PROBLEM 5–7. Suppose one part in 108 of the Sun’s luminosity is absorbed or
isotropically scattered by grains circling the Sun. What is the total mass of such
matter falling into the Sun each second?

5:9 Motion Through the Cosmic Microwave Background
Radiation

We can derive the apparent angular distribution of light emitted isotropically in the
reference frame of a moving object. Let the object be at rest in the K′ system. Then
the intensity I(θ′) has the same value I′, for all directions θ′ (Fig. 5.8). The energy
radiated per unit time into an annular solid angle 2π sin θ′ dθ′ is 2πI′ sin θ′ dθ′. In
the K reference frame the intensity distribution is I(θ) and we would like to find
the relation between I(θ) and I′.

The relativity principle requires that a body in thermal equilibrium in one inertial
frame of reference also be in thermal equilibrium in all others. A blackbody radiator
will therefore appear black in all inertial frames. From (4–72) and the definition of
I(ν) (4–84),

I(ν) =
2hν3

c2

[
1

ehν/kT − 1

]
. (5-48)

For this to be true, we see that the ratios I(ν)/ν3 and ν/T both must be invariant
under a Lorentz transformation. The total intensity seen from an arbitrary direction
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Fig. 5.8. Distribution of radiation, viewed in spherical polar coordinates.

θ and integrated over all frequencies then is
∫
I(ν) dν . This is proportional to ν4

and leads to

I(θ)
I′

= [(1 + β cos θ′)γ(V )]4,
T (θ)
T ′ = (1 + β cos θ′)γ(V ) . (5-49)

The intensity of the radiation is proportional to the fourth power of the Doppler shift
(5-44), and the temperature is directly proportional to the Doppler shift.

An isotropically radiating, fast-moving body appears to radiate the bulk of its
energy in the forward direction (β cos θ′ ∼ 1), and only a small amount in the
backward direction (β cos θ′ ∼ −1). From (5–22), we can obtain the expression

dθ = dθ′/[γ(V )(1 + β cos θ′)] . (5-50)

This allows us to write

2π
∫
I(θ) sin θ dθ = 2πI′

∫
[(1 + β cos θ′)γ(V )]2 sin θ′ dθ′ = 4πI′, (5-51)

which is important. It means that the total power radiated by a source is the same for
any set of observers in inertial frames. We will make use of this fact in Section 6:21
to compute the total power emitted by a relativistic electron spiraling in a magnetic
field.

The Universe is bathed by an isotropic flux of thermal radiation. This radiation
field allows us to determine an absolute rest-frame on the basis of a local mea-
surement. Such a frame in no way violates the validity of special relativity which,
as stated earlier, does not distinguish between different inertial frames. Rather, the
establishment of an absolute rest-frame emphasizes the fact that special relativity
is really only meant to deal with small-scale phenomena and that phenomena on
larger scales allow us to determine a preferred frame of reference in which cosmic
processes appear isotropic. We will return to this question in Chapters 11 and 12.

The cosmic microwave background radiation has a blackbody spectrum (4–72)
(Pe65, Fi96*). Equation (5–49) tells us that, as the Earth moves through the am-
bient radiation bath, the Doppler shift transforms the observed intensity and tem-
perature. Measurements by the Cosmic Microwave Background Explorer, COBE,
and the Wilkinson Microwave Anisotropy Probe, WMAP, show the cosmic back-
ground flux increasing slowly as a function of angle, starting from the direction
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trailing the Earth’s apparent motion through the Cosmos, and reaching a maximum
in the direction of motion. At each angle with respect to the direction of motion, we
observe a blackbody spectrum, but the spectral temperature depends on the angle,
as in (5–49). The observed WMAP peak flux is ∼3.35 mK higher than the aver-
age background temperature of 2.725 K, and directed toward Galactic coordinates
(�, b)263.85◦ ± 0.1◦, 48.25◦ ± 0.04◦ (Be03*).

We are confident that the observed shift is due to the Sun’s motion through
the background radiation bath, because the angular dependence precisely matches
(5–44). As we can see from (5–49), the velocity of the Sun through the microwave
background implied by the observed temperature shift — ∼3.35 mK — is 369 km
s−1. This is a superposition of the Sun’s motion about the Galactic Center, the
Galactic Center’s motion relative to the barycenter of the Local Group, and the
Local Group’s motion relative to the background. This latter motion is of order
630 km s−1 in a direction (�, b) ∼ (276◦, 30◦). The Local Group appears to be
falling toward a region called the Great Attractor, which lies in the direction of the
galaxy cluster Abell 3627. The mass of Abell 3627 is estimated at 5 × 1015M�
(Kr96).

Large-scale motions continue to persist even on considerably larger scales.
Doppler shifts of galaxies in a spherical volume around the Galaxy reaching out to
∼100 Mpc in each direction, show that the entire region still exhibits a bulk motion
of order 200 km s−1, relative to the microwave background, directed very roughly
toward (�, b) ∼ (304◦, 25◦) with angular uncertainties of order 15◦. The bulk ve-
locity of this larger region with respect to the background is thus considerably lower
than that of the Local Group, but the directions are not far apart (da00). Figure 12.1
exhibits some of these considerations.

PROBLEM 5–8. The Lorentz contraction is an important effect for extreme rela-
tivistic cosmic-ray particles. To a proton with energy 1020 eV the disk of the Galaxy
would appear extremely thin. If the width of the disk is of the order of 100 pc in the
frame of an observer at rest in the Galaxy, show that, to an observer moving with
the proton, this width would appear to be ∼3× 109 cm, comparable to the length of
Earth’s equator in our rest-frame.

PROBLEM 5–9. The time dilation factor similarly is important at cosmic-ray en-
ergies. Consider the decay time of a neutron that has an energy comparable to the
1020 eV energies observed for protons. How far could such a neutron move across
the Galaxy before it beta decayed? In the rest-frame of the neutron the mean decay
time is ∼ 885 s; but in the framework of an observer at rest in the Galaxy it would
be much longer. Show that the neutron could more than traverse the Galaxy.

PROBLEM 5–10. If a cosmic gamma ray has sufficiently high energy it can collide
with a low-energy photon and give rise to an electron–positron pair. Because of
symmetry considerations, this electron–positron pair has to be moving at a speed
equal to the center of momentum of the two photons. The pair formation energy is
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of the order of 1 MeV. The energy of a typical 2.73 K cosmic background photon is
of the order of 10−3 eV. What is the energy of the lowest energy gamma photon that
can collide with a background photon to produce an electron–positron pair? Show
that, in the frame within which the pair is produced at rest, energy conservation
gives

hν1 (1 − (υ/c))√
1 − (υ/c)2

+
hν2 (1 + (υ/c)√

1 − (υ/c)2
= 2m0c

2, (5-52)

and momentum conservation requires the two terms on the left to be equal. These
two requirements give

(hν1)(hν2) = (m0c
2)2 ∼ 2.5× 1011 eV . (5-53)

The intergalactic infrared radiation density is high enough at photon energies hν2 ∼
10−1 to 10−2 eV, that gamma-ray photons with energies hν1 ∼ 1013 eV produce
electron–positron pairs in collisions with the cosmic infrared background (see Figs.
1.15, 1.16). The cross-section for this process is sufficiently high so that no gamma
rays with energies in excess of ∼2 × 1013 eV reach us from some of the most
energetic active galactic nuclei AGNs, like the galaxy Markarian 501 at a distance
∼150 Mpc, despite indications that γ-rays at such high energies are produced in
these nuclei. The radiation reaching us appears to be sharply truncated beyond about
1013 eV ≡ 10 TeV.

5:10 Particles at High Energies

Cosmic rays are extremely energetic photons, nuclei, or subatomic particles that
traverse the Universe. Occasionally such a particle or photon impinges on Earth’s
atmosphere, or collides with an ordinary interstellar atom. What happens in such
interactions?

We have no experimental data on particles whose energies are as high as 1020 eV,
because our laboratories can only accelerate particles to energies of the order of
3 × 1012 eV. However, the relativity principle permits us some insight into even
such interactions. We ask ourselves, how 1020 eV protons would interact with low-
energy photons in interstellar or intergalactic space. Such 2.73 K blackbody photons
have a frequency ν ∼ 3 × 1011 Hz.

As seen by the proton, these millimeter-wavelength photons appear to be highly
energetic gamma rays. This follows because γ(υ) must be ∼1011 for the proton,
whose rest-mass is only 9.31× 108 eV. By the same token the proton sees the pho-
ton Doppler shifted by a factor of 1011. In the cosmic-ray proton’s rest-frame, the
photon appears to have a frequency of ∼3× 1022 Hz. This corresponds to a gamma
photon with energy ∼100 MeV, and the proton acts as though it were being bom-
barded by 100 MeV photons

Photons at 100 MeV can be produced in the laboratory; the main effect of
photon–proton collisions at this energy is the production of π-mesons through the
interactions
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P + γ → P + π◦, P + γ → N + π+. (5-54)

In the first reaction the proton–photon collision produces a neutral pion π◦ and a
proton having a changed energy. The second reaction produces a neutron and a
positively charged pion.

The cross-sections for these interactions can be measured in the laboratory, and
the results are then immediately applicable to our initial query. The cross-sections
are so large that the highest energy cosmic-ray protons whose energies range up
to ∼3 × 1020 eV, can probably not traverse intergalactic space over distances ∼>30
Mpc through the 2.73 K microwave photon flux, as illustrated by Figure 1.16 (Bi95),
(Gr66), (Bi97). This collisional destruction of the highest energy cosmic rays by
the microwave background radiation is often referred to as the Greisen–Zatsepin–
Kuz’min cutoff, after the three physicists who first noted its significance (Ta98a).
Most of the cosmic-ray primaries at the highest energies appear to be protons,
though the chemical composition is still uncertain at energies above ∼1014 eV
(Di97), (O’H98).

Frequently a physical problem can be considerably simplified if we choose to
view it from a favorable inertial frame. The relativity principle shows us how to do
this and gives us many new insights into the symmetries of physical processes.

5:11 High-Energy Collisions

Consider the elastic collision of a low-energy particle with a similar particle initially
at rest. If we view this interaction in the resting particle’s frame, and both particles
have mass m, then the center of mass will move with velocity υ/2 as shown in Fig.
5.9.

Fig. 5.9. Illustration of elastic collisions for identical particles.

For an initial approach velocity υ of the moving particle, conservation of mo-
mentum requires that the two particles have velocities υ/2 relative to the center of
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mass — after the collision, as well as before. For any time after the collision, a circle
can be drawn through the impact point I and the particle positions 1 and 2 that define
a diameter on the circle. This means that the particles always subtend a right angle
at the impact point. So far our treatment has been nonrelativistic. In the relativistic
case, the center of mass still lies on a line joining 1 and 2. Effectively, particles 1 and
2 are scattered away from the center of mass in opposing directions. Seen from a
rest-frame, however, they will appear to be scattered predominantly into the forward
direction. This is precisely the same concentration into the forward direction, which
we saw for the rapidly moving light source that emits radiation isotropically in its
own rest-frame (5–49).

When a cosmic-ray proton collides with the nucleus of a freely moving inter-
stellar atom or with an atom that forms part of an interstellar grain, a fraction of
the nucleus can be torn out. This may just be a proton or a neutron, or it could be
a more massive fragment, say, a 3He nucleus. Such knock-on particles always come

Fig. 5.10. Constituents of a cosmic-ray air shower. The primary particle, here shown as a
proton, collides with the nucleus of an atmospheric atom, producing a number of secondary
particles that suffer nuclear collision, decay, pair production, or Bremsstrahlung — a process
in which a charged particle is slowed down by the emission of a gamma photon. A large suc-
cession of such events takes place. By the time the shower arrives at the surface of the Earth,
most of the charged particles we observe are electrons, positrons, and muons. Although most
of the primary nuclei are protons, several percent can be alpha particles (helium nuclei) and
about one percent are heavier nuclei. Electrons and positrons also can be primary particles.
The air showers are a prime example of the conversion of energy into rest–mass. On occasion,
the energy of a single primary is sufficient to produce 109 shower particles.
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off predominantly in the forward direction, close to the direction along which the
primary proton was moving.

Similarly, when a cosmic-ray primary arrives at the top of the Earth’s atmo-
sphere after its long trek through space, it collides with an atmospheric atom’s
nucleus, giving rise to energetic secondary fragments, mesons, baryons, and their
decay products. These decay into mesons, gammas, electron–positron pairs, or neu-
trinos, or they may collide with other atoms until a whole shower of particles rains
down. Such a cosmic-ray air shower consisting of electrons, gamma rays, mesons,
and other particles, even if initiated at an altitude of ten or more kilometers, often
arrives at ground level confined to a patch no more than some hundred meters in
diameter. The forward concentration is so strong that the showers are well confined
even though they sometimes consist of as many as 109 particles.

This close confinement allows us to deduce the total energy originally carried
by the primary; we need only sample the energy incident on a number of rather
small detector areas. Most of our information about high-energy cosmic-ray pri-
maries has come from just such studies made with arrays of cosmic-ray shower
detectors. The Akeno Giant Air Shower Array (AGASA) in Japan covers an area of
100 km2 sampled by 11 detectors, each with a collecting area 2.2 m2 and separated
by ∼1 km from its nearest neighbor (Ta98a). The total energy in the shower can be
determined from these samplings, and the time of arrival at each detector shows the
direction from which the primary came. Figure 5.10 shows some of the constituents
of cosmic-ray air showers.

5:12 Superluminal Motions and Tachyons

Some quasars are observed to periodically eject jets of relativistic particles that ra-
diate at radio frequencies. These fast-moving jets, which at the distance of quasars
typically extend no more than a tiny fraction of a second of arc, appear to exceed the
speed of light. Similar superluminal motions are observed in jets streaming out of
microquasars, stellar black holes surrounded by accretion disks from which matter
is continually spiraling into the black hole. The appearance of a velocity higher than
the speed of light, however, is only a projection effect.

Consider a quasar intermittently ejecting clouds of gas moving at relativistic
velocities V , at an angle θ with respect to the line of sight to Earth, as measured
by an observer on Earth (Figure 5.11). At some time t1 radio waves are received
from an ejected jet that radiates in the general direction of Earth. A time interval
∆t = t2 − t1 later, the cloud is observed to have moved a distance V∆t and con-
tinues to emit radio waves. Transverse to the line of sight to Earth it has traversed
a distance V ∆t sin θ; along the line of sight, a distance V ∆t cos θ. As seen from
Earth, the time interval ∆t appears shorter than the time span ∆a separating the
two events at which the radiation was actually emitted because, while the first beam
appearing to have been emitted at t1 was traveling toward Earth, the cloud was mov-
ing closer to Earth at relativistic speed. As a result the actual line of sight distance
between wave fronts, respectively arriving at t2 and t1, is (c − V cos θ)∆ta and
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Fig. 5.11. Geometry of superluminal motion.

∆t = (c − V cos θ)∆ta/c. The apparent transverse velocity of the cloud seen from
Earth is V sin θ/[1 − (V/c) cos θ)]. At sufficiently high velocities V directed close
to the line of sight, where cos θ approaches unity, the cloud will appear to have a
transverse velocity exceeding the speed of light, giving rise to the name superlumi-
nal velocities. If the quasar also emits a cloud in the diametrically opposite direction
it will appear to have a much smaller transverse velocity, V sin θ/[1+(V/c cos θ)] .
The actual measurement carried out by an observer at Earth, however, is a rate of an-
gular displacement across the sky, rather than an actual velocity. This is V sin θ/D,
where D is the distance to the emitting quasar and the jets in its immediate vicinity.

Galactic microquasars, black holes surrounded by compact accretion disks, of-
ten eject bi-lobed jets of gas in opposite directions. For a source at distance D, the
proper motions of the approaching and receding clouds, respectively, µa and µr are

µa =
V sin θ

[1− (V/c) cos θ]D
and µr =

V sin θ
[1 + (V/c) cos θ]D

. (5-55)

The ratio of Doppler-shifted wavelengths, respectively received from the approach-
ing and receding jets, is then obtained from (5–44) as

λa

λr
=

1 − (V/c) cos θ)
1 + (V/c) cos θ)

. (5-56)
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Solving these three equations simultaneously yields the velocity V , angle θ, and
distance D to the source. For the microquasar GRO J1655-40 a jet velocity V ∼
0.92 and a distance D ∼ 3 kpc has been deduced this way (Mi98).

In quasars, the jets are observed primarily when they are pointed almost directly
at Earth. The receding jet can then only be inferred, because the Doppler shift of
recession not only red-shifts the radiation but, by (5–49) also diminishes its intensity
to the point where it cannot be observed.

Although superluminal velocities do not involve velocities exceeding those of
light, speculations occasionally arise about the possible existence of particles that do
exceed the speed c. These have been called tachyons. When Einstein first discovered
the special relativistic concept he clearly stated that matter could not move at speeds
greater than the speed of light. He argued that the relation (5–34) between rest-
mass and energy already implied that an infinite amount of energy was needed to
accelerate matter to the speed of light. Particles with nonzero rest-mass therefore
could never quite reach even the speed of light let alone higher velocities.

In recent years, this question has been re-opened by a number of researchers.
They have argued that, while it certainly is not possible to actually reach the speed
of light by continuous acceleration, this alone does not rule out the existence of
faster-than-light particles created by some other means.

The basic argument in favor of even examining the possibility of tachyon exis-
tence is the formal similarity of the Lorentz transformations for velocities greater
than and less than the speed of light, and the fact that the transformations taken by
themselves say nothing that would rule out tachyon existence.

The similarity, of course, does not imply that particles and tachyons behave
in precisely the same manner. If we look at expression (5–34), we note that for
V > c the denominator becomes imaginary. By choosing the mass of the tachyon
to be imaginary, however, the energy E remains real, and so does the momentum,
as shown by (5–37). Nevertheless, tachyons raise a disturbing difficulty. Special
relativity shows that high-velocity tachyons should be able to influence the past,
and thereby violate causality — relations between cause and effect. This does not
entirely rule out tachyons below a certain speed limit, though it makes them prob-
lematic.

Thus far no tachyons have been detected, but further experimental investigations
have been proposed (Ch96).

5:13 Strong Gravitational Fields

The introduction of gravitational fields requires a theory more general than the spe-
cial theory of relativity, which restricts itself to inertial frames. For problems in-
volving gravitation, the general theory of relativity (Ei16) or similar gravitational
theories (Di67) have to be used. However, some simple gravitational results can be
obtained without such theories if we remember that the set of inertial frames also
includes freely falling frames of such small size that the gravitational field can be
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considered to be locally uniform. We will consider two such local inertial frames in
a centrally symmetric gravitational potential Φ.

Consider an observer O′ at distance r from the central mass distribution (Fig.
5.12). We would like to know the form that the line element ds2 would take in her

Fig. 5.12. Freely falling observer near a mass M .

frame of reference. We can suppose that O′ was initially moving outward from the
star but at a speed less than the escape velocity. She only had enough kinetic energy
to reach r. Here her velocity reached zero, and she is just beginning to fall back into
the center. We see her when her velocity is zero.

Because O′ is falling freely, her line element will seem to her to have the form
(5–3). In spherical polar coordinates this is

ds2 = c2 dt′2 − r′2(sin2 θ′ dφ′2 + dθ′2) − dr′2 . (5-57)

We ask ourselves what ds2 would seem to be, seen by an observer O far enough
away from the mass distribution so that Φ essentially is zero or negligibly small. Φ
as used here will be the negative of V(r) in (3–55).

We could of course assume that O gets all his information about O′’s system
from light signals. But that is not necessary. The physical relationship between O
and O′ is independent of how the observational information is conveyed.

Let us therefore suppose that O has taken a trip to find out for himself. We can
suppose that he was near the central mass distribution, that he is now on his way
out, and that he is in unpowered motion, freely falling radially outward, with just
exactly enough energy to escape to infinity.
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O goes through the radial distance r, close to O′, just as O′ passes through
zero velocity and begins her infall. Since both observers are in inertial frames, the
Lorentz transformations can be used to determine what O′’s line element would
seem like to O. Once again, the spatial components perpendicular to the direction of
relative motion should be identical, so that

r2(dθ2 + sin2 θ dφ2) = r′2(dθ′2 + sin2 θ′ dφ′2) . (5-58)

The radial components, however, will appear changed because of the relative
motion. If the gravitational potential is weak, the velocity of O relative to O′ is
immediately obtained from the fact that O just barely has enough kinetic energy to
go to infinity, so that, equating kinetic and potential energy, per unit mass

1
2
V 2 = Φ. (5-59)

Equations (5–12) and (5–14) then lead to

∆t =
∆t′√

1 − (2Φ/c2)
, ∆x = ∆x′

√
1 − (2Φ/c2) . (5-60)

This is also the correct form for strong potentials Φ, where the classical concept of
kinetic energy no longer has a clear meaning. We can therefore write that the line
element (5–57) has the form

ds2 = (c2 − 2Φ) dt2 − r2(sin2 θ dφ2 + dθ2) − dr2

1 − (2Φ/c2)
(5-61)

as seen by O. This represents a measure of the clock rate and scale length in O′’s
frame as seen from O’s coordinate system. O notes this down, and is able to convey
these impressions when he reaches infinity. He has been traveling in an inertial frame
all this time, and his results are therefore not suspect.

When the potential Φ is generated by a nonrotating mass M , we can rewrite
(5–61) as

ds2 =
(
c2 − 2MG

r

)
dt2−

(
1 − 2MG

rc2

)−1

dr2−r2(sin2 θ dφ2+dθ2) . (5-62)

The line element, or metric (5–62) is called the Schwarzschild line element.
Karl Schwarzschild derived it within weeks after Einstein’s publication in 1915 of
his theory of general relativity (Sc16). To understand this expression’s physical im-
plications, it is important to carefully look at what we mean by the symbols r and t.
Position and time can be defined in different ways, and we must take care to specify
which definition we wish to use.

As used here, r is an area coordinate chosen to make the area of a sphere pre-
cisely 4πr2. We define r ≡ (A/4π)1/2, where A is the surface area of a sphere
centered on the mass M . As can be seen by setting (t, θ, φ) constant, the radial sep-
aration between two such concentric spheres with respective surface areas 4πr2 and



186 5 Photons and Fast Particles

4π(r+ dr)2 is dr/(1− 2MG/rc2)1/2. This is always greater than the increment of
coordinate length, dr, measured by a stationary observer at position r.

The symbol t stands for coordinate time, marking the passage of time on the
clock of a static observer whose radial coordinate r and angular coordinates (θ, φ)
are constant and who is, therefore, moving along his own world line. Coordinate
time is marked by synchronization of clock rates for all such observers. Each ob-
server sees the clocks of all other observers running at the same rate as his own,
though the times observed on these other clocks will generally differ from his. Co-
ordinate time is not proper time, ds/c = (1 − 2MG/rc2)1/2 dt, measured by a
freely falling observer instantaneously at rest, (r, θ, φ) = constant. The proper
time interval is always shorter than the corresponding interval of coordinate time.
This means that if we are to change the rates at which different clocks run, so as to
synchronize them all with a standard clock at r = ∞, the individual rates have to
be sped up by a factor of (1 − 2MG/rc2)−1/2. This creates a system that marks
coordinate time t.

Three concepts underlie these definitions of space and time. Two of these are the
clock hypothesis and length hypothesis, according to which two observers instanta-
neously at rest relative to each other, at some event (t, r, θ, φ) will make identical
readings of all clocks and rulers, even though one may be falling freely, while the
other is accelerated (or, equivalently, stationary in a gravitational field). The third
concept is that of a static field, meaning that the metric coefficients in (5–62) are not
only time-independent, making the field a stationary field, but also that all motions
of particles and fields are time reversible. This latter criterion calls for a metric that
lacks all time–space cross terms, dt dr, dt dθ, or dt dφ.

Any two clocks, A and B, can always be synchronized with a third clock C at
infinity. This follows from the circumstance that the time taken for light to traverse
distance CA remains constant in time, so that clocks with the same clock rates will
always be out of phase by a constant amount. In addition, reversibility requires that
the time taken for the light to transit the path CA equals the time taken to transit
the reverse path AC . The same holds for paths CB and BC and paths AB and
BA. We now see that the elapsed time required to traverse a path running along
the three sides of the triangle CABC is the same as the traversal time along the
reverse path CBAC . This assures that the clock rates for any number of clocks can
always be synchronized when the field is static. In particular, the field described by
the Schwarzschild metric is static and permits synchronization of clock rates.

At the Schwarzschild radius

rs ≡ 2MG

c2
(5-63)

something odd must take place. Here, according to (5–60), the clocks would appear
to run infinitely slowly. A message emitted at some time t0 would not arrive at
larger radial distances until an infinite time later. Such a message would constitute
the final event to ever reach an observer at infinity. The Schwarzschild radius of
a black hole is, therefore, also its event horizon. Events occurring at r < rs can
never be observed at infinity. rs is often referred to as the event horizon because the
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passage of a particle through rs is the last event that an observer at infinity can ever
observe.

A massive object completely enclosed in rs would appear invisible. Such objects
have been called black holes. They are primarily detectable through the gravitational
field they set up, but not through emitted radiation. A star could be orbiting about a
black hole companion; its orbital motion about an apparently dark region in space
would be a sign that a black hole might be there. Several examples of such binaries
are now known. They generally involve X-ray novae.

X-ray novae occur where matter tidally torn out of a giant companion falls onto
the surface of a compact star or an accretion disk around a compact star. Because
black holes have no solid surfaces, an X-ray nova involving a black hole, of neces-
sity, would require the black hole to be orbited by an accretion disk. The matter
accumulates there until its hydrostatic pressure becomes so great that nuclear reac-
tions set in and hydrogen explosively fuses into helium. This releases large amounts
of energy in a nova outburst. The system then settles back to its earlier state and the
accumulation of hydrogen by the disk begins all over again. During the quiescent
periods between outbursts, the binary system’s orbital characteristics can be mon-
itored and the mass of the companion deduced. For the X-ray nova GS 2000 +25,
the unseen companion’s mass is of order 8M�. As we will see in Chapter 8, this is
well above the mass that white dwarfs or neutron stars can maintain, and strongly
suggests the presence of a star that has collapsed to form a black hole (Ca96). Hy-
drogen drawn out of the giant star evidently falls on an accretion disk encircling the
black hole and accumulates until it explosively erupts.

For a solar mass, the Schwarzschild radius is rs ∼ 3 × 105 cm. As we will see
in Section 8:16, this is only a factor of order ∼5 smaller than the radius of a neutron
star. For an object with mass M ∼ 109M�, rs ∼3 × 1014 cm or about 20 AU.

We will mention black holes again later. However, for the moment, it is still
worth discussing two matters. First, as indicated in Table 1.6, stellar black holes
appear to account for ∼<3% of all stellar mass (Fu04). With typical masses ∼7.5M�,
they probably account for ∼<0.2% of all stars by number. Second, space travelers
must be careful. Once they enter a black hole they can never return. The interior of
such an object is as isolated from us as a separate universe.

5:14 Gravitational Time Delay; Deflection of Light

For light traveling radially from the surface of the Sun to Earth’s orbit, we have
ds = 0 and dφ = dθ = 0. Equation (5–62) then tells us that the traver-
sal of an increment of radial distance dr requires an interval of coordinate time
dt = dr/c(1 − 2MG/rc2). We can integrate this for the total distance from the
Sun’s surface at radius R� to Earth’s orbital radius R⊕.∫
dt =

1
c

∫ R⊕

R�

dr

(1 − 2MG/rc2)
=
(
R⊕ − R�

c

)
+

2MG

c3
ln
(
R⊕ − 2MG/c2

R� − 2MG/c2

)
.

(5-64)
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The last term on the right gives the gravitational time delay in excess of the
travel time (R⊕ − R�)/c expected if the Sun had no mass. For a solar radius
R� = 7 × 1010 cm, the Earth’s orbital radius R⊕ = 1.5 × 1013 cm, and
2MG/c2 = 3 × 105 cm, we obtain a gravitational delay of ∼50 µs, or one part
in ∼107 of the total traversal time.

We can similarly consider light arriving at Earth from a distant pulsar that hap-
pens to lie in Earth’s orbital plane. At one time of the year, Earth will be on the
same side of the Sun as the pulsar. Six months later, Earth’s trajectory will have
taken it to the far side of the Sun so that the pulsar’s radiation has to pass close
by the Sun to reach Earth. Were it not for the gravitational time delay, the arrival
times of the pulsar signals would be observed to be increasingly delayed by an
amount R⊕(1 − cosα)/c, during this half year, as the pulsar–Sun–Earth angle α
increased from 0 to π and the distance grew between the Earth and the pulsar. But,
as α approaches π and the pulsar’s radiation passes close by the Sun, the additional
gravitational delay rises rapidly, reaching a maximum ∼100 µs — twice the delay
in the Sun–Earth travel time — as the radiation suffers first a delay on approaching
the Sun and then a further delay on receding. Neglecting the term 2MG/c2, which
is far smaller than R� or R⊕, the time delay becomes

∆t ∼
(

2MG

c3

)
ln
(
R⊕
R�

)
. (5-65)

Strictly speaking, we have only calculated the gravitational time delay for radial
infall to the Sun and transmission on to Earth. There is also a small additional delay
due to the almost tangential passage of radiation past the Sun at closest approach.
We can estimate this correction by setting ds = 0 and dr = 0, θ = π/2 in equation
(5–62). The increment of traversal time is now dt = r dφ/c(1 − 2MG/R�c2)1/2.
Integrating over an angle ∆φ ∼ 1 radian at closest approach to the Sun, we
see that the additional increase in gravitational time delay will only be of order
∼MG/c3 ∼ 5µ s for close passage by the Sun. The radial motion of light to and
from the Sun accounts for all but a few percent of the total gravitational delay.

The time delay on transmitting radar signals from Earth to Venus and back,
when the planet is on the far side of the Sun, has also been measured. The round trip
gravitational delay when the planet lies at closest angular separation from the solar
limb is ∼200µ s, corresponding to two full traversals past the Sun.

With the time delay established, we can estimate the radial deflection of light by
the Sun. Light rays are gravitationally bent toward the Sun on close passage. Their
small angular deflection is readily calculated from (5–64). Consider the wave front
of radiation approaching the Sun. The portion passing nearest to the Sun suffers
the greatest gravitational delay. The gradient in the delay as a function of impact
parameter R follows from (5–64) and is

dt

dR
= − d

dR

[
4MG

c3
ln
(
R− MG

c2

)]
∼ −4MG

c3R
. (5-66)

With this deflection the front undergoes a change in direction (Fig. 5.13).
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Fig. 5.13. Deflection of light and its wave front due to the gravitational time delay on passage
close to a mass M . The wave front, shown by dashed lines, propagates from top to bottom in
this figure.

δφ ∼ cdt

dR
=

4MG

c2R
∼ 8.5× 10−6 radians ∼ 1.8 arcsec . (5-67)

5:15 Gravitational Lenses

The Sun can be thought of as a weak lens, which bends a beam of light from a distant
source and makes it converge to a focus. For the Sun, this focal length is its radius
divided by the angular deflection (5–67). This amounts to ∼550 AU ∼ 1016 cm.

When radiation from a distant quasar passes by a massive galaxy its deflection
again is of order 4MG/Rc2, where the mass and radius now refer to the galaxy,
M ∼ 4 × 1011M�, R ∼ 3 × 1022 cm ∼ 4 × 1011R�. This again corresponds to a
deflection of about 2 seconds of arc. The focal length now is of order 3 × 1027 cm,
or 103 Mpc. An observer stationed one focal length from the galaxy and on the
straight line that runs from the quasar to the intervening galaxy and beyond, would
see light from the quasar as a ring around the galaxy. Such rings are called Einstein
rings. If the quasar, galaxy, and observer do not lie precisely on a straight line, so
that the quasar sits somewhat off the axis joining the observer to the galaxy, only
a fraction of an arc might be observed. Deviations from spherical symmetry in the
galaxy’s mass distribution may also break up the projected image of the quasar on
the sky so that only a few patches of light are observed.
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Fig. 5.14. Gravitational lensing of a background source by a Galactic halo star. Each marking
on the horizontal scale represents a ten-day period. Note the symmetry of each curve — one
obtained in blue light (B), the other in red (R) — their perfect coincidence in time, and their
identical shapes. These three features characterize a gravitational lens (A�97).

Gravitational lensing and Einstein rings or arcs are useful for assessing the total
mass of matter that aggregates at the center of a cluster of galaxies. Such arcs can be
discerned in Fig. 1.11. If the distances to the cluster and quasar are known from their
red shifts, the angular position of the observed arcs immediately yields the value of
the cluster mass through relation (5–67).

By observing a large number of faint stars in the bulge surrounding the Galaxy’s
central regions we occasionally register a rising signal from a distant star. It typically
lasts a week. This is the lensing of a background source by a foreground star. The
characteristic features of such an event, in contrast to a great many other variable
stellar events, is the symmetry of the rise and fall of the curves and the lack of any
difference in the ways that blue and red light curves vary. Figure 5.14 shows one
such pair of light curves.

5:16 An Independent Measure of the Hubble Constant

The binary quasar 0957+561 has two principal components, A and B. They are
lensed images of a single quasar at red shift z = 1.41, which is offset by a few
seconds of arc from a massive foreground galaxy, G, at z = 0.36. Image A is dis-
placed by 5.2 arcsec from G, while image B is only 1.034 arcsec away (Be97).
Image A is less deflected, because it is seen at a larger angular distance from G, and
we would expect light reaching us along this path to be less delayed than light more
strongly deflected along path B. This is borne out by observations on the variability
of the quasar. Variations in the flux received from A are replicated ∼420 days later
by component B (Ku97b). From these data we can determine the Hubble constant
(Re64), (Re64a).

We note from (5–64) that the difference in the time delays along the two light
paths is

∆tB −∆tA =
4MG

c3

(
ln

D

RB
− ln

D

RA

)
=

4MG

c3
ln
φA

φB
, (5-68)
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where D is the distance to the galaxy G and the displacement of the images is
φi = Ri/D, with i = A, B. From (5–67) we also have

φA − φB =
4MG

c2

(
1
RA

− 1
RB

)
=

4MG

c2D

(
1
φB

− 1
φA

)
. (5-69)

PROBLEM 5–11. Show that equations (5–68) and (5–69) can be solved to yield a
distance D ∼ 5.4 × 1027cm, for the observational data cited, and that the derived
Hubble constant is cz/D ∼ 60 km s−1 Mpc−1 Although this estimate is crude, it
roughly confirms values obtained by entirely different methods cited in Chapter 2.

5:17 Orbital Motion Around a Black Hole

We now ask how a particle moves in a strong gravitational field, just outside the
Schwarzschild radius of a mass M . To come to grips with this, we may invoke
the strong equivalence principle which postulates that any physical law holding in
special relativity will also hold in freely falling coordinate frames around arbitrary
mass distributions. By freely falling we will mean that only gravitational forces are
acting, and that electrical, magnetic, or other nongravitational forces are all absent.

To understand this principle, let us return to the man whom we encountered in
his rocket ship in Section 3:8, and see what happens if his ship strays close to M
in free fall. Within the small, freely falling ship the curvature of space can be con-
sidered negligibly small. Any particle in similar free fall along some arbitrary tra-
jectory within the ship will traverse the space at constant velocity relative to a point
fixed within the falling ship. The relative velocities of any two such particles pass-
ing through the ship, along quite arbitrary orbits, will also appear constant. Thus,
the laws of special relativity apply. The same will hold true for photons which, as
we saw in Sections 3:9, 5:14 and 5:15, also fall in a gravitational field. Coordinate
frames attached to freely falling particles or photons within an infinitesimal freely
falling locale are called local inertial frames. The strong equivalence principle states
that all local inertial frames at the same event — i.e., coinciding in space and time
— are in uniform relative motion, so that the laws of special relativity and Lorentz
invariance apply. Local inertial frames that are far apart, however, may be in mutual
acceleration.

The line element defining the space around M is given by equation (5–62). In
analogy to equations (5–26) to (5–29) we can then rewrite equation (5–62) in terms
of four-velocities,

2L =
(

1 − 2MG

c2r

)(
c2dt

ds

)2

−
(

1 − 2MG

c2r

)−1(
cdr

ds

)2

(5-70)
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−r2
(cdθ
ds

)2

− r2 sin2 θ
(cdφ
ds

)2
,

where L is the Lagrangian per unit mass–energy. As indicated in Section 5:6,
2L = c2 for massive particles of rest–mass m0 = 1. The trajectories of photons are
geodesics, the shortest distances between any two points traversed. This extremum
implies that ds = 0 and L = 0. For massive particles s may be identified with
the proper time measured by a clock moving with the particle along the geodesics.
Equation (5–70) defines the geodesics in space–time that govern the motions of par-
ticles and photons, as long as particle mass m0 or photon energy hν/c2 is negligibly
small compared to the mass M of the black hole (Ch83)*.

We can denote differentiation with respect to s by a dot, writing cṫ ≡ c2dt/ds,
ṙ ≡ cdr/ds, θ̇ ≡ cdθ/ds, and φ̇ ≡ φ/ds. As in Section 5:6 we then obtain the
momenta

pt =
∂L
∂ṫ

=
(

1 − 2MG

c2r

)
ṫ , pφ = −∂L

∂φ̇
= (r2 sin2 θ) φ̇ ,

(5-71)

pr = −∂L
∂ṙ

=
(

1 − 2MG

c2r

)−1

ṙ , pθ = −∂L
∂θ̇

= r2θ̇ .

As we saw in Section 3:17, spherical symmetry confines the motion of an orbit-
ing particle or photon to a plane, permitting us to arbitrarily assign a value of π/2
to θ throughout the particle’s trajectory.

Because the metric (5–62) and the corresponding Lagrangian (5–70) are inde-
pendent of time t, pt is a constant of motion

pt =
(

1 − 2MG

rc2

)
ṫ = constant =

E
c
, (5-72)

where we have made use of (5–32). The energy E (normalized to unitm0 or hν/c2)
is conserved.

Similarly, because (5–62) and (5–70) are independent of the angle φ,

pφ = r2 sin2 θ φ̇ = constant = L , (5-73)

showing also the conservation of orbital angular momentum L correspondingly nor-
malized.

With ṫ and φ̇ given by equations (5–71) we can now express the Lagrangian as

(
1 − 2MG

c2r

)−1 [E2

c2
− ṙ2
]
− L2

r2
= 2L = c2 or 0 , (5-74)

depending on whether we are dealing, respectively, with particles or photons. For
particles this leads to
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ṙ2 =
E2

c2
−
(

1 − 2MG

rc2

)(
c2 +

L2

r2

)
≡ E2

c2
− V2(r) , (5-75)

where we have defined a new quantity V2(r) that has the characteristics of a poten-
tial and is termed the effective potential. When added to the left side of the equation,
reminiscent of twice the particle’s kinetic energy per unit mass, V2(r) acts as twice
the potential, and V2(r) + ṙ2 is a constant of motion, E2/c2.

Because the left side of (5–75) has to be positive or zero, the energy E/cmust al-
ways exceed or equal V(r). In its own rest-frame, the particle’s energy E is constant,
which means that differentiating (5–75) with respect to proper time gives

2ṙr̈ = −dV
2(r)
dr

ṙ (5-76)

or

r̈ = −1
2
d

dr
V2(r) = −MG

r2
+
L2

r3
− 3MGL2

r4c2
. (5-77)

A circular orbit — an orbit for which the radius is constant — is, therefore, possible
only at a maximum, minimum, or point of inflection of V2(r), i.e., at

MGc2r2 − L2c2r + 3MGL2 = 0 , (5-78)

which is quadratic in r and can be solved for the two extrema

r =
L2

2MG

[
1 ±
(

1 − 12M2G2

c2L2

)1/2
]
. (5-79)

For a star like the Sun, rs ∼ 3 × 105 cm = 3 km, which is minute compared to the
Sun’s radius R� ∼ 7 × 1010 cm or the Earth’s orbital radius ∼1.5 × 1013 cm. But
for a neutron star, whose radius is only of order 12 km, 3rs/2r can be significant
for material orbiting close to the star’s surface.

The expression for V(r) is plotted in Fig. 5.15 as a function of r/(MG/c2) for
a variety of values of Lc/MG. If L2c2 > 12M2G2 there are two circular orbits,
one corresponding to a minimum of V(r), the other to a maximum. If L2c2 =
12M2G2 there is only one solution, a point of inflection, shown in Fig. 5.15 for
cL/MG =

√
12 = 3.464. The only stable circular orbits are those for which V(r)

is at a minimum. Where V(r) is at maximum, the circular orbit is unstable. The
innermost stable circular orbit is the one where V(r) has a point of inflection and
cL/MG =

√
12 = 3.464.

PROBLEM 5–12. Show that the radius of the innermost stable circular orbit —
frequently referred to as the last stable circular orbit rlsco — is

rlsco = 6MG/c2 = 3rs , (5-80)

and show that the effective potential V2(r) = (8/9)c2 at this point.
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Fig. 5.15. The function V(r) defined by equation (5–75), plotted as a function of
r/(MG/c2). Minima in the curves for different values of Lc/MG indicate stable circular
orbits. Maxima indicate unstable circular orbits. The point of inflection shows where the last
stable circular orbit occurs. Note: Specialists in general relativity like to express quantities in
geometrizedunits where the speed of light and the gravitational constant are set equal to unity,
c = G = 1. This is why the abscissa in this figure is labeled r/M instead of r/(MG/c2)
and the values of the curves are shown in units of L/M rather than Lc/MG. It is worth re-
membering this notation when reading works on general relativity. (After S. Chandrasekhar,
(Ch83)*).

PROBLEM 5–13. Derive the period of a particle orbiting a mass M in a circular
orbit — for which the left side of equation (5–75) becomes zero. This can be done
by again choosing θ = π/2 and noting that dt/dφ = (1/c)(ṫ/φ̇), as in equations
(5–71) to (5–73). Equation (5–78) then provides the useful expression

L2 =
MGr

1 − (3MG/c2r)
or r =

(
L2

MG

)(
1 − 3rs

2r

)
. (5-81)

After some algebra this leads to dt/dφ = (r3/GM)1/2. The time needed for the
angle φ to change by 2π gives the period P
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P = 2π
( r3
GM

)1/2 and Plsco =
12πMG

√
6

c3
. (5-82)

The period P derived in this way is measured in coordinate time, rather than
proper time. But coordinate time conveniently corresponds to the time clocked by
an observer at great distances, making P the period a terrestrial observer would
measure.

We should still note that none of the central mass distributionsM we have con-
sidered here have carried an electrical charge, nor have they carried angular mo-
mentum. A rotating, electrically charged black hole exhibits more complex behav-
ior but, surprisingly, its properties are completely defined by just three parameters,
its mass M , its net electric charge Q, and its spin angular momentum J . Black
holes with Q = J = 0 are called Schwarzschild black holes. Spinning black holes
are often called Kerr black holes after Roy Kerr who first set down the metric de-
scribing them.. For similar reasons, charged black holes are referred to as Reissner–
Nordström black holes, and charged spinning black holes as Kerr–Newman black
holes.

5:18 Advance of the Perihelion of Mercury

A particle orbiting close to a massive body no longer travels along Kepler’s closed
elliptic orbits. For most of the planets in the Solar System the deviation is too small
to observe, but for Mercury, which is closest to the Sun, the effect is just barely
detectable, and long constituted a puzzle. Mercury’s perihelion point gradually shifts
over the millennia, so that the entire orbital ellipse appears to slowly precess about
the Sun, advancing in the sense of the planet’s orbital motion. We talk about the
perihelion advance of Mercury. For bodies orbiting other stars, the same effect is
called the advance of the periastron.

We start by referring back to the dominant elliptical motion described by Ke-
pler’s laws in Section 3:5, and note that equations (3–30) and (5–77) resemble each
other. If we neglect the last term on the right of equation (5–77), which is of order
(3rs/2r)(L2/r3) and negligible compared to the second term if r � rs, we see that
(5–77) adopts the same form as equation (3–30). It, therefore, has a solution of the
form of (3–33) as transformed by (3–36) or, more precisely, (3–57).

1
r

=
MG

L2
[1 + e cos(φ− φ0)] . (5-83)

This is just the Newtonian elliptical orbit with eccentricity e. In order to incorporate
the last term on the right of (5–77), which reflects the general relativistic effect, we
adopt the same change of variables as in (3–31) and obtain the equation

d2y

dφ2
+ y =

MG

L2
+

3MG

c2
y2 . (5-84)
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PROBLEM 5–14. To find an approximate solution to (5–84) insert the trial function

y =
MG

L2

{
1 + e cos

[(
1 − 3M2G2

c2L2

)
φ− φ0

]}
, (5-85)

in the equation and convince yourself that only terms lower than the leading terms
by factors of c−2 or c−4 remain uncancelled.

The form of (5–83) tells us that the angle φ has to advance by
∆φ = 2π(1 + 3M2G2/c2L2) from one perihelion passage to reach the next. The
perihelion advances by an angle

∆φ =
6πM2G2

c2L2
(5-86)

per orbit. Using Table 1.4 and physical constants from Appendix B, convince your-
self that this corresponds approximately to the measured perihelion advance of Mer-
cury of 43 arc seconds per century.

For the binary pulsar PSR 1913 + 16, comprising two neutron stars orbiting each
other only ∼2 × 1011 cm apart, the corresponding periastron advance is ∼4.2◦ per
year, an annual advance that is substantially larger (Ta82).

5:19 Accretion Disks Around X-ray Binaries

X-ray binaries are pairs of stars generally consisting of a white dwarf, neutron star,
or black hole orbiting close to a larger star with lower surface gravity. The intense
gravitational pull of the compact star tidally strips matter from its larger compan-
ion. If this material has too much angular momentum, it cannot directly fall onto the
compact partner but, instead, accretes into a disk orbiting around it, called an ac-
cretion disk. Viscous friction transfers angular momentum from the faster rotating
inner parts of this disk to its periphery. Deprived of angular momentum the inner
portions move closer to the surface of the compact star, eventually reaching the last
stable circular orbit and then spiraling onto the star.

PROBLEM 5–15. A neutron star has a mass 1.4M�. If the star’s surface lies at
r = 10 km, estimate the maximum temperature reached when protons tidally re-
moved from a binary companion directly hit the star’s surface T ∼ M∗mPG/kr,
and estimate the maximum energy in electron volts of the X-rays or gamma-rays
that could be emitted. Make a similar estimate for protons incident on an accretion
disk at three times the stellar radius.

Many X-ray binaries exhibit millisecond flux modulations of their X-ray emis-
sion. The frequency of these oscillations changes in the course of the binary’s orbital
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period. These kilohertz (kHz) X-ray modulations are called Quasi Periodic Oscilla-
tions, QPOs and have frequencies ranging from several hundred cycles per second
up to about 1300 Hz. The frequency of this X-ray modulation may be the frequency
at which the inner edge of the accretion disk orbits the neutron star and may thus be
associated with the orbital frequency at the last stable circular orbit. However, other
explanations for the QPOs have also been advanced (Wa03).

PROBLEM 5–16. The radius of a neutron star can be no greater than the inner
radius of its accretion disk. Show that a minimum stellar density can be inferred as
ρmin(M) = 3π/P 2

lscoG, where Plsco is given by (5–82).

Strong magnetic fields embedded in a neutron star or black hole can also have
an effect on oscillation rates. In sorting out such different effects we are some-
times helped by concentrating on phenomena that are common to both black holes
and neutron stars, because we can then be sure that neither a solid surface, nor
a Schwarzschild-radius event horizon, nor a nonaligned magnetic field can be in-
volved. Because the magnetic field of a black hole is completely determined by its
charge Q and its angular momentum L its magnetic field is always aligned with its
spin axis. For neutron stars the magnetic field is normally not aligned with the spin
axis.

PROBLEM 5–17. For a 5M� black hole, show that rlsco ∼44 km, that the
Schwarzschild radius is ∼5 km, and that the orbital period Plsco of a particle is
only ∼2.3 milliseconds. Compare these values to those for a neutron star with mass
1.4M� and convince yourself that the corresponding radius and period, respectively
are rlsco ∼ 12.4 km and 640 microseconds. Finally, for a 108M� black hole in the
nucleus of a galaxy, show that these respective parameters would be ∼6 AU and
∼13 hours. Convince yourself also that the ratio of 2πrlsco/Plsco = c/

√
6 regard-

less of the mass of the compact object.

PROBLEM 5–18. The surface area of a Schwarzschild black hole of mass M is

A = 4πr2s = 16πM2G2/c4 . (5-87)

A particle of mass m0 << M is slowly lowered from afar and brought to rest
at a small distance b << rs above surface A. Show that the potential energy of
the particle at this point is −Mm0G/(b + rs) = m0c

2(b/rs − 1)/2. This means
that a particle released from this radial distance with zero initial velocity, has a total
mass–energy of onlym0c

2b/2rs. Show that when the particle falls through the event
horizon at rs, the mass of the hole increases bym0b/2rs and the area A of the event
horizon increases by

∆A = 8πm0bG/c
2 , (5-88)

independent of mass M .
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5:20 The Smallest Conceivable Volume

We do not yet have a satisfactory quantum theory of space–time and gravitation, and
do not know whether space–time is quantized. One argument, however, suggests that
it could be. Equation (5–87) gives the surface area of a Schwarzschild black hole as
16πM2G2/c4. We may now ask whether there is a minimum amount by which this
area must increase when a particle of arbitrarily small mass m0 falls into the hole.
Equation (5–88) tells us that the area of the hole increases by ∆A = 8πm0bG/c

2,
when a particle at rest is dropped from a height b above the black hole surface.
This is a minimum increase. Were the particle not at rest initially, it could only add
more mass–energy to the black hole as it entered, and this would further increase
the hole’s surface area.

To minimize the increase ∆A in surface area, the product m0b must be mini-
mized. The smallest distance b from which a particle can be dropped is given by
its proper radius. The Heisenberg uncertainty principle tells us that this must be
∼ �/∆p ∼ 2�/m0c. Here∆p is the root mean square uncertainty in the momentum
along the radial direction given by (4–63). For a particle at rest this may be taken to
be of order half the rest-mass momentum component pt = moc in equation (5–32).
Minimizing the particle’s radius thus implies increasing its mass. But increasing the
mass indefinitely can also increase b because the Schwarzschild radius of m0 then
increases as 2m0G/c

2. The smallest possible radius is obtained by making the two
radii equal,

b =
2m0G

c2
=

2�

m0c
or m0 ≡mP =

(
�c

G

)1/2

= 2.18× 10−5 g , (5-89)

where mP is called the Planck mass. This yields the Schwarzschild radius of the
mass,

b = 2
(

�G

c3

)1/2

≡ 2�P = 3.23× 10−33 cm , (5-90)

where �P is called the Planck length, �P = 1.616× 10−33 cm. Substituting for the
product m0b in equation (5–88), we see that the area of a Schwarzschild black hole
must increase by at least

∆A = 16π
(

�G

c3

)
= 4π

(
2m0G

c2

)2

= 4π�2P . (5-91)

whenever mass is added. This minimum increase just equals the minimum area en-
closing a mass m0 dropped into the black hole.

The increment of area ∆A in (5–91) appears to have a fundamental significance.
It is possible to show that its value is independent of whether radiation or massive
particles are absorbed by the black hole, whether the infalling matter is electrically
charged or neutral, and that it is independent not only of the mass M of the black
hole but also of its charge Q and spin angular momentum J (Be73).∆Amay, there-
fore, represent a quantum of area, and �P a corresponding quantum of length.
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5:21 The Zeroth Law of Black Hole Dynamics

The surface gravity of a Schwarzschild black hole isMG/r2s = c4/4MG. Because
such black holes are spherically symmetric, the surface gravity is identical over
the entire surface of the event horizon. It can be shown that the surface gravity
is also constant over the entire event horizon of any stationary black hole — one
whose properties do not vary with time (Ba73). This constancy is referred to as
the zeroth law of black hole dynamics which applies to spinning black holes of
constant angular momentum J , with or without net electric charge Q. At first sight
this appears surprising because the surface of a spinning black hole is not spherical.
In the next section, we will see that black holes have a temperature that is directly
proportional to the surface gravity. Because of this, the zeroth law is also referred to
as the zeroth law of black hole thermodynamics.

5:22 Entropy and Temperature of a Black Hole

The First Law of Thermodynamics

In Chapter 4 we introduced the first law of thermodynamics,

dU = TdS − dW . (5-92)

It tells us that, in going from an initial state A to some final state B, a system
undergoes a change in internal energy dU = UB − UA determined by the heat
−d Q ≡ TdS that has been added to it, minus the work dW the system has done. In
(4–119) the work dW consisted in expanding against an external pressure P by an
increase in volume dV . For black holes dW could include increasing the rotational
energy or the electric charge of the system. Though the heat input and the work
done may vary in arbitrary ways, the change in internal energy depends only on the
difference between added heat and work done.

The Second Law of Thermodynamics

The second law of thermodynamics tells us that the entropy S of a closed system
is never observed to decrease, no matter what changes the system undergoes. Be-
cause matter entering a black hole remains trapped there, and because any addition
of mass–energy always increases the surface area A, Jacob Bekenstein in 1973 pro-
posed that A is a measure of the black hole’s entropy (Be73).

For simplicity, let us consider a black hole into which we again drop an electri-
cally neutral particle released at rest. It adds neither charge nor angular momentum
to the black hole, and does no work on the hole because the black hole’s surface
expands without encountering an external pressure. We can then write the first law
of thermodynamics as

κTdA ≡ TdS = dU , (5-93)
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where dU is just the change in the black hole rest-mass energy d(Mc2). The con-
stant κ must have dimensions erg K−1 cm−2 in order for the units on the left
side of the equation to match those on the right, for any system — not just for
Schwarzschild black holes. If we search for a product of fundamental constants
with these dimensions we find a suitable candidate in κ = k(c3/4�G), where k is
the Boltzmann constant and 4�G/c3 = �2P . With this substitution we obtain

T =
1
κ

dU

dA
=
(

4�G

kc3

)
dU

dA
=

�c3

8πkMG
. (5-94)

The minimum increase in the entropy of a black hole then becomes

∆S = κ∆A =
(
kc3

4�G

)
∆A = 4πk, and S =

kc3

4�G
A , (5-95)

where the expression on the right is obtained by integration of the equation on the
left.

Specialists in general relativity often use units in which k, G, �, and c all are
arbitrarily set equal to unity. In such units, the entropy of a black hole can be seen
to be one quarter its area: S = A/4.

5:23 The Third Law of Black Hole Thermodynamics

In addition to the zeroth, first, and second laws of thermodynamics, there is a third
law. In nonrelativistic physics we have known for a long time that it is possible
to lower the temperature of a system to approach absolute zero, but never to quite
reach it. In black hole thermodynamics, where we have associated temperature with
surface gravity, the temperature becomes zero for a black hole that is rotating so
rapidly that it is on the verge of blowing apart and has no surface gravity.

A rigorous relativistic calculation finds that the maximum spin angular momen-
tum that a black hole of any mass M can have is Jmax = GM2/c. An assembly of
particles with angular momentum exceeding Jmax would be unable to collapse to
form a black hole.

PROBLEM 5–19. In Chapter 7 we will see that the rotational angular momentum
states of any physical object are discrete and separated by increments �. For a black
hole, whose lowest angular momentum state is zero, the next highest angular mo-
mentum states are ±�. Consider a sphere whose mass m0 is uniformly spread over
its spherical surface of radius b. If it is rotating with equatorial velocity v, its angular
momentum is J < mobv. Show that, for the Planck mass (5–89), v would have to
become relativistic to produce even the lowest excited rotational angular momentum
states J = ±�.
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From Problem 5–19, we see that the angular momentum of a Planck-mass black
hole may be either −�, 0 or +�. However, the third law of thermodynamics tells
us that the maximum rotation rate cannot be reached in a finite number of steps.
We can, therefore, be all but certain that the particle of Planck mass mP which we
dropped from rest into the black hole, in Section 5:20, would have zero angular
momentum.

PROBLEM 5–20. A mass mP may be endowed with electric charge. Show
that if the charge exceeds 11 electron charges, a black hole of mass mP could not
form, because the electrostatic repulsion would exceed the gravitational attraction
of matter: e2/m2

0G > 1.

5:24 Radiating Black Holes

For a long time, black holes were thought to absorb all incident particles and radia-
tion without ever emitting any in return. This view has now changed. The idea that
black holes might radiate was first proposed by Stephen Hawking who showed that
these holes would emit blackbody radiation (Ha75).

The theory is complicated, but can be roughly understood in broad terms. Sup-
pose we accept the assumption that a black hole emits blackbody radiation at the
temperature given by (5–94). A blackbody radiates most of its power at wavelengths
λ for which the product of wavelength and temperature is

Tλ ∼ 1/2 cm K . (5-96)

Dimensionally, we know that kT ∼ hν = hc/λ, and we would be tempted to
set Tλ = hc/k. But numerically, we find that hc/k ∼ 1.44 cm K, and so we get a
better approximation to the temperature–wavelength product if we set

Tλ ∼ 2�c/k . (5-97)

The wavelength at which the black hole will radiate electromagnetically is deter-
mined by the motion of charges. The black hole tidally tears apart virtual electron–
positron pairs in the ambient vacuum, where they are continually generated and
recombine. The member of a pair that comes too close to the hole is gravitationally
captured and separated from its partner, which will orbit above the Schwarzschild
surface at a velocity somewhat below the speed of light until it finds another part-
ner to recombine. The orbital frequency of this motion is ν ∼< c/2πrs, where rs is
the Schwarzschild radius. The wavelength of radiation emitted at this frequency is
λ = c/ν ∼> 4πMG/c2. With this wavelength we obtain a coarse estimate of the
black hole temperature

T ∼<
�c3

2πkMG
. (5-98)
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This roughly agrees with the actual temperature given in (5–94).
PROBLEM 5–21. Using the result (5–94) show that the temperature of a black hole
is

T ∼ 1.6× 10−7M�
M

K. (5-99)

For black holes as massive as a star, the temperature is negligibly low and the
black hole hardly radiates at all. But primordial black holes that might have been
formed in the earliest moments of the Universe, with masses  1015 g, would long
ago have radiated away their mass — slowly at first, then progressively faster. Ini-
tially, the radiation is confined to electromagnetic and gravitational waves and any
other massless species. As the black hole loses mass, its temperature rises, it loses
mass increasingly rapidly, and finally explodes in a flash of high-energy radiation.
In the final moments, when the temperature is sufficiently high to produce electrons
and positrons, and eventually the more massive mesons and baryons, such particles
and their antiparticles can also be expelled.

PROBLEM 5–22. The luminosity of a sphere emitting blackbody radiation is given
by equation (4–78). Assume that a black hole emits energy only in the form of black-
body radiation. Substituting the temperature (5–94) and the Schwarzschild radius
into this expression, show that the luminosityL• is given by

L•
c2

= −dM•
dt

=
4πσ
c2

(
�c3

8πkM•G

)4(4M2
•G

2

c4

)
, (5-100)

and that the time τ required to radiate away the entire mass is

τ ∼ 10−25M3
• s , (5-101)

where M• is given in grams. Because the Universe is ∼4 × 1017 s old, primordial
black holes with an original mass ∼1.6×1014 g would be approaching this explosion
phase now. In its final moments, when the black hole mass had dropped to one ton
(106 g), the hole would explode in one tenth of a microsecond, and emit enormously
energetic particles.

When gamma-ray bursts were first observed, attempts were made to determine
whether we were detecting the final outbursts of such primordial black holes. We
now know that gamma bursts do not show increasingly high-energy gamma rays
toward the end of a burst. This tells us that none of the bursts observed to date
represents a primordial black hole. But more massive black holes could have been
created in the early phases of the Universe. If they were substantially more massive
than 1015 g — only a tiny fraction of the mass of the Earth — they would still be
radiating so slowly as to be undetectable. Their presence would be observable only
through their gravitational deflection of light or massive bodies.
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Answers to Selected Problems

5–3. From equation (5–10) we obtain

υ =
c(2 − δ −∆)

(2 − δ −∆+∆δ)
< c .

For counterpropagating velocities we obtain an expression of the form

−c < υ =
(∆− δ)c
δ +∆− δ∆

=
(∆− δ)c

(∆− δ) + (2 −∆)δ
< c .

5–4. Letting c→ ∞, x = x′ + V t′, y = y′, z = z′, t = t′ , and

υx = υ′x + V, υy = υ′y, and υz = υ′z .

5–6.
dL

dt
= − L

R2
·
(
L�
4π

)
· σg

(mc2)
.

.
Because L = mvR and υ2/R = GM�/R2,

dL

L
=
dR

2R
and

t =
[

2π
L�

· mc
2

σg

] ∫ 1AU

R�
RdR = 6 × 103 yr .

5–7. From Problem 5–6,

dL

L
= − 1

m

(
L�σg

4πR2c2

)
dt .

When the mass of the scattered radiation equals the grains’ mass,
dL/L0 = dR/2R = −dt, and R/R0 = e−2(t−t0), where the subscript denotes,
respectively, the initial orbital angular momentum, orbital radius, and time.

Because the light scattered in one second has a mass–energy of
10−8L�/c2 ∼ 4 × 10−4 g, any grain suffers an exponential loss of its angular
momentum and an exponential reduction in orbital radius per second, irrespective
of its radial distance from the Sun. This provides a useful estimate of the rate at
which matter falls into the Sun.

5–8. E = γ(V )m0c
2. Because E = 1020 eV, we see that γ(V ) = 1011 and

∆x′ = ∆x/γ(V ) = 3 × 1020/1011 ∼ 3 × 109 cm.

5–9. For a mean rest-frame life ∆t = 885 s, ∆t′ = γ(V )∆t ∼ 1014 s for
γ(V ) ∼ 1011. At υ ∼ c, the distance the neutron can travel is
∼3 × 1024 cm = 1 Mpc.
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5–12. The first result follows from equation (5–79), which has a point of inflection
with only a single solution with 12M2G2/c2L2 = 1. The second result is derived
from (5–75).

5–13. The orbital period in circular motion is P = 2π(dt/dφ) = (2π/c)(ṫ/φ̇).
From (5–71) to (5–74) we see that

P = 2π
dt

dφ
=

2πE
c2

r2

L (1 − (2MG/rc2))
.

For circular motion the left side of equation (5–75) equals zero, and provides a value
for E in terms of M and L which, on substitution into the equation for P , leads to
(5–82).

5–15. The maximum kinetic energy the proton attains just before a direct impact
onto the neutron star surface is ∼200 MeV. The maximum energy of any photons
produced on impact must therefore lie at ∼<200 MeV, equivalent to a temperature
of ∼2.3 × 1012 K. The radiation emitted by material falling onto a neutron star or
its accretion disk from a binary companion is generally observed at X-ray energies
in the kilovolt range, i.e., at energies roughly four orders of magnitude lower. This
indicates, in part, that the impact energy of infalling matter is distributed over a
sizeable area before being radiated away, but also results from the material having
too high an angular momentum to fall directly onto the neutron star. Instead it first
falls onto the accretion disk orbiting the star, and then dissipatively spirals in, falling
onto the star’s surface the shorter distance from the inner edge of the disk.

5–18. For a mass m0b/2rs added to an initial mass M , the area of the black hole
increases to

A = 4π
[
2G
c2

(
M +

m0b

2rs

)]2
= 4π

(
rs +

m0b

M

)2

,

which leads to A ∼ 4π
[
r2s + (2m0Gb/c

2)
]

and ∆A = 8πm0bG/c
2.



6 Electromagnetic Processes in Space

6:1 Coulomb’s Law and Dielectric Displacement

In earlier chapters we noted the similarities between Coulomb’s law for the attrac-
tion of charged particles and Newton’s law for the attraction of masses. Both are
inverse square law forces. Coulomb’s law states that the attraction between two
charges q1 and q2 is proportional to the product of the charges, inversely propor-
tional to the square of the distance between them, and lies along the direction sepa-
rating the charges.1

F =
(q1q2
r3

)
r . (6-1)

The charges q can be either positive or negative. Where a large number of sepa-
rate charges exert a force on a given charge q, the total force is the vector sum of
individual terms of the form of equation (6–1).

F = q
∑

i

[
qi

r3i

]
ri (6-2)

and we can define an electric field E,

E =
F
q
, (6-3)

which can be considered the seat of the force. All this assumes that the charges qi

and q are at rest in vacuum. If the charges qi are moving, the charge q will expe-
rience an additional magnetic force, and if the charges are not in vacuum but in a
polarizable dielectric material, the material will adjust itself to cancel out some of
the force. The actual force acting on q then becomes less than that given in equation
(6–2).

To clearly specify this we define a vector dielectric displacement D, independent
of the properties of the material in which the charges are embedded. D is strictly a
geometric quantity and specifies the field that would be obtained if all charges were
in a vacuum. In the presence of a uniform dielectric, equation (6–2) becomes

1 A number of different conventions on units are in common use. Throughout, we will make
use of electrostatic units of charge, esu, which set the proportionality constant in equation
(6–1) equal to unity when the force is measured in dynes and the separation in centimeters.
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F =
q

ε

∑
i

qi

r3i
ri . (6-4)

Equation (6–3) still holds true since it defines electric fields; but the dielectric dis-
placement now becomes

D = εE , (6-5)

which is seen to be independent of ε and dependent only on the positions and mag-
nitudes of the charges, that is, on the quantities qi and ri for most real materials.
The dielectric constant ε, which is a dimensionless quantity, can be taken to be
independent of E for field strengths below a critical value.

The displacement produced by a charge q1 at distance r is

D =
( q1
r3

)
r =
(

4πq1
4πr3

)
r , (6-6)

so that

D · n =
(

4πq1
rA

)
r · n , (6-7)

where n is the normal to the surface at point r and A is the total area of the enclosing
surface. The dots denote a scalar product. If so many charges are involved that the
charge distribution becomes continuous, a more general form of expression (6–7) is
applicable: ∫

D · ds =
∫

4πρdV =
∫

∇ · D dV , (6-8)

where ρ is the charge density, and the last equality is obtained from Gauss’s theorem
on vector integration which states that for an arbitrary vector X,∫

X · ds =
∫

∇ · X dV , (6-9)

where ∇· is the divergence operator. The integral on the left is a surface integral,
and ds is an element of the surface over which the integration takes place.

One may wonder why we emphasize the relation between D and E in such de-
tail when we have set out to discuss electromagnetic processes in space. We might
expect that the emptiness of the cosmos would assure that D and E are always iden-
tical. This is not quite true; much of our knowledge of the contents of interstellar
space depends on small differences between E and D. We define one more quan-
tity that will be useful later. It is the polarization field P, which is a measure of the
difference between the displacement and electric fields:

P =
[D− E]

4π
=

(ε− 1)E
4π

. (6-10)

The field set up through the rearrangement of charges in the polarizable material
is 4πP. It tends to oppose the externally applied field, reducing its value from D
to E. The factor 4π introduced here is a matter of convention and has the following
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significance: . At a plane boundary, with charge density σ per unit area, D just equals
4πσ. The polarization field, instead, will depend on σ′, the induced charge density
per unit area. Now, P is the electric dipole moment per unit volume. If this volume
contains n dipoles having charge q and separation d, then P = nqd. The charge
density σ′ then is nqd also, because we can visualize a cube of unit volume, made
up of d−1 dipole layers each of thickness d and containing nd dipoles. This makes
P numerically equal to σ′ — no factor of 4π occurs.

Thus far we have acted as though static fields perhaps were important on a scale
of cosmic dimensions. This probably is not true. In a near vacuum electric charges
generally can quickly rearrange themselves into a configuration where all electric
fields are neutralized, that is, into a charge-neutralized configuration where any
small volume element contains essentially the same number of positive and neg-
ative charges. The dimensions of such volumes are given by the Debye shielding
length discussed previously in Section 4:23. There is one exception to this general
rule, and it is important. We will show in the next section that electric charges are
tied to magnetic field lines in space. If an electric field is applied perpendicular to
the direction of a cosmic magnetic field the charges cannot flow across the magnetic
field lines to neutralize the electric field. Large-scale electric fields may then persist.

6:2 Cosmic Magnetic Fields

An electric charge q traveling through a cosmic magnetic field experiences a force
F called the Lorentz force:

F =
qv ∧B
c

, (6-11)

where v is the velocity of the charge, B is the magnetic flux density also called the
magnetic induction and c is the speed of light.2 The cross product in equation (6–11)
shows that the force, and hence the acceleration experienced by the charge, is per-
pendicular to both the velocity and the direction of the magnetic field. The charge
therefore spirals (see Fig. 6.1) along the magnetic field lines without changing en-
ergy. (To do work on the particle we would require a force that has some component
along the direction of motion). In a constant magnetic field, the particle describes a
helical motion with constant pitch. The velocity component υz along the direction
of the field is a constant of the motion, and the circular velocity υc about the field
lines then defines a pitch angle θ so that

tan θ =
υc

υz
. (6-12)

The gyroradius or Larmor radius,RL, of this motion is easily obtained by setting the
magnetic force equal to the centrifugal force acting on the particle. If the particle has

2 In empty space, the flux density B equals the magnetic field H defined, further on, by
equation (6–17). Because of this equality, astrophysicists often refer to B as the “magnetic
field.” We will also do this but, strictly speaking, it is incorrect. The unit of flux density is
the gauss, G.
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Fig. 6.1. Diagram to illustrate spiral motion in a magnetic field.

transverse momentum pc and gyrofrequency ωc = υc/RL, the force has magnitude

ṗ =
pcυc

RL
=
qBυc

c
, RL =

pcc

qB
, and ωc =

υc

RL
=
qBυc

pcc
. (6-13)

The gyrofrequency is sometimes also called the cyclotron frequency.

PROBLEM 6–1. Show that the Larmor radius of a proton moving at 10 km s−1

through a field of 10−6 G is small compared to interstellar and even interplanetary
distances. The unit of field strength, G, is the Gauss named after the nineteenth
century German mathematician and scientist Karl Friedrich Gauss.

Because the Larmor radius is small compared to the expected dimensions of
interstellar and interplanetary fields, charged particles moving with thermal veloc-
ities characteristic of cosmic gases are effectively tied to the magnetic field lines.
They can move along the field lines but cannot cross them any appreciable distance.
We say that the particles are “frozen” to the field and the motion of such particle-
field combinations is called frozen-in flow. Magnetohydrodynamics is the subject
that deals with problems arising from such flows (Co57).

We notice that the only way a charged particle can escape from being frozen
to the lines of force is through an encounter with another particle. Each particle
then assumes a completely new orbit. If such collisions are sufficiently frequent, the
particles can diffuse across magnetic fields.

Inasmuch as cosmic magnetic fields have their origins in the organized motion
of charged particles, the frozen-in flow is not only due to the presence of a mag-
netic field, but also maintains the field that causes it. This self-consistent motion of
charges is not an obvious result, but magnetohydrodynamics shows that it is real.
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The collisional processes just mentioned, therefore, conspire not only to prevent
freezing-in, but also as a consequence tend to destroy the magnetic fields that are
maintained by the frozen-in flow. For this reason, frozen-in fields cannot be main-
tained in dense gases where collisions are frequent. Collisions produce electrical re-
sistance, dissipating particle motions and the energy resident in the magnetic field.
Frozen-in flow therefore has a short life in a dissipative medium (Sp62).

Magnetohydrodynamics also tells us that the presence of a force, such as a grav-
itational or electrostatic force acting normal to the magnetic field, can produce a
drifting motion in which charges move in directions perpendicular both to the ap-
plied force and to the magnetic field direction. Such particle drifts occur in the Van
Allen belts of charged particles that constitute part of the Earth’s magnetosphere.
Drifts, however, do not directly act to dissipate cosmic magnetic fields unless the
drifting particles suffer collisions.

6:3 Ohm’s Law and Dissipation

A current generally consists of two types of terms. The first expresses the actual
flow of charge in response to an applied electric field. The second corresponds to
a virtual current representing a change in the applied field. This change gives rise
to a magnetic field (see Section 6:5) just as a moving charge would. It is genuinely
important. We write the electric current as

j = ρv +
1
4π

∂D
∂t

. (6-14)

The value of the velocity v in this equation is determined by two competing effects.
The applied electric field seeks to continuously accelerate the charge, whereas dis-
tant collisions with other electric charges continually seek to slow the particle down.
The resistivity of the medium is a measure of this slowing down. Its reciprocal is the
conductivity σ (not to be confused with the charge density per unit area discussed in
Section 6:1). In terms of E and σ, equation (6–14) can be written as

j = σE +
1
4π

∂D
∂t

. (6-15)

The dimension of σ is s−1, as can be seen from (6–5) and (6–15), because ε is
dimensionless. In general, the conductivity depends on the density of the gas, its
temperature, state of ionization, and chemical composition. Distant collisions pre-
dominate in slowing down the motion of charged particles in space, and they deter-
mine the value of σ. This follows quite generally from Sections 3:13 and 3:14, but
will be more explicitly shown in Section 6:18.

6:4 Magnetic Acceleration of Particles

One of Michael Faraday’s nineteenth century contributions to electromagnetism was
his discovery that a time-varying magnetic field gives rise to electric currents in a
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conducting medium encircling the field. The plane in which this current flows is
perpendicular to the direction of the time-varying field component. In integral form
Faraday’s law is expressed as

1
c

∂

∂t

∫
B · ds = −

∮
E · dl , (6-16)

where the integral on the left is a surface integral over the area enclosed by the
loop through which the current flows (Fig. 6.2 (a)). The integral on the right is a

Fig. 6.2. Illustrations for Faraday’s and Ampère’s laws. (a) Faraday’s law states that the cur-
rent in a conducting loop, and the associated electric field, are determined by the rate of
change in the number of magnetic lines of force enclosed by the loop (see equations (6–15)
and (6–16)). The number of lines of force crossing unit area is proportional to the magnetic
field, B. (b) Ampère’s law states that the magnetic field integrated along a loop enclosing a
current is determined by the total current crossing the enclosed area (see equation (6–17)).

line integral taken over that loop and the current observed by Faraday has been
replaced by the electric field that gives rise to it in accordance with equation (6–15).
We note now that, if any region of interstellar space should suddenly be subjected
to a rising magnetic field, electric charges would experience an effective electrical
field E proportional to the time rate of change of B. In the laboratory this effect
is used to elevate charges to very high energies. The first device that successfully
accomplished this acceleration was the betatron constructed by D. W. Kerst in 1940.

A rapid rise in magnetic field strength can result from the compression of a
cosmic cloud in a direction perpendicular to its magnetic field. Such a compression
can occur in the collision of interstellar clouds, either with one another, or with
high-velocity gases ejected from hot stars or exploding supernovae. This process
may produce low-energy cosmic rays, sometimes called suprathermal particles. It
is not sufficiently powerful to produce extremely energetic particles. More effective
mechanisms for accelerating particles are discussed in Section 6:6 below.

PROBLEM 6–2. Suppose the magnetic field in a region of space increases from
10−6 to 10−5 G over a period of 107 yr. To what energy would nonrelativistic elec-
trons and protons be accelerated if they moved perpendicular to the field and suf-
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fered no collisions? How does the final energy depend on the initial energy? To do
this, it is useful first to derive the energy–field relationship dE/E = dB/B that
follows from (6–13), and to recall the conservation of angular momentum of the
circling particles as B changes.

6:5 Ampère’s Law and the Relation Between Cosmic Currents
and Magnetic Fields

In Section 6:2 we noted that cosmic magnetic fields exist by virtue of the gyrat-
ing electric charges frozen to the field. This idea is more precisely expressed by
Ampère’s law which states that a current produces an encircling magnetic field (Fig.
6.2 (b)):

4π
c

∫
j · ds =

∮
H · dl . (6-17)

Here again the left side of the equation is a surface integral taken over the entire
surface encircled by the magnetic field in the line integral on the right.

We believe that cosmic magnetic clouds are configurations in which equation
(6–17) is obeyed in every locale. The shapes of the magnetic fields and currents are
therefore likely to be quite complicated. We can think of initial configurations called
force-free magnetic fields in which the magnetic fields and the flow of charges are so
arranged that no forces result to destroy the configuration. Such structures must have
j ∧ B = 0 everywhere. Force-free configurations may well represent the structure
of cosmic magnetic fields.

6:6 Magnetic Mirrors, Magnetic Bottles, and Cosmic-Ray
Particles

In Section 6:4 we noted that a betatron accelerates charged particles. A different
scheme for magnetically accelerating cosmic-ray particles was suggested by Enrico
Fermi. In Fermi acceleration the cosmic-ray particles are thought to travel between
cosmic gas clouds. Each cloud has an embedded magnetic field. When a particle
approaches the cloud and enters its field perpendicular to the field direction, it is
turned back by virtue of the magnetic force given by equation (6–11). For, after
traveling in a semicircle, the particle once again finds itself at the edge of the cloud
and headed into the direction from which it came.

As shown in Fig. 6.3, a similar reflection can occur for particles approaching a
cloud along the lines of force. If the particle impinges on a cloud that is receding
from it, the particle’s momentum after encounter is smaller than before. If the par-
ticle impinges on an approaching cloud, its final momentum is higher than before
the collision. In general the probability for collision is greater for an approaching
than for a receding cloud. (This corresponds to everyday experience. On a highway
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Fig. 6.3. Charged particle trajectories in a magnetic bottle. Light lines denote magnetic lines
of force. A high density of field lines indicates a strong magnetic field.

we pass more cars going in the opposite direction than going along the direction in
which we are traveling.)

Statistically, therefore, particles will derive increased momentum from encoun-
ters with clouds and can be accelerated to high energies. The process is similar to
the acceleration of a ping-pong ball between two slowly approaching paddles. After
the ball has made many bounces off each paddle, it is going far faster than either of
these reflecting surfaces.

Generally, a charged particle moves along the lines of force of a magnetic field,
spiraling as it goes. The pitch angle is given by equation (6–12). If the particle
encounters a region of the magnetic field where the lines are more compressed, it
experiences an increase in the field strength and by Faraday’s law (6–16) its circular
velocity υc increases. However, because the field itself is not doing any work on the
charge, the increase in υc must be bought at the expense of kinetic energy initially
resident in the longitudinal motion, that is, at the expense of a reduction in υz .
When the particle has advanced into the intense magnetic field to such a depth that
all its kinetic energy is spent in circular motion, the pitch angle θ becomes π/2; the
particle is reflected and spirals back out of the intense field.

As the particle first spirals into the intensifying magnetic field, its angular mo-
mentum about the axis of symmetry of the motion is conserved. Hence the magnetic
moment M:

M =
j ∧ r
2c

, j = qv , (6-18)

is also conserved. Substituting the gyroradius,, equation (6–13), for r we find

M =
υcpc

2B
(6-19)

along the direction of the magnetic field. From this it follows that the transverse
kinetic energy is directly proportional to the field B. If a particle has an initial pitch
angle θ in a fieldB, it can only penetrate the field until it reaches a region where the
field is B0 and sin θ = 1:

B0 =
B

sin2 θ
. (6-20)
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Here it is reflected and spirals back out of the intense field.
A magnetic bottle consists of two such magnetic mirrors between which a parti-

cle is reflected going back and forth without possibility of escape. The Fermi mech-
anism ping-pong acceleration could involve a (shrinking) magnetic bottle in which
the two magnetic mirrors approach.

We sometimes characterize cosmic-ray particles by a magnetic rigidity BRL

which equals pc/q for motion strictly perpendicular to the field (equation (6–13)).
The rigidity has dimensions of energy per charge.

PROBLEM 6–3. Consider an interstellar cloud moving with velocity V . It acts as
a magnetic mirror so that a particle suffers a change in speed ∆V = 2V added to
its own initial velocity in any reflection off the cloud. With two approaching clouds
a succession of collisions can occur. Using the law of composition of velocities
compute how many collisions a proton with initial energy E would need in order to
double its energy. Let V = 7 km s−1, typical of interstellar cloud velocities, let the
distance between approaching clouds (magnetic mirrors) be of the order of 1017 cm,
and let E = 1010 eV. How long would it take to double the particle’s energy? Is
this time appreciably different for protons and electrons? Is there a maximum to the
energy increase this process permits?

A more likely variant of the Fermi process has come to be widely accepted. The
particles are accelerated by successive reflections off a rapidly expanding supernova
ejection shell. After each impact the accelerated particle returns — deflected back
toward the shell by an external magnetic field into which the shell is expanding.
A succession of reflections off the expanding shell progressively accelerates the
particle to cosmic-ray energies. This variant has also come to be referred to as Fermi
acceleration.

A cosmic-ray particle must eventually suffer destruction due to one of several
competing processes — inelastic impact on another particle, loss from the Galaxy,
and hence loss from contact with the accelerating clouds, and so on. The number
of accelerating reflections between destructive events is thus limited. To reach truly
high energies, therefore, cosmic-ray particles must be injected into the accelerating
fields with rather high initial energies. Sufficiently energetic particles may be pro-
duced in supernova explosions. But the highest energy cosmic rays appear to reach
the Galaxy from extragalactic sources.

The most energetic particles, having energies of order 1020 eV, have a gyrora-
dius that exceeds the Galaxy’s dimensions. These particles could therefore not be
retained in the Galaxy for any length of time. If their origin were local they should
appear to come primarily from the central regions of the Galaxy or the Milky Way
plane. Instead, many come from other directions and are therefore believed to be
extragalactic (Bi97).

We know that the heavy nuclei, which form an abundant part of the cosmic-ray
flux, would suffer destructive collisions during the long stay in interstellar space
required by the rather slow Fermi acceleration mechanism. Yet we find iron nuclei



214 6 Electromagnetic Processes in Space

to be abundant at least up to energies of the order of 1012 to 1013 eV (Sw93). We
are driven toward a mechanism that could accelerate these particles rapidly.

Currently, quasars, the active nuclei of galaxies, gamma-ray bursts, pulsars,
magnetars and supernova explosions slamming into the interstellar medium, or a
fast stellar wind, are all considered to be likely sources for producing cosmic rays
at various energies. Further observations should lead to a clarification of these hy-
potheses. We can also hope that the study of solar flares, which are responsible for
the solar cosmic-ray component, will give us a better understanding of at least one
mechanism for accelerating energetic particles.

PROBLEM 6–4. Pulsars have been considered the source of at least some cosmic-
ray particles. The particles are thought to be accelerated by magnetic lines of force
that co-rotate with the central neutron star (Fig. 6.4). Suppose that the field velocity

Fig. 6.4. Cosmic-ray acceleration near a neutron star.

is simply ωr, where ω is the star’s angular velocity and r is the radial distance from
the star. Consider charged particles to be dragged along, frozen to the magnetic
field lines. What is the energy of the particles, then, as a function of radial distance
if special relativistic physics is approximately valid in this problem? Beyond what
radial distance can the particles and magnetic field not co-rotate? How does this
compare to the neutron star radius?

6:7 Maxwell’s Equations

Four equations of electromagnetism allow us to derive all classical electromagnetic
effects. They are

∇ · D = 4πρ (see equation (6–8)), (6-21)

∇ ∧ E = −1
c

∂B
∂t

(equivalent to equation (6–16)), (6-22)

∇ ∧ H =
4π
c

j (equivalent to equation (6–17)), (6-23)
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and finally

∇ · B = 0 (isolated magnetic charges do not exist). (6-24)

Comparing (6–24) with (6–21) we can see that it is telling us that magnetic
monopoles, isolated magnetic charges analogous to electric charges, do not exist
in Nature. Only magnetic dipoles and higher multipole configurations occur. De-
spite this statement, a search for magnetic monopoles has gone on ever since Paul
Dirac (Di31) pointed out that quantization of the electron’s charge could be under-
stood if a few or even only one such magnetic monopole existed in Nature. Thus far,
no Dirac monopoles have been found. Monopoles may, however, have existed in the
first few moments in the evolution of the Universe, when it was ∼<10−35 s old.

The four Maxwell equations generally must be supplemented by four auxiliary
expressions:

D = εE , (6–5)

B = µH , (6-25)

j = σE +
1
4π

∂D
∂t

, (6–15)

∇ · j = 0 . (6-26)

Equation (6–25) expresses a relation between the magnetic vectors B and H which
is similar to that between D and E. The magnetic permeability µ can have val-
ues greater than or less than unity, depending on whether the medium is param-
agnetic or diamagnetic. In most cosmic gases µ = 1, for all practical purposes,
but paramagnetic grains in interstellar space appear to be responsible for the ob-
served polarization of starlight (see Section 9:13). Equation (6–26) states that cur-
rents in the sense defined by equation (6–15) are continuous, having no sources or
sinks.

6:8 The Wave Equation

From equations (6–22) and (6–23) and from the relations (6–15) and (6–25), we can
obtain the expression

∇ ∧ (∇ ∧ E) = −1
c

∂

∂t
∇ ∧ B

=
−4πµ
c2

∂

∂t

(
σE +

ε

4π
∂E
∂t

)
, (6-27)

provided the dielectric constant ε and permeability µ do not vary with time and µ
is scalar. Both µ and ε generally can be tensor quantities but they frequently act as
scalars. Let us use the identity
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∇ ∧ (∇ ∧ E) = ∇(∇ · E) −∇2E , (6-28)

where the operator ∇2 ≡ ∇ ·∇ is called the Laplacian, sometimes written as ∆. If
we consider only regions in which the space charge is neutral, then ∇ ·E = 0 and

∇2E =
µε

c2
∂2E
∂t2

+
4πµσ
c2

∂E
∂t

. (6-29)

In a nonconducting medium σ = 0 so that

∇2E− µε

c2
∂2E
∂t2

= 0 . (6-30)

This is the equation for waves propagating with speed

V =
c√
µε

. (6-31)

PROBLEM 6–5. Derive a similar expression for the magnetic field:

∇2H− µε

c2
∂2H
∂t2

= 0 , (6-32)

paying particular attention to the limitations imposed on ε, µ, and σ in arriving at
this result.

We have set σ = 0 in equations (6–30) and (6–32). But it is important to note
that conductivity is a frequency-dependent quantity. At optical and even at radio
frequencies σ usually is very low. Certainly, at optical frequencies the wavelength
of the electromagnetic wave is short compared to the distance between charges, and
the wave readily propagates through a vacuum. At the longest radio wavelengths a
transition occurs: charges in the medium can respond to the electric and magnetic
fields of a propagated wave, and the conductivity rises. When the second term on the
right of equation (6–29) dominates, the expression assumes the form of a diffusion
equation and the wave is damped.

The propagating waves are transverse (Fig. 6.5). If the direction of propagation
for a plane wave is the x-direction, uniformity within its plane dictates that all partial
derivatives with respect to y and z are zero. Moreover, the divergence relations give

∂Ex

∂x
= 0 and

∂Hx

∂x
= 0 , (6-33)

and the curl equations (6–22) and (6–23) give

∂Ey

∂x
= −1

c

∂Hz

∂t
,

∂Hy

∂x
=

1
c

∂Ez

∂t
,

∂Ez

∂x
=

1
c

∂Hy

∂t
,

∂Hz

∂x
= −1

c

∂Ey

∂t
, (6-34)

0 =
∂Hx

∂t
, 0 =

∂Ex

∂t
.
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Fig. 6.5. Electromagnetic waves. (a) Wave propagating along the x-direction with electric
field plane-polarized along the y-direction. (b) Circularly polarized wave propagating along
the x-direction. For simplicity, only the electric field direction is shown here. The direction
of the E vector rotates about the x-axis. The sense of rotation shown is said to be left-handed
circularly polarized (LHP). Any electromagnetic wave can be constructed from a suitable
superposition of left- and right-handed circularly polarized waves. Plane-polarized waves are
obtained by superposing LHP and RHP waves of the same amplitude. Their relative phase
determines the plane of the E vector (see Fig. 6.7).

If n is the unit vector along the direction of propagation, we see that (6–33) and
equations (6–34) are satisfied by an expression of the form

H = n ∧ E , (6-35)

so that the E and H fields are always perpendicular and the solution of the wave
equation (6–30) has the form

fi = A cos(2πνt− kx), i = y, z , (6-36)

where k = √
µε(ω/c) and ω = 2πν . Here, ν is the frequency, ω is the angular

frequency, and k is the wave number of the wave — the number of waves per unit
length along the direction of propagation. fi represents electric and magnetic field
components. The wavelength, λ ≡ 1/k.

6:9 Phase and Group Velocity

Let us write the equations for propagation of two waves f− and f+ that have angular
frequencies ω −∆ω and ω +∆ω, respectively:

f− = A cos[(ω −∆ω)t − (k −∆k)x] ,
f+ = A cos[(ω +∆ω)t − (k +∆k)x] .
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The superposition of these waves gives

f = f− + f+ = A{cos[(ω −∆ω)t− (k −∆k)x]
+ cos[(ω +∆ω)t − (k +∆k)x]} , (6-37)

f = 2A cos(ωt − kx) cos[(∆ω)t− (∆k)x] .

This means that there is a carrier wave frequency represented by cos(ωt − kx)
that is amplitude modulated by a wave cos(t∆ω−x∆k). The carrier wave velocity
is called the phase velocity:

V =
ω

k
, (6-38)

and the velocity of the modulation is called the group velocity:

U =
∂ω

∂k
. (6-39)

We will note later that U is the physically more interesting quantity. It represents
the speed at which information can be conveyed or energy transported. As long
as the medium is purely dispersive, that is, ω = ω(k), there is no difficulty in
defining U . But if the conductivity σ becomes appreciable, we have absorption, the
amplitude A becomes complex, and U no longer has a clear physical meaning. For
long wavelength cosmic radio waves, this kind of absorption prevents transit through
the Earth’s ionosphere. These long waves must then be observed from rockets or
satellites taken above the atmosphere. At even longer wavelengths the interstellar
medium absorbs, and such waves are not transmitted at all. We will return to this
problem in Section 6:11.

6:10 Energy Density, Pressure, and the Poynting Vector

The scalar product of equation (6–22) with H, subtracted from the product of (6–23)
with E is

1
c
H · ∂B

∂t
+

E
c
· ∂D
∂t

+
4πσE ·E

c
= −H · ∇ ∧ E + E · ∇ ∧ H . (6-40)

Using the vector identity

∇ · (A ∧ B) = B · ∇ ∧ A −A · ∇ ∧ B (6-41)

we find that
1
8π

∂

∂t
(εE2 + µH2) = −σE2 −∇ · S , (6-42)

where
S ≡ (c/4π)E ∧ H . (6-43)

S is called the Poynting vector. If we apply Gauss’s theorem (6–9) relating volume
and surface integrals, (6–42) can be written as
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∂

∂t

∫
εE2 + µH2

8π
dV = −

∫
σE2 dV −

∮
S · ds . (6-44)

Here the first term on the right is equivalent to the rate of change of kinetic energy
of moving charges. It involves the scalar product of the force on the particles and
their velocity, since σE represents a current. Hence,∫

σE2 dV →
∑

ev ·E =
∑

v · ṗ . (6-45)

This is the time derivative of the kinetic energy summed over all particles. The other
two terms in (6–44) represent the flow of electromagnetic energy. The term on the
left of equation (6–44) is the rate of change of electromagnetic energy in the vol-
ume; (εE2 + µH2)/8π is the energy density of the fields. The second term on the
right represents the flow of energy through the enclosing surface and S therefore
is the electromagnetic flux density. Equation (6–44) states that the increase of elec-
tromagnetic energy in a volume equals the electromagnetic energy radiated away
minus the increasing kinetic energy of charges enclosed in the volume.

Previously we found that the pressure P due to randomly oriented electromag-
netic waves is just one-third the numerical value of the energy density. In Section
4:7 we determined this on kinetic grounds:

P =
1
3

[
1
8π

(εE2 + µH2)
]
. (6-46)

The case of static fields is similar except that a magnetic pressure can now exist
without an accompanying electric pressure; the conductivity σ is high and a current
σE maintains the magnetic field. There exists a kinetic pressure due to the flow of
charges, and this will depend on σE. The situation is further complicated because
the magnetic pressure actually is a tensor quantity that depends on the orientation
of the fields.

For a magnetic field there always exists a tension along the lines of force and an
outward pressure perpendicular to the lines of force. We can see this in the following
way. The magnetic energy density in a cube of unit dimension is µH2/8π. If the
cube is compressed an amount dl along a direction parallel to the field lines, the
field strength remains constant but the volume decreases by dl. Because the energy
density remains constant while the volume decreases, the total energy in the volume
decreases by (µH2/8π) dl. This means that the amount of work done to compress
the cube is −(µH2/8π) dl, and indicates that there is a pressure −µH2/8π along
the field lines.

If the cube is compressed along a direction transverse to the field lines, the
number of lines of force in the volume does not change, and a compression ∆l
increases the field strength to H/(1 − ∆l). The energy density now becomes
∼(µH2/8π)(1 + 2∆l), and because of the decrease in volume (1 − ∆l), the total
energy change on compression is ∼ (µH2/8π)∆l. In this case an amount of work
(µH2/8π)∆l must be done to compress the cube, and the pressure resisting com-
pression is µH2/8π. For a volume containing randomly directed bundles of field
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lines, the net effect of averaging over two transverse and one longitudinal direction
is an overall outward pressure P = (µH2/8π)/3.

This is the reason why difficulties arise in the problem of star formation in the
presence of magnetic fields. It is relatively simple to see how matter can contract
along the lines of force, but it is more difficult to understand how condensation takes
place perpendicular to the direction of the field because the gases are frozen to the
field lines and the pressure of the magnetic field attempts to resist any contraction.
To see how severe this problem is, note that the transverse pressure is H2/8π. Ini-
tially a typical field strength might be 10−6 G, so thatPinitial ∼ 10−13 dyn cm−2. As
a protostar contracts from ∼1018 cm down to 1011 cm, conservation of the number
of field lines requires that H ∝ r−2, so that H2 ∝ r−4 and we would end up with a
protostar having 108 G magnetic fields and 1015 dyn cm−2 magnetic pressures. The
gravitational forces are far too weak to produce such high fields. We conclude that
somehow we are looking at the problem in the wrong way. Stars manage to form
despite these difficulties. We will return to this problem in Sections 10:5 and 10:6.

PROBLEM 6–6. The transverse pressure of a static magnetic field is Ps = H2/8π;
the magnetic part of the radiation pressure (6–46) is Pr = 1

3H
2/8π. What is the

significance of the factor 1
3 ?

6:11 Propagation of Waves Through a Tenuous Ionized Medium

Consider an ionized medium without electric or magnetic fields. Let this medium
be tenuous, so that collisions between ions and electrons are rare. Then, for small
departures from equilibrium, electric fields in the electromagnetic wave accelerate
the electrons in the medium relative to the more massive positive ions:

mr̈ = eE(r, t . (6-47)

Here e and m are the charge and mass of the electron, and E is the field associated
with the wave. Let the wave have the form

E(r, t) = E0(r)eiωt (real part) , (6-48)

where only the real part will be considered. The displacement of the electron from
its equilibrium position then is

r = − e

mω2
E . (6-49)

This satisfies both equations (6–47) and (6–48). The displacement of the electrons
effectively sets up a large number of dipoles which, as discussed in Section 6:1, give
rise to a polarization field P. If n is the number density of electrons, the polarization
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field is to be expressed as the sum of the individual dipole fields produced by the
passing wave

P = ner = − ne2

mω2
E . (6-50)

The definition of the polarization field, equation (6–10), then tells us that the dielec-
tric constant of the medium must be

ε = 1 − 4πne2

mω2
. (6-51)

Because the propagation phase velocity is inversely proportional to the refractive
index at frequency ω, nω = ε1/2 (we can set µ = 1 in all problems dealing with
cosmic wave propagation), the phase velocity in a plasma will be greater than the
speed of light! But no information and no energy is transmitted at this velocity.
Therefore no violation of special relativity is involved. The more significant group
velocity is always less than c.

If a wave propagates along the x-direction through the cosmic medium, the
transverse E and B field components have the form (6–36):

f = f0 cos(kx± ωt) (6-52)

and

ω2 =
k2c2

ε
=

k2c2

1 − (4πne2/mω2)
, (6-53)

where equation (6–51) has been invoked with µ = 1. This can be written as

ω2 = k2c2 +
4πne2

m
≡ k2c2 + ω2

p , (6-54)

where

ωp ≡
(

4πne2

m

)1/2

∼ 5.6× 104n1/2 , rad s−1 (6-55)

is called the plasma frequency. It is related to the Debye length L (see equation
(4–165)) by (mL2/kT )1/2 = ω−1

p , which is the time for an electron with a thermal
velocity component (kT/m)1/2 to cross a Debye length.

If ω < ωp, the wave number k becomes imaginary and the wave will not propa-
gate through the medium.

In radio-astronomy — as mentioned in Section 6:9 — observations at low fre-
quencies cannot be carried out from below the ionosphere. Radio waves cannot be
transmitted at frequencies below the ionospheric plasma frequency. This frequency
varies because the electron density is not uniform. Typically, however, the cut-off is
at frequencies of a few MHz. For the interstellar medium the cut-off is roughly an
order of magnitude lower, as indicated in Figure 1.15.

When ω > ωp, propagation can take place. The group velocity of the wave is

U =
dω

dk
=

c√
1 + ω2

p/c
2k2

. (6-56)
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The velocity of propagation therefore is frequency dependent. This phenomenon is
important in the propagation of pulses emitted by a pulsar (He68a)*. If the emitted
pulse contains a range of frequency components, the arrival time at the Earth will
be delayed most at the lowest frequencies. We can write (6–56) as

U =
c√

1 + ω2
p/(ω2 − ω2

p)
. (6-57)

The arrival time of a pulse that has traveled a distance D is D/U and the frequency
dependence of the arrival time is

d(D/U)
dω

∼ −D
c

ω2
p

ω3
for ω � ωp . (6-58)

Observations of pulsars show delays in arrival time taking the form (6–58). Because
the propagated radiation frequencies must exceed the plasma frequency (6–55), they
also put an upper limit on the number density of electrons in the dispersing medium.
More important, however, is the conclusion that the frequency dependence of the
time delay is directly proportional to Dn, the total number of electrons per unit
cross-sectional area along the line of sight to the emitting object. This useful relation
follows directly from (6–55) and (6–58). The integrated electron number density
along the line of sight is called the dispersion measure D:

D ≡
∫ D

0

n(�) d� = D〈n〉 . (6-59)

If the mean number density of electrons in the interstellar medium is known,
the dispersion measure (6–58) can give us the pulsar distance. Conversely, if the
distance D is known from other observations, a mean value of n along the line of
sight is obtained. The mean value estimated in this way would include a contribution
due to any electrons surrounding the emitting region and part of the emitting object
as well as true interstellar electrons. The dispersion measure within the pulsar would
not be distance dependent, whereas the dispersion due to the interstellar medium
would. On this basis we can distinguish the two contributionsand find that the pulsar
itself contributes negligibly. The dispersion measure along lines of sight leading
to Galactic sources at known distances gives a mean interstellar electron density
of about 〈n〉 = 0.03 cm−3. This value varies from source to source, depending
on the number of bright, hot, ionizing stars along the line of sight. Using a mean
density of electrons ∼0.03 cm−3, we find that the distribution of the nearer pulsars
fits the distances of the nearer Galactic spiral arms (Da69). The pulsars also show a
tendency to cluster close to the Galactic plane (Fig. 6.6).

Throughout this section we have assumed that the collision frequency νc be-
tween ions and electrons is low. However, when νc becomes high, energy losses
through dissipation can no longer be neglected. This problem is treated in Section
6:18.
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Fig. 6.6. Dispersion measure plotted against Galactic latitude for the 63 pulsars known in
early 1972 (Te72). By 1997 more than 700 pulsars were known, and the number has continued
to grow.

6:12 Faraday Rotation

Information about electron number densities in the cosmic medium can also be ob-
tained from the Faraday rotation of a wave’s plane of polarization. To understand
this effect, consider an electron moving in a plane perpendicular to the direction of
a magnetic field, B. It will be deflected by a force (6–11)

F =
ev ∧ B
c

. (6–11)

If the electron is also under the influence of an electromagnetic wave, it experiences
a further force due to the wave’s E field. Finally the gyrations under the combined
influence of these fields must be balanced by an outward directed centrifugal force.
The expression relating these three forces is

eE ± eBωr
c

= −mω2r , (6-60)

where E is the component of the field vector perpendicular to the magnetic field,
and the second term on the left has a negative sign when the electron rotates coun-
terclockwise viewed along the direction of the B field. This is the motion induced
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by an electromagnetic wave with a right-handed circular polarization RHP propa-
gating parallel to B. A left-handed circular polarization LHP gives rise to a force
+eBωr/c directed along the direction of displacement from the electron’s equilib-
rium position. Note, however, that the value of e is negative for an electron. Solving
for r gives

r = − e

m

(
ω2 ± eBω

mc

)−1

E . (6-61)

The dielectric polarization, as in (6–50) becomes P = ner, giving rise to a dielectric
constant

ε = 1 − 4πne2

mω(ω ± ωc)
, ωc ≡ eB

mc
. (6-62)

Here ωc is the gyrofrequency, or cyclotron frequency, (6–13). Since the index of
refraction ε1/2 is not the same, it follows that the left- and right-handed polarized
radiation travel at different velocities through an ionized medium in a longitudinal
magnetic field.

If a wave is initially plane-polarized with a given direction of polarization, the
polarization angle can be expressed as a superposition of two circularly polarized
waves of given phase, say θ0, and equal amplitude. As the waves propagate, the
phase relationship changes because one wave lags behind the other. The direction
of polarization therefore rotates. Sometimes the E vectors will be in phase; at other
times they will be out of phase.

Figure 6.7 shows two sets of superposed, opposite circularly polarized waves.
The one on the left has θ0 = 180◦. The one on the right has θ0 = 90◦. The E
vectors and their sums are shown at different times during the waves’ period P . The
sum of the vectors is indicated by the dashed line. We can see that the direction of
the plane-polarized wave is given by an angle equaling half the phase lag. However,

Fig. 6.7. Addition of circularly polarized waves, to give plane-polarized radiation. The rela-
tive phase delay at time t = 0 is θ0.
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the initial direction of one of the E vectors must also be specified. In Fig. 6.7, for
example, we took the left-handed polarized E vector to point to the right at t = 0.

Turning now to the velocity of propagation and refractive index, we find the
difference ∆n between indexes nL and nR to be

n2
L − n2

R = εL − εR = 2nω∆n . (6-63)

We write

nω ∼ 1 − 4πne2

2mω2
, (6-64)

where (6–64) is obtained from equation (6–51) provided nω − 1  1. Substituting
the dielectric constants from (6–62) into (6–63) we obtain

∆n =

4πne2(2ωc)
mω(ω2 − ω2

c )

2
(

1 − 2πne2

mω2

) . (6-65)

If ω � ωc and ne2/mω2  1,

∆n =
4πne2ωc

mω3
. (6-66)

This distance lag per unit time is c∆n/n2
ω ∼ c∆n. The phase lag of the LHP

relative to the RHP wave therefore becomes ω∆n, and the plane of polarization
rotates through half this angle in unit time:

∆θ ∼ ω∆n

2
. (6-67)

The difference in velocity of propagation, and hence the rate at which the polariza-
tion vector rotates, is therefore proportional to the number density n and to B. For
a given velocity difference, the phase rotates at a rate inversely proportional to the
wavelength λ, because the distance one wave has to lag behind the other becomes
greater for longer wavelengths. On the other hand, the velocity difference between
the waves is proportional to ω−3, according to (6–66), and therefore is proportional
to λ3. Hence the angle θ(D) through which the plane of polarization is rotated over
distance D is proportional to λ2. In observing distant radio sources emitting polar-
ized radiation we can determine the angle θ as a function of wavelength. This gives
a value for the product of electron density n and the magnetic field component along
the viewing direction (provided the path length is known). More correctly, because
the rotation depends on the presence of both a properly oriented magnetic field and
the local particle density at the field’s position, the rotation actually gives a value of
the product of particle density and magnetic field integrated along the line of sight.

If, as is sometimes supposed, the particles and fields actually do not occupy
the same positions in space, but are physically separated from one another, then
the Faraday rotation only produces a lower limit to the field strength and particle
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density. Passage of radiation through a magnetic field whose direction is scrambled
by turbulence also yields just a lower limit.

For pulsars the dispersion measure tells us the mean number density of electrons
along the line of sight (Section 6:11). The Faraday rotation can then be used to
estimate the mean component of the magnetic field strength along the line of sight.
This procedure has been followed in obtaining the local Galactic magnetic field
(see Fig. 9.5). Because the field direction changes along this path, only a statistical
estimate of actual field strength is obtained in this way.

PROBLEM 6–7. Suppose the field strength isB everywhere, that it varies randomly
in direction from region to region, but that its direction is constant over any region
of lengthL. If the source distance isNL, and the electron number density is n, show
by a random walk procedure that

θ ∼
√
NL

(
2πne3B
m2c2ω2

)
.

For simplicity assume that B always points directly toward or away from the ob-
server.

6:13 Light Emission by Slowly Moving Charges

When an electric charge is set into accelerated motion it can emit radiation. If this
motion is induced by an incident electromagnetic wave, we may find that the charge
— or group of charged particles — absorbs or scatters the radiant energy. To see
this consider the current associated with the accelerated charge. The current induces
a magnetic field at some distance from the position of the charges, but the magnetic
field strength variations will normally be somewhat out of phase with the variations
in the current. This is due to the time delay involved in transmitting the information
about the current strength from one position to another. That information can only
be transmitted at the speed of light. For the moment we will regard the charges and
currents as sources of electric and magnetic fields. If we use the Maxwell equations
(6–22) and (6–23) for empty space where E = D and H = B, and we can write jc
to symbolize the conduction current σE,

∇ ∧ H =
4π
c

jc +
1
c

∂E
∂t
, (6-68)

∇ ∧ E = −1
c

∂H
∂t

. (6-69)

Now consider a vector potential A as giving rise to the magnetic field, while a
scalar potential φ, together with A, gives rise to the electric field; then we can write

H = ∇ ∧ A (6-70)
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and

E = −∇φ− 1
c

∂A
∂t

, (6-71)

which are consistent with the Maxwell equations above. Separable equations, each
depending on only one of these potentials, can then be obtained provided that

∇ ·A +
1
c

∂φ

∂t
= 0 (6-72)

holds. Equation (6–72) is called the Lorentz condition.

PROBLEM 6–8. Check the validity of this statement by direct substitution of equa-
tions (6–70) to (6–72) into the Maxwell equations. In this way obtain

∇2A − 1
c2
∂2A
∂t2

= −4π
c

jc (6-73)

and

∇2φ− 1
c2
∂2φ

∂t2
= −4πρ . (6-74)

In empty space, equations (6–73) and (6–74) have the right side equal to zero; it
is nonzero only at the actual location of charges and currents. Furthermore, in a
static case where the time derivative vanishes, φ obeys the Poisson equation (4–151)
which we used earlier in discussing plasmas. When we solve the Poisson equation,
the potential is expressed in terms of an integral over the volume-distributed charges
divided by the distance of the charges from the point at which the potential is eval-
uated. In view of this we write the potential as

φ(R0, t) =
1
R0

∫
ρ

(
t − R0

c
+

r · n
c

)
dV, (6-75)

where R0 is the distance from the center of charge, and r · n is the projected
distance of a point at r in the charge distribution (see Fig. 6.8). The unit vector
along the direction from the charge distribution is n. Equation (6–75) tells us that
the potential at any given time is determined by the charge distribution at a time
R/c = (R0 − n · r)/c earlier. The similarity between equations (6–73) and (6–74)
suggests that we can also write

A(R0, t) =
1
cR0

∫
jc

(
t− R0

c
+

r · n
c

)
dV. (6-76)

Since a plane wave in vacuum obeys the relation (6–35)

H = n ∧ E (6–35)

(6–71) leads to
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Fig. 6.8. Diagram to illustrate radiation by a dipole; see equations (6–75) to (6–85).

H =
1
c
Ȧ ∧ n (6-77)

as long as the magnetic field strength is measured at a large distance from the charge
distribution so that ∇φ can be neglected.

We can now determine the energy radiated away by the moving charges. The
Poynting vector is immediately obtained from equations (6–35) and (6–43)

S =
c

4π
H2n . (6-78)

For radiation by a dipole — that is, two slightly separated dissimilar charges —
we can take the integral over the current distribution in (6–76) to be just the rate of
change of the dipole moment

A =
1
cR0

ḋ , (6-79)

where

ḋ =
d

dt

∑
er . (6-80)

Here d =
∑
er is the dipole moment of the charge distribution; the time derivative

refers to a time t′ = t − (R0/c), and the dimension of the dipole must be small
compared to the radiated wavelength λ; for then

r · n
c

 λ

c
= P (6-81)

and neglect of the term r · n/c in equation (6–76) involves a neglect only of a time
increment small compared to the period of oscillation P . We now see from (6–77)
and (6–35) that the field strengths at a distance R0 from the dipole are
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H =
1

c2R0
d̈ ∧ n , (6-82)

E =
1

c2R0
(d̈ ∧ n) ∧ n , (6-83)

and the intensity of radiation dI directed into a solid angle dΩ is given by the Poynt-
ing vector integrated over that angle:

dI =
1

4πc3
(d̈ ∧ n)2 dΩ . (6-84)

Integrating over all angles dΩ = sin θ dθ dφ,

I =
∫ ∫

d̈2

4πc3
sin3 θ dθ dφ (6-85)

I =
2

3c3
d̈2 . (6-86)

For two opposite charges e and −e, separated by a distance r, the dipole moment is

d = er (6-87)

and the total radiated energy per second is

I =
2e2r̈2

3c3
. (6-88)

PROBLEM 6–9. A magnetic dipole can be considered to consist of two fictitious
magnetic charges qm and −qm separated by a distance a. The magnetic dipole mo-
ment would then be M = qma. (a) Show that the magnetic field along the axis of
this configuration is H = 2aqm/r

3. (b) At the surface of a pulsar H ∼ 1012 G,
r ∼ 106 cm, ω ∼ 102 (rad/s)2. By analogy to equation (6–88) show that, if H is
the strength of a magnetic dipole field aligned perpendicular to the axis of the star’s
rotation, the intensity of radiation is (Pa68)

I =
2

3c3
M̈2 ∼ 1036 erg s−1. (6-89)

We should still note that a system of charged particles all of which have the
same charge-to-mass ratio cannot radiate as a dipole. The center of charge and the
center of mass coincide for such a system; and if the center of mass

∑
mr remains

stationary, the derivatives d̈ all vanish:

d̈ =
∑

er̈ =
∑ e

m
mr̈ = 0 . (6-90)
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For such an assembly of charges we can still obtain electric quadrupole radiation, or
radiation generated by higher electric or magnetic multipole processes. These pro-
cesses depend on the inclusion of terms in r ·n/c that we had previously neglected.
The current jc is now expressed as an expansion in r · n/c:

jc

(
t′ +

r · n
c

)
= jc(t′) +

∂

∂t

(r · n
c

)
jc(t′) + · · · , (6-91)

where again t′ = t − R0/c. If we only retain the first two terms of the expansion
and sum over all charges, equation (6–76) yields

A =
∑
ev

cR0
+

1
c2R0

∂

∂t

∑
ev(r · n) , (6-92)

where the first term again is produced only by a time-varying dipole moment, and
we now understand that v and r values are measured for time t′, although all primes
have been dropped for ease in writing. One can show (see La51) that this leads to

A =
ḋ
cR0

+
1

6c2R0

∂2

∂t2
Q− 1

cR0
(Ṁ ∧ n) , (6-93)

where

M ≡ 1
2c

∑
ev ∧ r and Q ≡

∑
e(3r(n · r) − nr2) , (6-94)

are the magnetic dipole moment and electric quadrupole moment, respectively. Note
that the magnetic dipole term also vanishes when the charge-to-mass ratio is the
same for all particles. This comes about because angular momentum is proportional
to M and conservation of angular momentum implies Ṁ = 0. The second term on
the right of equation (6–93) is called the electric quadrupole term.

The higher multipole terms are small compared to dipole radiation terms, since
they effectively involve an expansion in v/c. As (6–81) shows, this is a small quan-
tity when the dimensions of the system are small compared to the wavelength.

The considerations presented here in classical terms also apply in the quantum
theory of radiation. Instead of talking about the intensity of radiation given off by
a moving system of charges, we then talk about the probability for emission of ra-
diation. Where differences in the charge-to-mass ratio do not vanish, the emission
probability is normally much higher for electric dipole radiation than for multipole
radiation. In systems with the same e/m ratio for all constituent particles, electric
dipole radiation is forbidden by the quantum mechanical selection rules to be dis-
cussed in Section 7:6. For example, we now recognize large masses of interstellar
molecular hydrogen H2 in the Universe. But the presence of this gas for many years
could not be established by observations of its mid-infrared spectrum, primarily be-
cause the symmetry of the hydrogen molecule forces us to look for lines that are
emitted or absorbed only through the very weak electric quadrupole process. With
improved infrared detectors these spectral lines are now detected, though they are
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often far fainter than radiation emitted by minor chemical constituents thousands of
times less abundant.

This, incidentally, brings up one last important point: that emission of radiation
is just the reverse of absorption and the probability for absorption in an atomic sys-
tem is identical to the probability for induced emission (see Section 7:10). Induced
emission is the process in which an atom or molecule emits radiation in response
to stimulation by a light wave that has exactly the same frequency as the wave that
the atom can emit. We then find that the stimulated and stimulating radiation have
exactly the same characteristics; that is, the photons all belong to the same phase
cell (see Section 4:11). This induced emission is different from the quantum me-
chanical spontaneous emission, which corresponds to emission by an unperturbed
atom or molecule radiating on its own without any apparent external influence. The
stimulus for spontaneous emission will become clearer from quantum mechanical
considerations that we will take up in Section 7:10.

6:14 Gravitational Radiation

The general approach to radiative processes presented here is also relevant to grav-
itational radiation. As discussed in earlier sections, both gravitational forces and
electrostatic forces diminish as the square of the distance respectively separating the
masses or charges. This allows us to use a formalism somewhat similar to electro-
magnetic theory in dealing with gravitational radiation. One immediate consequence
of such considerations is a statement about the strength of the expected gravitational
radiation. Because the ratio of inertial to gravitational mass is constant for all matter,
gravitational dipole radiation is not permitted. The much weaker quadrupole radia-
tion is the first allowed multipole emission process. The magnitude of the expected
radiation at any given multipole level will also be considerably smaller, simply be-
cause the ratio of gravitational mass to inertial mass is much smaller than the ratio
of electric charge to mass. The ratio of intensities can therefore be expected to differ
by factors of order e2/m2G ∼ 1042 if the electron charge-to-mass ratio is used. It
is then clear that appreciable gravitational radiation can only be expected from large
masses undergoing large accelerations. Ordinary binary stars are not sufficiently
massive or compact to yield measurable amounts of gravitational radiation. How-
ever, the faint emission of gravitational radiation can be deduced from the gradual
evolution of the orbits of binary pulsars orbiting each other at close range.

PROBLEM 6–10. (a) Using equation (6–77) together with expression (6–93) for
the quadrupole moment, obtain a Poynting vector of the form (6–78) and show that
the radiation intensity for quadrupole radiation is proportional to (

...
Q)2 and c−5. The

dots indicate the third derivative with respect to time.
The actual intensity for gravitational quadrupole radiation (La51) is

I =
G

45c5
...
Q

2
, (6-95)
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where Q is a tensor having the form of (6–94) but with mass replacing the electric
charge e. For a mass M enclosed within radius a, this can be written as

I ∼ GM2a4ω6

c5
f(ε2) . (6-96)

(b) For an ellipsoid rotating with the mass symmetry axis perpendicular to the
axis of rotation, the quadrupole moment is proportional to the square of the elliptic-
ity, ε ∼ [1 − a2

min/a
2
max]; specifically, f(ε2) = ε2/4 (Ch70). Assume that ε  1.

For a pulsar with a ∼ 106 cm, M ∼ 1033 g, ε ∼ 10−5, and ω ∼ 102 rad s−1 show
that the intensity of gravitational radiation is ∼7×1031 erg s−1. This is smaller than
the magnetic dipole radiation; but very early in the pulsar’s career, when it spins
with a period of the order of one millisecond, the ω6 dependence and a possibly
increased ε value may allow the gravitational radiation to equal or dominate the
magnetic dipole radiation.

(c) For a binary pulsar — a pulsar orbiting another compact star — ε has to be
taken as the orbital eccentricity defined in Section 3:1, and
f(ε) ∼ (2/5)(1 + 73ε2/24 +37ε4/96)(1− ε2)−7/2 (Pe64). The first binary pulsar
to be discovered was PSR 1913+16. It has two neutron stars with nearly identical
masses (Hu75), (Th93). The system’s total mass is M = 2.83M�, its orbital ec-
centricity is ε ∼ 0.617, its semimajor axis is a = 1.94 × 1011 cm, and its orbital
period is 27,906 s. Using equation (6–96) show the rate of gravitational radiation to
be I ∼ 1.9 × 1031 erg s−1 and show that the resulting decline in the orbital period
is of order Ṗ /P ∼ 10−16 s−1 . This is in good agreement with the observed value,
Ṗ /P ∼ 8.2 × 10−17 s−1 (Ta82).

Supernova explosions, and massive concentrations of matter falling into com-
pact galactic nuclei are also expected to emit gravitational radiation.

6:15 Light Scattering by Unbound Charges

When a plane-polarized electromagnetic wave moving along the z-direction is inci-
dent on a charged particle having mass m and charge e, the particle is subjected to
an electric field of form

E = E0 cos(k · r − ωt + α) . (6-97)

If the field is sufficiently weak so that the velocity imparted to the charge is always
small — υ  c— then the force eE is always large compared to the force ev∧H/c
acting on the particle. This is evident from (6–35). The acceleration experienced by
the particle is given by

mr̈ = eE (6-98)

and the dipole moment produced by the displacement of the charge, d = er, has a
second time-derivative
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d̈ =
e2

m
E . (6-99)

We now see that equation (6–84) predicts a scattered light intensity per solid angle
along direction n:

dI =
e4

4πm2c3
(E ∧ n)2 dΩ . (6-100)

We speak of a differential scattering cross-section, σ(θ, φ),

dσ(θ, φ) ≡ σ(θ, φ)dΩ =
dI(θ, φ)

S
=
[
e2

mc2

]2
sin2 θ dΩ , (6-101)

where θ is the angle between the scattering direction n and the electric field E of the
incident wave, and S is given by (6–43). We note:

(a) That the frequency of the radiation is not changed by scattering;
(b) That the angular distribution of scattered light is not dependent on the fre-

quency;
(c) That the total cross-section is not frequency dependent. It is obtained by

integrating dσ(θ, φ) over all angles θ, φ.

σ =
∫ π

0

∫ 2π

0

σ(θ, φ) sin θ dφ dθ (6-102)

For electrons

σe =
8π
3

(
e2

mc2

)2

= 6.65× 10−25 cm2 . (6-103)

This is called the Thomson scattering cross-section.
(d) The differential scattering cross-section is symmetrical in θ about θ = π/2.
(e) σ is a factor of (mp/me)2 ∼ 106 times less for protons than for electrons.
(f) No light can be scattered into the incident direction of polarization, where

E ∧ n = 0. By the same token, light scattered at right angles to E and the incident
wave is entirely polarized parallel to the E vector.

(g) If the initial wave incident on the particle is unpolarized, we obtain a scat-
tering cross-section independent of Φ but dependent on the polar angle Θ included
between the directions of the incident and scattered waves (Fig. 6.9). The angle θ is
a function of the angles Φ and Θ, and cos θ = sinΘ cosΦ.

For a given angle Θ, therefore,

〈sin2 θ〉 = 1 − sin2Θ〈cos2 Φ〉 = 1 − sin2Θ

2
=

1
2
(1 + cos2Θ) , (6-104)

where we have made use of the fact that 〈cos2 Φ〉 = 1/2 when the average is taken
over all angles Φ. For unpolarized radiation we can write

dσ =
1
2

(
e2

mc2

)2

(1 + cos2Θ) dΩ . (6-105)
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Fig. 6.9. Direction of incident and scattered waves (see equations (6–104) and (6–105)).

This yields the important result that:
(h) For unpolarized radiation the cross-section has peak values in the forward

and backward directions. Most of the light is scattered forward along the direction
in which the wave was initially moving, or backward into the direction from which
the wave came.

PROBLEM 6–11. Show that there is a force component

F (Θ) = (1 − cosΘ) dσ
S
c

acting on the scattering charge along the direction of propagation. Show that when
this is averaged over all values Θ, we obtain a total force F along the direction of
incidence

F =
2
3

(
e2

mc2

)2

E2 =
σS
c
. (6-106)

In the vicinity of bright hot stars this can be the dominant force acting on elec-
trons. Much of the visible light reaching us from the solar corona seems to be due
to scattering by electrons.

6:16 Scattering by Bound Charges

The zodiacal light — diffuse scattered sunlight in the ecliptic plane — is due to
radiation scattered off small solid grains circling the Sun in the orbital plane of the
planets. This glow extends into the corona and weakly contributes to its brightness.
We can understand scattering by dust and by molecules, by considering a harmon-
ically bound charge that would normally oscillate at a natural frequency ω0. The
electric field attempts to force the oscillator to vibrate at a different frequency ω
instead. The equation of motion for this forced oscillation is

r̈ + ω2
0r =

eE
m
. (6-107)



6:16 Scattering by Bound Charges 235

If E = 0, we obtain oscillation at frequency ω0. If E has the form (6–97), equation
(6–107) has the solution

r =
eE
m

1
(ω2

0 − ω2)
(6-108)

and

d̈ =
e2

m
E
(

1
1 − (ω2

0/ω
2)

)
(6-109)

(see equation (6–99)). The scattering cross-section then is

σ =
σe

(1 − ω2
0/ω

2)2
. (6-110)

When ω � ω0, the electron acts as though it were free and we again have σ = σe.
If ω0 � ω we obtain

σ =
σeω

4

ω4
0

=
8π
3

e4

m2c4
ω4

ω4
0

, (6-111)

called the Rayleigh scattering cross-section. Rayleigh scattering is responsible for
the scattering of visible light in the daytime sky. The electrons are strongly bound
to their parent molecules so that ω0 is large compared to the frequency of visible
light ω. For red light (ω/ω0)4 is smaller than for blue light by a factor close to
(2)4 = 16. Hence blue light is scattered most strongly. Red light passes more easily
straight through the atmosphere without deflection, whereas blue light is scattered
out of a straight path, and the sky appears blue when we look away from the Sun.

The scattering by fine dust grains is also of great interest in astronomy. For
spherical grains with refractive index n, the cross section for scattering can be shown
to be

σ = 24π3

[
n2 − 1
n2 + 2

]2
V 2

λ4
, (6-112)

if the radius a of the sphere is much smaller than the wavelength λ. V is the vol-
ume (4π/3)a3. We note that the factor λ−4 is reminiscent of Rayleigh scattering,
showing that the two types of scattering are related. The differential cross-section
has exactly the same angular dependence, (6–105), as Thomson and Rayleigh scat-
tering.

This is an important property for the study of disks around young stars. The
light from T Tauri stars becomes linearly polarized as it is scattered by a dusty
disk surrounding the star. Even when such disks are too compact and too distant
to be resolved, their orientation in the sky can be determined from the direction of
polarization of the scattered light, which must be perpendicular to the orientation of
the disk. Some T Tauri stars are binary systems. Judging by the polarization of the
two stars, their disks are found to be roughly aligned along the direction separating
the stars in the sky. Since these disks may eventually give rise to new planetary
systems, it is interesting to see how these planets will be oriented relative to their
parent stars. Because we have not yet devised sufficiently advanced instruments to
image distant planetary systems directly, this is a particularly useful indicator of the
potential structure of planetary systems around binary stars (Je04).
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6:17 Extinction by Interstellar Grains

Interstellar grains absorb and scatter radiation so that starlight does not reach an ob-
server directly. We talk about extinction. The term extinction refers to the fractional
amount of light prevented from reaching us. It is a useful concept when we do not
know how much of the radiation is scattered and how much is absorbed. The scat-
tered radiation sometimes can be observed in reflection nebulae — clouds of dust
grains illuminated by a bright star. These clouds show spectra remarkably similar
to those of the illuminating star; the scattered portion of the radiation looks very
much like light scattered off snow. The particles, in this sense, are white or gray.
On the other hand, when we see starlight that has passed through a cloud, we find
an amount of extinction that to first approximation is inversely proportional to the
wavelength, λ. The data are shown in Fig. 6.10. Some λ−4 scattering undoubtedly
also takes place; the grain size distribution appears to differ for different chemi-
cal constituents of the dust; the smallest grains certainly are small compared to the
wavelength of visible light; but the overall effect is to produce a mean cross-section
roughly proportional to λ−1.

Thus far we have only talked about spherical grains that are purely dielectric.
It is, however, also possible for grains to have a metallic character; they can then
absorb and emit radiation — they do not merely scatter. For metallic grains the
dielectric constant has an imaginary component and we talk about a complex re-

Fig. 6.10. Interstellar extinction curve showing magnitudes of extinction as a function of
reciprocal wavelength. The data were obtained from observations of the stars ζ-Persei and
ε-Persei, and have been normalized to an extinction difference /E(B − V ) of one magnitude
and V ∼ 0. The curve would therefore roughly characterize extinction over a path length of
order ∼1 kpc through the galactic plane (after Stecher (St69)).
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fractive index, m. In these terms, for a column density N of grains small compared
to the wavelength, absorption dominates over scattering, and the extinction is given
(Gr68)* by

/E = 6πN
(
m2 − 1
m2 + 2

)
V

λ
(IP) , (6-113)

where /E is the total light extinguished for unit incident energy, and the symbol (IP)
means that the imaginary part of the expression in parentheses should be used.

For particles with dimensions comparable to the wavelength of the extinguished
radiation, the expressions become quite complicated even for spherical particles;
and for nonspherical grains the theory of extinction is extremely laborious.

We might be tempted to attribute interstellar extinction to metallic absorption
alone, because then the 1/λ relation might be directly obtained. However, mat-
ters are not that simple. The refractive indices m and n are wavelength depen-
dent — a dependence determined by the chemical makeup of the grains. The ob-
served wavelength dependence of absorption and scattering by interstellar grains,
and their ability to polarize light both through extinction and thermal radiation, put
tight constraints on the sizes, chemical composition, shapes, and fluffiness of the
grains (Dw97).

Radiation scattered by the processes mentioned in Sections 6:15 and 6:16 should
lead to polarization that can be shown to have the Θ-dependence

P =
sin2Θ

1 + cos2Θ
. (6-114)

In addition, polarization, both in absorption and in emission, can be produced by
systematically oriented elongated or disk-shaped grains. The light that reaches us
from distant stars located close to the plane of the Galaxy shows polarization be-
lieved due to this process. How small grains could be aligned to give consistently
polarized radiation is discussed in Section 9:13. The interaction of grains with radi-
ation is a complicated subject. Detailed discussions can be found in (Bo83)*.

6:18 Absorption and Emission of Radiation by a Plasma

In Section 6:11, we treated the propagation of radiation through a tenuous ionized
medium. Sometimes, however, the plasmas are dense and collisions between ions
and electrons have a high frequency of occurrence, νc. In this sense, a medium
may be tenuous for high-frequency waves, but dense at lower frequencies. This is
quite common. Because the nature of the transmission is so different in these two
cases, the spectrum of radiation received from a source may also be quite different
at high and low frequencies. A relatively abrupt change in spectrum taken together
with other data then allows us to determine the collision frequency and, hence, the
density of the medium. Radio-astronomy can, in this way, provide an extremely
useful technique for measuring the density of interstellar ionized gases.
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To show this we consider an ionized medium and define the collision frequency
νc as the frequency with which an electron successively becomes deflected through
a total angle of 90◦, usually through a series of small collisions with ions. This angle
of 90◦ is the deflection a particle has to suffer to give up all the directed momentum
it had at some previous period, that is, to lose all sense of the direction into which it
was accelerated by some previously applied force. We only consider collisions with
ions because we will be interested in the dissipation of energy through collisions.
When an electron collides with another electron the motion is that of a symmetric
dipole; no energy is radiated away and these collisions can therefore be neglected.

We now consider an electron accelerated by the electric field component E of an
electromagnetic wave. As the particle reaches appreciable velocity induced by the
field, it suffers a collision and gives up all its directed momentum. This means that
there is an acceleration by the electromagnetic wave traveling through the medium
and deceleration through collisions. The combined forces on the electron then are

mr̈ = eE(r, t) −mṙνc . (6-115)

Here m is the reduced electron mass. The second term on the right shows a momen-
tum loss equal to the instantaneous momentum mṙ of the electron every time there
is a collision, or νc times in unit time interval. This is just what we stated formally in
defining νc. Our problem will be to calculate the actual value of νc. However, before
we do that, we can proceed to solve equation (6–115) and obtain the transmission
properties of the plasma in different frequency ranges relative to νc.

We have already noted that some of the momentum conferred on the electrons
by the electromagnetic wave is lost in collisions. This means that the energy trans-
ferred from the wave to the particles becomes dissipated. Because the energy of the
electromagnetic wave depends on the square of the wave amplitude, E2, we can
expect to find that E will decrease as the wave propagates through the medium. We
will therefore make use of a function E(r, t) of the form

E(r, t) = E0e
−κx/2 cosωt (6-116)

in equation (6–115). Here κ is the absorption coefficient. The factor 2 in the expo-
nent of this damping term is provided so that the energy in the wave, rather than
its amplitude, may decay by a factor of 1/e in distance x = 1/κ. Note that the
absorption coefficient always has units (length)−1.

Because the rate of energy loss from the wave will be determined by the total
number of collisions per unit volume, we rewrite equation (6–115) as

nmr̈ + nmνcṙ = neE0e
−κx/2 cosωt , (6-117)

where n is the electron density.
If we use a complex field E instead of a field with real values in equation

(6–117), the solution of the differential equation becomes much simpler. However,
in order to remember that only the real parts of the equation have physical signifi-
cance, we add the annotation (RP):
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nmr̈ + nmνcṙ = neE0e
−(κx/2)+iωt = neE (RP). (6-118)

PROBLEM 6–12. By substitution, show that a particular solution of (6–118) is

r = −
(
eE0

mω

)
e(iωt−κx/2)

[
iνc + ω

ν2
c + ω2

]
. (6-119)

The current due to the n particles per unit volume can now be written as

j = neṙ =
ne2

m

[
νc − iω

ν2
c + ω2

]
E (RP). (6-120)

As in equation (6–50), ner is an induced polarization field, and the imaginary term
in the brackets on the right of (6–120) is the induced polarization current

dP
dt

= iωP = iω
ε− 1
4π

E (RP). (6-121)

Here the imaginary number i enters as a consequence of the assumed field in
(6–118). Equation (6–121) is then a direct consequence of the definition (6–10).
The real term in the brackets of (6–120) determines the current σE due to the flow
of charge. We note two features of equation (6–120). The term proportional to νc

on the right represents the dissipation of energy and is therefore directly related to
the absorption coefficient κ. The second term, proportional to iω, depends on the
dielectric constant in the medium, and hence yields the phase velocity cε−1/2 of the
wave through the medium. Formally written:

j =
(
σ + iω

ε− 1
4π

)
E (RP) (6-122)

with

ε = 1 − 4πe2n
m(ω2 + ν2

c )
and σ =

e2nνc

m(ω2 + ν2
c )
. (6-123)

If we write the imaginary and complex dielectric constants as

εi = − i4πσ
ω

and εc = ε+ εi , (6-124)

equation (6–122) can be written in a form characteristic of a pure dielectric. In fact,
all of Maxwell’s equations take on this form. This can be seen directly by noting that
j appears only in equations (6–15) and (6–23) in the set of Maxwell’s differential
equations. For a complex field, as it appears in (6–118), a propagating wave has a
form (see equation (6–36))

E = E0 exp

[
i

(
ωt± ωε

1/2
c x

c

)]
(RP), (6-125)
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so that (6–118) holds if
κ

2
=
iω

c
ε1/2
c (RP). (6-126)

We can always write εc in the form

εc = (N + iQ)2 , (6-127)

where N and Q are real quantities as long as we choose

εi = 2NQi = −
(

4πσ
ω

)
i and ε = N2 −Q2 . (6-128)

We are therefore interested in the quantity

κ

2
= −ωQ

c
=

4πσ
2Nc

. (6-129)

In practice ω � νc, ωp, in all radio-astronomical processes, so that (6–123) and
(6–128) give

|ε| � 4πσ
ω

and N ∼ ε1/2 . (6-130)

With this same approximation we then also obtain κ at frequency ω,

κ(ω) =
4π(e2n/mω2)νc/c√

1− 4πe2n/mω2
=
νc(ω2

p/ω
2)/c√

1 − ω2
p/ω

2
, (6-131)

where ωp is the plasma frequency (6–55).
We still need to calculate the collision frequency νc; but most of the work for

this has already been done. Equation (3–74) gives the force acting on a particle of
reduced mass µ deflected in the superposition of inverse square law fields produced
by a density of n scattering centers per unit volume. To avoid confusion with the
symbol µ used here for magnetic permeability, we will continue to use the symbol
m for the electron’s reduced mass. In equation (6–115) we had defined the drag
force mṙνc and we now set this equal to the right side of (3–69), noting that since ṙ
is the velocity before collision, it plays the same role as υ0 in (3–69):

mυ0νc = m2πnυ2
0

∫ smax

smin

s(1 − cosΘ) ds . (6-132)

For small deflections Θ

1 − cosΘ ≈ 2 tan2 Θ

2
= 2
[
Ze2

υ2
0sm

]2
. (6-133)

The second half of this relation is based on an analogy with equation (3–71) but
with Coulomb forces replacing gravitational forces. Z is the typical charge on an
ion. We therefore have
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νc = 4πn
〈

1
υ0

〉
1

〈υ2
0〉
Z2e4

m2

∫ smax

smin

s−1 ds,

(6-134)

=
4
√

2π
3

n
Z2e4√
m(kT )3/2

ln
smax

smin
,

where we have made use of (4–112) and (4–113). From (6–131) and (6–134)

κ(ω) =
32π3/2e6n2Z2

3
√

2cω2(kTm)3/2
ln
smax

smin
. (6-135)

Here we have assumed a succession of many weak deflections, meaning that the
minimum impact parameter s′min must be sufficiently large to give a potential energy
small compared to the kinetic energy. Specifically, for Z = 1, s′min � {2e2/mυ2

0}.
In the interstellar medium, s will rarely be less than 10−2 cm, whereas

2e2 ∼ 5 × 10−19 (esu)2; and typically mυ2 is 10−12 erg in ionized regions. This
shows that the inequality for s′min is usually well satisfied except in very rare chance
collisions with a small impact parameter.

A second lower bound is given by the de Broglie wavelength of the electron
λe = h/mυ. At closer distances than this, the electron no longer behaves as a
point charge, and we can use a lower limit s′′min > λe/2. There also are two upper
bounds we can set. First, we want a collision to appear instantaneous; that is, the
time 1/ω � s′max/υ0. The time during which the electric field changes is long
compared to the time in which the electron suffers a collision, or goes through its
minimum approach. The second upper limit is s′′max = L, the Debye length given by
equation (4–165). Shielding by nearer particles screens out the effects of charges at
distances greater than L. Using the limits s′max and s′min for the ionized interstellar
matter, we can then write

s′max

s′min

=
mυ2

0

2e2
υ0

ω
∼ (2kT )3/2

2e2ωm1/2
. (6-136)

The full expression for ionized hydrogen, Z = 1, reads

κ(ω) =
32π3/2

3
√

2
e6n2

c(mkT )3/2ω2
ln
[
1.32(kT )3/2

e2m1/2ω

]
,

κ(ν) =
8

3
√

2π
e6n2

c(mkT )3/2ν2
ln
[
1.32(kT )3/2

2πe2m1/2ν

]
. (6-137)

6:19 Radiation from Thermal Radio Sources

If we now look at the results obtained in the previous section, we note that we have
an absorption coefficient κ(ν) that tells us the amount of absorption obtained per
unit length of travel through an ionized medium. An electromagnetic wave traveling
a distance D =

∫
dx through the medium will encounter an optical depth
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τ (ν) =
∫
κ(ν) dx . (6-138)

If the temperature throughout the region is constant, only the density will vary with
position x and we find that (La74)

τ (ν) = F (T, ν)
∫
n2 dx ∼ 8.2× 10−2T−1.35ν−2.1

∫
n2 dx , (6-139)

where the function F is κ(ν)/n2 from equation (6–137), and the integral

Em =
∫
n2 dx = 〈n2〉D (6-140)

is called the emission measure. It is a measure of the amount of absorption and emis-
sion expected along D. In radio-astronomy it is customary to express the electron
number density n in terms of cm−3 and D, the path length covered, in parsecs. The
emission measure then has units cm−6 pc.

The emission measure is just a measure that tells how frequently atomic particles
approach each other closely along a line of sight through a given region. For this
reason, such quantities as the number of atomic recombinations giving rise to a given
emission line are also proportional to Em. When the recombination line strength
R(ν1) for a spectral line ν1 is a known function F1(T ) of the temperature,

R(ν1) = F1(T )Em . (6-141)

Hence, if we measure both the recombination line strength — possibly in the visible
part of the spectrum — and also the radio thermal emission, both the emission mea-
sure and the temperature of the region can be determined. For this to be true, radio
measurements are best taken at frequencies for which the region is optically thin, so
that self-absorption of radiation by the cloud need not be considered.

An interesting feature of the self-absorption by an optically thin cloud is that the
brightness should be independent of the frequency ν . This comes about because the
absorption κ(ν) is inversely dependent on ν2 — if we neglect the weak frequency
dependence of the logarithmic term in (6–137). At the same time, the energy density
of radio waves corresponding to a blackbody at gas temperature, T , would be

ρ(ν) ∼ 8πkTν2

c3
, hν  kT, (4–83)

at very long wavelengths. The product of optical depth or effective emissivity for
the gaseous region, and blackbody intensity I(ν) = ρ(ν)c/4π is therefore fre-
quency independent as long as the region is optically thin. At low frequencies, where
τ (ν) ∼> 1, this behavior ceases to be true. The effective emissivity then remains close
to unity, and the only frequency-dependent term is I(ν). This is the Rayleigh–Jeans
limit, where a thermal source exhibits a spectrum proportional to ν2.

For the flat part of the spectrum the product S(ν) = τ (ν)I(ν) is proportional to
T−0.35Em; and this latter product can immediately be determined from a measure-
ment of the surface brightness anywhere in this frequency range. In the steep part



6:19 Radiation from Thermal Radio Sources 243

Fig. 6.11. Data obtained by a number of observers on the compact HII region DR21 and the
planetary nebula NGC 7027 (see text). After P.G. Mezger (Me68). (From Interstellar Ionized
Hydrogen, Y. Terzian, Ed., 1968, W.A. Benjamin, Inc. Reading, Massachusetts.)

of the spectrum, where the region is opaque, the measured surface brightness at fre-
quency ν depends only on T (see equation (4–84)). These two sets of observations,
taken together, provide data on both the temperature and the emission measure Em.
Figure 6.11 shows spectra for some very compact ionized hydrogen regions and
these clearly show the expected form. On this log–log plot the low-frequency spec-
trum has the expected slope of 2. At high frequencies it is flat.

NGC 7027 is a planetary nebula for which Mezger (Me68) — see the data of
Fig. 6.11 — found an emission measure of 5.4 × 107 cm−6 pc and a temperature
of ∼1.1 × 104 K. If the object is assumed to have a depth along the line of sight
similar to the observed diameter, then an actual density can be computed. Mezger
gave the value n ∼ 2.3 × 104 cm−3 for this object. From the density and the total
volume, we can also obtain the nebular mass, which in this case is roughly 0.25M�,
or 5 × 1032 g. The observed diameter of NGC 7027 is about 0.1 pc.

Young compact HII regions, which may be found in the plane of the Galaxy
in the vicinity of bright young stars, tend to have somewhat lower temperatures,
about the same densities, but sometimes much greater masses — up to several stellar
masses. These are believed to represent the remains of clouds from which massive
stars were formed. When massive protostars light up as they approach the main
sequence, they emit an intense ultraviolet flux that heats and ionizes the gas. Such
HII regions will be discussed in Chapter 9.
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6:20 Synchrotron Radiation

When a charged particle moves at relativistic velocity across a magnetic field, it de-
scribes a spiral motion. The axis of this spiral lies along the direction of the magnetic
field and the acceleration experienced by the particle is along directions perpendic-
ular to the field lines. As the particle moves, the direction of the acceleration vector
continually changes.

We first consider the motion of a relativistically moving particle orbiting in a
plane perpendicular to the magnetic field. This constitutes no restriction on general-
ity because a constant velocity component along the magnetic field lines leaves the
radiation rate unaffected.

If we recall that a force corresponds to a rate of change of momentum, we can
use (6–11) to calculate the rate at which the particle is deflected. Consider the direc-
tion of motion in Fig. 6.12 to be the x-direction, and let the radial direction be the
y-direction. In a time ∆t0, the momentum change, which is along the y-direction,
amounts to

∆py =
eυB

c
∆t0 . (6-142)

Since the initial relativistic momentum px is

px =
m0υ√

1 − υ2/c2
(5–30)

we can see that the angular deflection during time interval ∆t0 is

δ =
∆py

px
=

eB

m0c

√
1 − υ2

c2
∆t0 =

eB∆t0
m0cγ(υ)

, (6-143)

Fig. 6.12. Relativistic charged particle orbiting in a magnetic field. The direction of the field
lines is into the paper. Because the acceleration of the particle has no z-component, radia-
tion reaching an observer along the x-direction is linearly polarized along the y-direction —
perpendicular to the magnetic field.
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wherem0 is the particle’s rest–mass. From this it follows that the time∆t1, required
for the particle to orbit one radian, δ = 1, is

∆t1 =
m0c

eB
γ(υ) =

1
ωc

. (6-144)

The gyrofrequency ωc given in equation (6–13) is the reciprocal of ∆t1; we see
this if we use (5–30) to substitute m0γ(υ) for pc/υc in (6–13). Having obtained
the gyrofrequency of the particle, we might think that the problem is completely
solved and that the particle radiates energy at that frequency. However, the spec-
trum radiated by the moving charge actually lies at frequencies often many orders
of magnitude higher than ωc. The reason for this is directly related to the strong
concentration of emitted radiation into a narrow beam about the forward direction
of motion. From equation (5–50), the angle ∆θ in which radiation is received is
related to the angle ∆θ′ into which the radiation is emitted in the coordinate system
of the moving charge,

∆θ ∼
√

1 − υ2

c2
∆θ′ = γ(υ)−1∆θ′ . (6-145)

Because of this, an observer is not properly oriented to receive radiation emitted
by the particle except during a brief interval in each orbit during which the particle
advances along its trajectory by about one radian

∆t2 = γ(υ)−1∆t1 =
m0c

eB
. (6-146)

But the radiation emitted during interval ∆t actually arrives at the observer over an
even smaller time span, because radiation emitted by the particle at the beginning of
the interval ∆t has a longer distance to travel to the observer than radiation emitted
at the end of the interval, when the particle is nearer to him. If the particle travels a
distance of length L during interval ∆t, radiation emitted at the end of the interval
will only arrive a time

∆t ∼ −
(
L

c
− L

υ

)
(6-147)

later than radiation emitted at the beginning of the interval. Inasmuch as

L ∼ υ∆t2 , (6-148)

we obtain

∆t ∼
(
1 − υ

c

)
∆t2 ∼ m0c

2eB

(
1 − υ2

c2

)
, (6-149)

because for highly relativistic particles

(
1 − υ

c

)
∼ 1

2

(
1 +

υ

c

)(
1 − υ

c

)
=

1
2

(
1 − υ2

c2

)
. (6-150)
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We can define a radiation frequency ωm that roughly corresponds to the reciprocal
of twice this time interval:

ωm ≡ eB

m0c

(
1 − υ2

c2

)−1

= γ2(υ)ωc =
eB

m0c

( E
m0c2

)2

∼ 1
2∆t

, (6-151)

where E is the total energy of the particle, E � m0c
2, and ωc is the radiation

frequency of a nonrelativistic particle moving in a magnetic field. The significance
of the factor 2 is explained in Section 6:21, immediately below. Because (1−υ2/c2)
is a very small number, it is clear that ωm is many orders of magnitude greater than
the gyrofrequency,

ωm � ωc =
eB

m0c
. (6-152)

Let us summarize what we have done:

(1) First, we computed the orbital frequency of a particle moving in a magnetic
field.

(2) Next, we calculated the time in the observer’s frame during which the particle
was capable of emitting radiation into his direction.

(3) Finally, we computed the length of time elapsing between the arrival of the
first and last portions of the electromagnetic wave train at the position of the ob-
server. This elapsed time was very small compared to the period of the particle’s
gyration in the magnetic field, and the corresponding frequency ωm ∼ 1/2∆t was
found to be (E/m0c

2)2 higher than the nonrelativistic gyrofrequency for this field.

6:21 The Synchrotron Radiation Spectrum

The actually expected synchrotron radiation spectrum obtained when the above-
sketched calculations are done rigorously for monoenergetic electrons is a set of
extremely finely spaced lines at high harmonics of the gyrofrequency. The peak of
the spectral distribution function p(ω/ωm) occurs at a frequency ω = 0.5ωm. But,
as suggested by Fig. 6.13, roughly half of the emitted energy lies above and half
below the frequency 2ωm corresponding to the reciprocal of the time interval ∆t
we derived in (6–149). Details of the theory are discussed in references (Gi64)* and
(Sh60)*.

One can show that the energy actually radiated by a particle of energy E per unit
time into unit frequency interval dν is

P (ν, E) = 2πP (ω, E) =
16e3B
m0c2

p

(
ω

ωm

)
. (6-153)

In the limit of very high and very low frequencies the function p(ω/ωm) has asymp-
totic values
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Fig. 6.13. Envelope of the narrowly spaced lines comprising the synchrotron spectrum of a
particle radiating at peak emission frequency ωm = (eB/m0c)(E/m0c

2)2. Actual particle
energies always vary to some extent and, hence, the finely spaced lines are never seen. One
observes a continuum of the shape of the envelope (after I. S. Shklovskii (Sh60)).

p

(
ω

ωm

)
= 0.256

(
ω

ωm

)1/3

, ω  ωm ,

p

(
ω

ωm

)
=

1
16

(
πω

ωm

)1/2

exp
(
− 2ω

3ωm

)
, ω � ωm . (6-154)

PROBLEM 6–13. In Section 5:9 we saw that the power radiated by a body is inde-
pendent of an observer’s rest-frame as long as both the source and observer move in
inertial frames of reference. Make use of this fact to obtain the total power radiated
in the form of synchrotron radiation, by computing the emission of the spiraling
charge as viewed from an inertial frame moving with the charge’s instantaneous
velocity. For a charge whose total energy is E this total power is

P (E) =
2
3
e4B2

m2
0c

3

( E
m0c2

)2

(6-155)

for motion perpendicular to the magnetic field. For an electron

P (E) = 1.58× 10−15B2

( E
m0c2

)2

erg s−1

= 2.48× 10−2

(
B2

8π

)( E
m0c2

)2

eV s−1.

Verify that these expressions are at least approximately consistent with expressions
(6–151), (6–153), and (6–154) by noting that P (ω, E)ωm roughly corresponds to
P (E), and that equation (6–153) with a numerical integration under the curve in
Fig. 6.13 gives the same result.

PROBLEM 6–14. One astronomical object in which synchrotron radiation is im-
portant is the Crab Nebula. Take the magnetic field strength in some of the Crab’s
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bright filaments to be of order 10−4 G and show that a classically moving electron
would radiate at a frequency of about 300 Hz, independent of the energy. On the
other hand, if the energy becomes 109 eV, some 2× 103 times the rest-mass energy,
the peak radiation will occur at about 600 MHz. If the energy becomes 1012 eV, the
radiation peaks in the visible part of the spectrum at 6 × 1014 Hz.

The exact form of the observed spectrum depends on the energy spectrum of
the radiating particles as well as on the function P (ν, E). If we integrate the radia-
tion coming from different distances r along the observed line of sight out to some
distance R, the resulting spectral intensity at frequency ν becomes

Iν dν =
∫ Emax

0

∫ R

0

P (ν, E)n(E , r) drdE dν , (6-156)

where n(E , r) is the number density of particles of energy E at distance r.
Frequently, the electrons have an exponential spectrum with constant exponent

−γ, n(E) ∝ E−γ . The intensity then obeys the proportionality Iν ∝ ν−α where
α = (γ − 1)/2. To show this we note from Fig. 6.13 and from (6–153) that P (ν, E)
is equal to 16e3B/m0c

2 multiplied by an amplitude 0.1 and 2π, since the bandwidth
is ∆ν = ∆ω/2π ∼ 3ωm/2π.

Let us now suppose that every electron deposits its total radiated power at
frequency ωm. Equation (6–151) shows that E ∝ ω

1/2
m so that E−γ ∝ ω

−γ/2
m ,

∆E ∝ ∆ω/ω
1/2
m , and the total radiated power in (6–155) obeys the proportion-

ality
I(ν)∆ν ∝ ωmE−γ∆E ∝ ω(1−γ)/2

m ∆ω (6-157)

for a constant spectrum along the path of integration. Hence

I(ν) ∝ ν−α, α =
(γ − 1)

2
. (6-158)

Here, α is called the spectral index of the source. To obtain this relationship between
electron energy and electromagnetic radiation spectra, the source must be optically
thin. Optically thick (self-absorbing) sources are discussed below. For a wide variety
of nonthermal cosmic sources 0.2 ∼< α ∼< 1.2. For extragalactic objects indexes up
to α = 2 occur. In the frequency range below a few gigahertz, many quasars have
α < 0.5; but they often contain optically thick components. Most radio galaxies
have α > 0.5 (Co72). Spectra of some extragalactic sources are shown in Fig.
6.14. For the Galaxy, confirmation of these general concepts is good. We observe
a Galactic cosmic-ray electron spectrum with γ ∼ 2.6. This is measured at the
Earth’s position, but the electrons have reached us from great distances. Radio waves
also show an overall Galactic spectrum with index α ∼ 0.8 — in agreement with
(6–158).

Equation (6–158) is of great importance in astrophysics because it permits us to
estimate the relativistic electron energy spectrum by looking at the synchrotron radio
emission from a distant region. The total intensity of the radio waves is, however,
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Fig. 6.14. Radio spectra of several extragalactic objects. Note that some have a constant
slope, consistent with equation (6–158). Others show considerable curvature. (Compiled from
Kellermann, Pauliny-Toth, and Williams (Ke69) and Jauncey, Neill, and Condon (Ja70). Flux
density is measured in units of Janskys. 1 Jy ≡ 10−26 Wm−2Hz−1. With the permission of
the University of Chicago Press.)

not only a function of the total number of electrons along a line of sight, it also
depends on the magnetic field strength in the region where the relativistic electrons
radiate. Proton synchrotron radiation may also be important (Re68b).

PROBLEM 6–15. Show that I(ν) is proportional to B(γ+1)/2. For a randomly
oriented field,B2 takes on the mean value of the component of the (magnetic field)2

perpendicular to the line of sight. Hence

I(ν) ∝ B(γ+1)/2ν−(γ−1)/2

∝ Bα+1ν−α. (6-159)

Synchrotron emission can be accompanied by synchrotron absorption. Some
strong extragalactic radio sources believed to radiate synchrotron emission exhibit
a spectrum that is black in just those regions where synchrotron radiation would
have the highest emissivity. This is interpreted (see Section 7:10) as meaning that
the sources are opaque to their own radiation. Figure 6.14 shows that the flux for
many nonthermal sources is high at low frequencies. On the other hand, at these low
frequencies, the flux cannot exceed the flux of a blackbody

I(ν) dΩ =
2kT
c2

ν2 dΩ , (4–84)
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whose temperature T is determined by the electron energy, kT ∼ E . Now, equation
(6–151) gives the relation between the energy E , the magnetic field in the source B,
and the emitted frequency ν ∼ ωm/2π. Substituting for kT in (4–84), we then have

I(ν) dΩ =
(

8πν5m3
0c

eB

)1/2

dΩ , (6-160)

which expresses the magnetic field strength in the source in terms of the observed
flux at frequency ν and the angular size of the source. The low-frequency spectrum
then is no longer a blackbody spectrum because the energy of electrons decreases
at lower radiated frequencies. Effectively the temperature of the electrons E/k is
frequency dependent. The required data needed to compute the source magnetic
field can be gathered with a radio interferometer (Ke71). The peaked spectrum of
synchrotron self-absorption characterizes the radio source 3C147 (Fig. 6.14).

A synchrotron radiating electron has a lifetime (see equation (6–155))

τ ∼ E
P (E)

=
3m4

0c
7

2Ee4B2
. (6-161)

For a 109 eV, electron this amounts to ∼105 yr forB ∼ 10−3 G, a field that would be
consistent with other observations on quasars. Yet, active galactic nuclei are some-
times observed to flare up on time scales much shorter than a year. These short-term
variations can arise from synchrotron emission from superluminal jets. The Lorentz
factor Γ (υ) arising from the bulk motion toward the observer can then reduce the
observed time interval as indicated in (6–149). In addition, superluminal jets exhibit
rapid lateral expansion as explained in Section 5:12. The expansion of the radiating
surface further contributes to the increasing flux reaching an observer. And, finally,
the changes in the magnetic field on expansion affect the flux reaching an observer
at a fixed spectral frequency ν . Depending on the details of the jet expansion, the
observed rise time of a flare can be reduced by many powers of the Lorentz factor.
In one specific model this reduction is of order Γ (υ)7/2 (Re67). A Lorentz factor of
∼35 could then reduce the observed rise time of a flare to well below a year.

We will see in Section 9:5 that highly relativistic expansion also plays an essen-
tial role in producing gamma-ray bursts, GRBs, which are often observed to persist
for no more than a few seconds.

6:22 The Compton Effect and Inverse Compton Effect

When a high-energy photon impinges on a charged particle, it tends to transfer mo-
mentum to it, giving it an impulse with a component along the photon’s initial di-
rection of propagation. This is an effect that we had neglected in dealing with the
low-energy Thomson scattering process. Although we talk about Compton scatter-
ing when we discuss the interaction of highly energetic electromagnetic radiation
with charged particles, and Thomson scattering when lower energies are involved,



6:22 The Compton Effect and Inverse Compton Effect 251

the basic process is exactly the same; we are only talking about differences in the
mathematical approach convenient for analyzing the most important physical effects
in different energy ranges.

Corresponding to the Compton effect, there is an exactly parallel inverse Comp-
ton effect, in which a highly energetic particle transfers momentum to a low-energy
photon and endows it with a large momentum and energy. These processes are ex-
actly alike except that the coordinate frames from which they are viewed differ. To
an observer O′ at rest with respect to the high-energy particle, the inverse Compton
effect will appear to be ordinary Compton scattering. She would believe a highly
energetic photon was being scattered by a stationary charged particle.

Because of this similarity we will only derive the expressions needed for the
Compton effect, and then discuss the inverse effect in terms of a coordinate trans-
formation. We set down four equations governing the interaction of a photon with
a particle. The effect is more readily described in terms of photons rather than of
electromagnetic waves, but this is only a matter of convenience and does not reflect
a physical difference in the radiation involved. The considerations we have to take
into account are:

(i) Conservation of mass–energy, given by

m0c
2 + hν = E + hν ′ , (6-162)

where ν and ν ′ are the radiation frequency before and after the collision,m0 is the
rest-mass, and E is the relativistic mass–energy of the recoil particle (Fig. 6.15).

(ii) The relation of E to m0 is (5–34):

E = m0c
2

(
1 − υ2

c2

)−1/2

≡ m0γ(υ)c2 . (6-163)

(iii) Conservation of momentum along the direction of the incoming photon
yields

hν

c
=
hν ′

c
cos θ +m0γ(υ)υ cosφ . (6-164)

Fig. 6.15. Compton scattering.
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(iv) The corresponding expression for the transverse momentum is

0 =
hν ′

c
sin θ −m0γ(υ)υ sinφ . (6-165)

We now have four equations and four unknowns, υ, ν ′, θ, and φ.

PROBLEM 6–16. Show that these four equations can be solved to give the expres-
sion

c

h

(
1
ν ′

− 1
ν

)
=

1 − cos θ
m0γc

. (6-166)

By taking the wavelength of radiation to be λ = c/ν , λ′ = c/ν ′ we obtain

λ′ − λ = 2λc sin2 θ

2
, (6-167)

where

λc ≡ h

m0γc
(6-168)

is called the Compton wavelength of the particle. For an electron λc = 2.4×10−2 Å
or 2.4×10−10 cm. We note that for visible light, the change in wavelength amounts
to only ∼0.05 Å in 5000 Å, a nearly negligible effect. This is why momentum trans-
fer could be neglected in Thomson scattering. However, in the X-ray region, say, at
wavelengths of 0.5 Å, we encounter 10% effects; and at higher energies very large
shifts can be expected, (λ′ − λ)/λ� 1.

The cross-section for Compton scattering must be computed quantum mechan-
ically and turns out to be dependent on the energy of the incoming photon. The
expression for this cross-section (see Fig. 6.16) is known as the Klein–Nishina for-
mula,

σc = 2πr2e

{
1 + α

α2

[
2(1 + α)
1 + 2α

− 1
α

ln(1 + 2α)
]

+
1
2α

ln(1 + 2α)− 1 + 3α
(1 + 2α)2

}
,

(6-169)
where re is the classical electron radius and α is the ratio of photon to electron
energy. For an electron

re ≡ e2

m0c2
= 2.82× 10−13 cm, and α =

hν

m0c2
. (6-170)

In the extreme energy limits σc is approximated by

σL = σe

{
1 − 2α+

26
5
α2 + · · ·

}
, α  1 (low energies), (6-171)

σH =
3
8
σe

1
α

(
ln 2α+

1
2

)
, α � 1 (high energies) , (6-172)
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Fig. 6.16. Comparison of Compton and Thomson scattering cross-sections as a function of
α = hν/m0c

2 (after Jánossy (Já50)).

where

σe =
8π
3
r2e (6-173)

is the Thomson scattering cross-section.
For a proton the cross-section would be smaller — inversely proportional to the

mass. This means that Compton scattering is primarily an electron scattering phe-
nomenon. Scattering by atoms takes place as though each atom had Z free electrons
and the atomic scattering cross- section is just Z times greater than that for an indi-
vidual electron. In Compton scattering the atomic binding energy is small compared
to the photon energies and the electrons can be regarded as essentially free.

Let us still turn to the inverse Compton effect. Here, a highly relativistic electron
collides with a low-energy photon and transfers momentum to convert it into a high-
energy photon. This process can be followed from the point of view of an observer
moving with the electron. He sees the incoming radiation blue-shifted (see equation
(5–44)) to a wavelength

λD = λ

√
c− υ

c+ υ
. (6-174)

Still in this frame of reference, the scattered wave has wavelength (6–167)

λ′ = 2λc sin2 θ

2
+ λD , (6-175)

since this is a simple Compton process to the observer initially at rest with respect
to the electrons. For back-scattered radiation sin2(θ/2) = 1.
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Now, when this wave is once again viewed from the stationary reference system
— rather than from the viewpoint of the fast electron — a back-scattered photon is
found to have wavelength

λs ∼ λ′
√
c− υ

c+ υ
∼ λ

(
c− υ

c+ υ

)
+ 2λc

(
c− υ

c+ υ

)1/2

. (6-176)

This is the same transformation as (6–174); a stationary observer also sees back-
scattered radiation blue-shifted. Note that we have considered only direct back-
scattering and that this expression does not consider scattering at other angles. Quite
generally, however, it is clear that the wavelength of the photon becomes appreciably
shortened in the process and its energy is increased by factors of order

c+ υ

c− υ
∼ (1 + υ/c)2

(1 − υ2/c2)
∼ E2

m2
0c

4
, (6-177)

where E is the initial energy of the particle. As will be discussed in Section 9:8, the
total power radiated by an electron in inverse Compton scattering is closely related
to the power radiated in the form of synchrotron radiation. The total synchrotron
emission is proportional to the magnetic field energy density in space, B2/8π. The
total inverse Compton scattering power loss for electrons is proportional to the elec-
tromagnetic radiation energy density in space. The proportionality constant for these
two processes is identical.

Regions emitting synchrotron radiation contain relativistic electrons capable of
inverse Compton scattering. These, as well as relativistic positrons and potentially
protons, are able to inverse Compton scatter synchrotron radiation to γ-ray energies.
γ-rays with energies ranging up to 10 TeV = 1013 eV, emitted by the AGN Markarian
501 are believed to be produced in this synchrotron-self-Compton process.

Interestingly, a maximum brightness temperature of 1012 K can be set on op-
tically thick synchrotron emitting sources. At this brightness the inverse Compton
scattering by the radiation emitted within the source quickly reduces the energy of
the relativistic electrons and thus bounds the brightness temperature.

6:23 The Sunyaev–Zel’dovich Effect

X-ray observations frequently detect intense emission from ionized gas at a tem-
perature of ∼108 K at the center of a cluster of galaxies. This gas not only radiates
through free–free emission, it also inverse Compton scatters the cosmic microwave
background radiation. The X-ray emission is proportional to the emission measure
(6–140) along the line of sight

∫
n2

e dr. The inverse Compton scattering, in con-
trast, is proportional to the column density of electrons

∫
ne dr. It boosts the energy

of photons back-scattered toward an observer O, and diminishes the flux of back-
ground radiation reaching him from beyond the cluster. The overall effect is to raise
the observed flux at short wavelengths and diminish it in the long-wavelength tail of
the blackbody microwave background spectrum.
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These two effects provide us with a measure of both
∫
n2

e dr and
∫
ne dr, and

thus permit us to solve for both the electron density and
∫
dr, the depth of the cloud

along the line of sight. Assuming this depth to be the same as the transverse cloud
diameter Dθ, where θ is the angular diameter of the X-ray emitting cloud and D is
the distance to the cluster, we can solve for D ∼ θ−1

∫
dr. The cluster’s red shift z,

taken together with this value ofD, provides an independent measure of the Hubble
constant, H = zc/D.

The change in the microwave background radiation is called the Sunyaev–
Zel’dovich effect (Su72). For the cluster of galaxies CL 0016+16 the tempera-
ture decrement in the long-wavelength tail of the blackbody spectrum, at a wave-
length of 1 cm is ∆T ∼ 7 × 10−4K over a region that spans ∼75 arcsec (Ca96a).
The countless distant clusters of galaxies in the sky are expected to show up as a
slight patchiness in the microwave background on scales of roughly a minute of
arc and at an apparent change in the measured background temperature of order
δT/T ∼ 10−5 to 10−3.

6:24 The Cherenkov Effect

We now come to a process that is primarily important for studying cosmic-ray par-
ticles — the Cherenkov effect. This effect dominates the interaction of incoming
particles with the Earth’s atmosphere. The Cherenkov effect causes these particles
to decelerate radiatively and the light emitted can be used as a sensitive means for
detecting the particles (See Sections 5:10 and 5:11).

To see how the effect works, we consider a highly relativistic particle entering
the Earth’s atmosphere. Because the particle is arriving from a region where the
density has been very low and is entering a region of relatively high density, it
finds that it has to make some adjustments. The presence of the electrically charged
particle produces an impulse on atoms in the upper atmosphere and causes the atoms
to radiate. The impulse comes about because the particle cannot move faster than
the speed of light in this dense medium and must rapidly brake. The electric field
due to the particle therefore appears to atmospheric atoms to be abruptly switched
on; a rapidly time-varying field arises at the position of the perturbed atom. This is
just the condition required to cause the atom to radiate. The relativistic particle will
continue to affect atoms along its path in this way, as it keeps slowing down to the
local speed of propagation of light. Once the deceleration is complete, the electric
field changes produced in the vicinity of atoms take on a less abrupt character and
the radiative effects are diminished.

There are many parallels between Cherenkov radiation and hydrodynamic shocks,
which we will treat in Section 9:4. Just as a supersonic object that produces sonic
booms and keeps on losing energy until it slows down to the local speed of sound,
the cosmic-ray particle also keeps losing energy, through the Cherenkov effect, as it
slows down to the local speed of light in the medium through which it is traveling.

For reasons given in Section 5:9, the radiation produced in this manner is emitted
into a small forward angle of full width∆θ (see Fig. 6.17):
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Fig. 6.17. Diagram to illustrate Cherenkov radiation.

∆θ ∼ 2

√
1 − υ2

c2
(5–51)

just as in synchrotron emission or in any other relativistic radiation effect. The time
of arrival of the radiation is also dictated by considerations similar to those found in
synchrotron radiation. If the layer through which the radiation passes, before it has
become sufficiently slowed down, is of thickness d, the time elapsing between the
arrival of the first and the last photons of a wave train at the observer is, in analogy
to equation (6–149),

∆tc ∼
(
d

υ
− d

c

)
∼ d

υ

(
1 − υ

c

)
∼ d

2c

(
1 − υ2

c2

)
, (6-178)

so that the corresponding frequency is of the order of

ωc =
1
∆tc

∼ 2c
d

(
1 − υ2

c2

)−1

∼ 2c
d

( E
m0c2

)2

. (6-179)

If the distance traversed in the upper atmosphere is of the order of d ∼ 106 cm
= 10 km, and a proton of energy 3 × 1014 eV is considered, E/mc2 ∼ 3 × 105 and
ωc ∼ 6 × 1015 or νc ∼ 1015 Hz.

In many cases, an energetic primary produces a shower of secondary particles
through collisions with atoms of the upper atmosphere. These secondaries can also
give rise to Cherenkov radiation. The Cherenkov radiation spectrum does not nor-
mally peak at a frequency near ωc. It depends more on atomic radiation properties of
atmospheric gases and is relatively insensitive to the energy of the primary particle.

One interesting feature of Cherenkov detection is that it not only identifies the
existence of cosmic-ray particles, but also gives the direction of arrival with reason-
able accuracy; the uncertainty ∆θ in the direction from which the particles appear
to arrive is quite small.

Cherenkov radiation can be produced not only by high-energy cosmic-ray parti-
cles but also by high-energy gamma rays. Gamma rays with energies ∼> 3×1011 eV



6:25 The Angular Distribution of Light from the Sky 257

can be observed in this way. The detection process is indirect in this instance, and
depends on the formation of very energetic secondary charged particles in the up-
per atmosphere. These, in turn, generate a visible light pulse through Cherenkov
radiation. The direction of arrival indicates the direction of the emitting source.

Observations of powerful γ-ray flares from the blazars Markarian 421 and 501
— respectively at red shifts z = 0.031 and 0.034 — revealed not only γ-ray emission
at energies exceeding ∼ 10 TeV (1 TeV ≡ 1012 eV), but also provided coarse
spectra at these high energies (Kr01). By observing the high-energy spectral cut-
off of the blazars at these very high energies, it has been possible to determine that
the energy cut-off is due to the destruction of the γ-rays through collisions with
intergalactic infrared photons to produce electron–positron pairs (See (5–52), (5–
53)).

6:25 The Angular Distribution of Light from the Sky

In Section 6:8 we dealt with the Laplacian in Cartesian coordinates. For many prob-
lems, however, it is more convenient to use polar coordinates. This is particularly so
for describing the surface brightness distribution across the sky.

PROBLEM 6–17. Show that the Laplacian expressed in Cartersian coordinates,

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(6-180)

can be rewritten in spherical polar coordinates as

∇2 =
1
r2

∂

∂r

(
r2
∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂φ2
. (6-181)

To do this it is helpful to recall the relation between Cartesian and spherical polar
coordinates, z = r cos θ, x = r sin θ cosφ, y = r sin θ sinφ and to apply the rule
for partial differentiation of a function f(r, θ, φ),

∂

∂x
f =

∂r

∂x

∂

∂r
f +

∂θ

∂x

∂

∂θ
f +

∂φ

∂x

∂

∂φ
f , (6-182)

with similar expressions for partial differentiation with respect to y and z.

Equation (6–181) shows that r2∇2f(r, θ, φ) separates into a purely radial and a
purely angular term, so that by writing f = R(r)Y (θ, φ)eiωt we can separate the
radial and angular parts of a wave equation such as (6–32)

∇2f = α
∂2f

∂t2
= −αω2f , (6-183)
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where α = 1/c2 if we take ε = µ = 1. Then

1
R

d

dr

(
r2
dR

dr

)
+ r2

ω2

c2
= − 1

Y

[
1

sin θ
∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂φ2

]
. (6-184)

Because the left side of this equation depends only on r, and the right side only on
θ and φ, each side must equal some constant, λ. In particular, if we are interested
solely in the angular part of the wave equation, we can write

1
sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1
sin2 θ

∂2Y

∂φ2
+ λY = 0 . (6-185)

We can separate this into two further equations, if we follow this procedure once
more, by writing Y (θ, φ) = Θ(θ)Φ(φ), which yields

d2Φ

dφ2
+ νΦ = 0 , (6-186)

1
sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+
(
λ− ν

sin2 θ

)
Θ = 0 . (6-187)

The solution to (6–186) is obtained by choosing ν the square of an integer m
that may be positive, negative, or zero.

Φm(φ) =
1
2π
eimφ (RP) . (6-188)

This choice of ν assures that Φ will be single-valued over the entire range of φ. The
multiplying constant 1/2π normalizes Φ to unity over the range
0 ≤ φ < 2π. Substituting ν = m2 in (6—187) and, for convenience, replacing
Θ(θ) with a function P (cos θ), one finds that the solutions to (6–187) diverge for
values θ = 0 or an integer multiple of π, unless λ has a special value λ = �(�+1), �
is a positive integer, and |m| is an integer or zero, with |m| ≤ �.

The functions Pm

 (cos θ) are called the associated Legendre functions, except

whenm = 0, in which case one uses the symbol P
 and the corresponding function
is called a Legendre polynomial. The polynomials can be written as,

P
(x) =
1

2
�!
d


dx

(x2 − 1)
 . (6-189)

The associated Legendre functions are then formed through

Pm

 (x) = (1 − x2)|m|/2 d

|m|

dx|m|P
(x) . (6-190)

We are now able to rewrite (6–185) in the form[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
Y
m = −�(�+ 1)Y
m . (6-191)
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where the functions Y
m(θ, φ) are called spherical harmonics whose functional
form is

Y
m(θ, φ) = (∓1)m

(
2�+ 1

4π
(� − |m|)!
(�+ |m|)!

)1/2

Pm

 (cos θ)eimφ , (6-192)

with (∓1) = −1 for m ≥ 0 and +1 for m < 0. The functions Pm

 (cos θ) obey∫ π

0

Pm

 (cos θ)Pm


′ (cos θ) sin θdθ =
2

(2�+ 1)

[
(�+ |m|)!
(�− |m|)!

]
δ
,
′ . (6-193)

The spherical harmonics form a complete set of orthonormal — orthogonal and
normalized — functions, the lowest orders of which are illustrated in Figure 6.18,

Fig. 6.18. Spherical harmonics showing the lowest three orders, courtesy of Clem Pryke.

∫ 2π

0

dφ

∫ π

0

sin θdθY ∗

′m′ (θ, φ)Y
m(θ, φ) = δ
′
δm′m , (6-194)
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where the asterisk denotes the complex conjugate of the function, and the delta
functions δn′n are unity when n = n′ and zero otherwise. The orthonormality of
the spherical harmonics means that an arbitrary distribution of light across the ce-
lestial sphere can be described in terms of a superposition of these functions with
different amplitudes a
m, and relative phases (θ, φ). Note that the solution to the
wave equation has a time dependence ei(mφ+ωt), indicating a rotation of the wave
patterns in Fig. 6.18 about the vertical axis. The rotation is in the positive or nega-
tive direction, respectively, depending on whether m is negative or positive. When
m = 0 the pattern pulsates. In Chapter 7 we will see that spherical harmonics are
important for the description of angular momenta of quantized systems, such as ro-
tating molecules or interstellar dust grains. In Chapter 13, we will again encounter
these functions as we attempt to decipher the origins of the spatial inhomogeneities
across the sky observed in the microwave background radiation.

The radial dependence, obtained by setting the left side of (6–184) equal to
λ = �(�+1), is a spherical Bessel function of the first kind j
(ωr/c). Exact solutions
for all values of z ≡ ωr/c, respectively, for � = 0, 1 and 2, are

j0(z) ≡ sin z
z

; j1(z) ≡ sin z
z2

− cos z
z

; j2(z) ≡
(

3
z2

− 1
)

sin z
z

− 3
z2

cos z ,

(6-195)
as can be checked by substitution for R in (6–184). An asymptotic solution for all
values of � and r much greater than the wavelength ω/2πc is

j
(z) =
1
z

sin(z − �π

2
) for z → ∞ . (6-196)

ADDITIONAL PROBLEM 6–18. A rotating mass has energy Iω2/2, where I is
the moment of inertia and ω is the angular frequency. Suppose that the rate of change
of energy is proportional to the n+ 1 power of ω:

Ė = Kωn+1 . (6-197)

Show that

n =
ω̈ω

ω̇2
. (6-198)

For the Crab Nebula pulsar, we observe that n ∼ 2.5. Does this more nearly match
the result expected for magnetic dipole or for gravitational radiation?

Answers to Selected Problems

6–1. RL = pcc/qB = mpυpc/qB = 108 cm .
6–2. For circular motion with a Larmor radius RL:

E =
pcυc

2
=
qBυcRL

2c
,
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and because angular momentum RLυc is conserved,

dE
E =

dB

B
.

Hence the particles have a tenfold increase in energy.

6–3. Let Ei = γ(υi)m0c
2 be the particles’ initial energy (Ei = 1010 eV), where

γ(υi) =
1√

1 − υ2
i /c

2

and υi is the initial velocity. υf is the final velocity. Each interaction with the mov-
ing cloud imparts a velocity increment ∆V = 2 · (7 km s−1) ∼ 14 km s−1 to the
particles, as measured in their rest-frame. For protons, m0c

2 ∼ 109 eV, so that
γ(υi) ∼ 10. If the energy is doubled γ(υf ) ∼ 20, and

(υi

c

)2 ∼= (1 − 0.01) ⇒ υi

c
= 1 − 0.005,(υf

c

)2 ∼= (1 − 0.0025) ⇒ υf

c
= 1 − 0.00125,

where υf is the final velocity.
Hence υf − υi = (0.0037)c = 1.1 × 103 km s−1.
By the law of composition of velocities (5–10), if υ′ is the velocity after one

collision with a cloud:

υ′ � (υi +∆V )
(

1 +
υi∆V

c2

)−1

∼ υi − υ2
i

∆V

c2
+∆V − 0

[
(∆V )
c2

]
,

υ′ − υi = ∆V

(
1 − υ2

i

c2

)
=

∆V

γ2(υi)
.

The number of collisions needed to double the energy is then

1
∆V

∫ υf

υi

dυ

(1 − υ2/c2
∼ c

2∆V
ln
γ2

i

γ2
f

∼ 1.5× 104 . (6-199)

If the clouds are initially separated by 1017 cm and approach each other at con-
stant speed ∆V , they will collide after ∼7 × 1010 s. Moving at relativistic speeds,
the protons cover the mean distance between collisions∼5×1016 cm during this in-
terval in an average time of ∼1.7×106 s. This can provide for as many as ∼4×104

collisions or for nearly an eightfold increase of energy before the clouds collide and
the process comes to an end.

If the initial separation between clouds were to be increased, the number of col-
lisions the relativistic particles could make would not increase, because the ratio of
c to∆V would remain constant. From this we see that the cloud collisions described
here can produce no more than approximately an eightfold increase in proton ener-
gies.
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Electrons have a higher γ value at corresponding energies but the time to double
their energies, by (6–199), remains the same.

6–4. E = m0c
2γ(ωr), γ(ωr) =

1√
1 − ω2r2/c2

.

At ωr = c, particles and field can no longer co-rotate. For a pulsar with a mil-
lisecond rotation rate, ω ∼ 6 × 103 s−1, and the maximum co-rotation radius is
∼5 × 106 cm, or about 5 stellar radii for the neutron star of Problem 5–15.

6–6. The pressure exerted by a plane electromagnetic wave incident perpendicular
to a surface is given by the magnitude of the Poynting vector (6–43) divided by
the speed of light S/c, because the momentum per unit volume of such a wave
is its energy density divided by c. Half of this pressure is due to the electric field
component, the other half to the magnetic field. In terms of photons, the energy
density of a number of photons per unit volume n(ν) at frequency ν is nhν , and
the momentum carried by each photon is hν/c. The factor 1

3 that enters the pressure
relation in (4–42) is appropriate only when the photons or electromagnetic waves
are incident on a surface at random angles, so that only a fraction of the momentum
is transferred to the surface. In contrast, the longitudinal and transverse pressures
we attributed to the static magnetic fields in this problem are selectively taken along
the directions at which they take on their extreme values.

6–7. Problem 4–3 gives the rms deviation of N steps of length L as
√
NL. In each

step, the Faraday rotation angle is given by θ(L) = 1
2 (ω/c)L∆n. Substitution of

(6–66) and the gyrofrequency from (6–62) gives the result.

6–9. If we imagine fictitious magnetic charges, by analogy to electric charges,

H =
qm

(r − a/2)2
− qm

(r + a/2)2
=

2qma
r3

=
2M
r3

.

Hence d and M are analogous and by substitution we are led to the result (6–89).

6–10. (a) H =
Ȧ ∧ n
c

and A =
1

6c2R0
Q̈ ,

H =
1

6c2R0

...
Q× n
c

,

S =
c

4π
H2n ∝ (

...
Q)2

c5
.

(c) Equation (3–42) tells us that the total energy of the system is
Eµ = −MµG/2a ∼ 3.5 × 1047 erg, where µ ∼ M/4 is the reduced mass for
identical neutron stars. As gravitational radiation reduces the system’s energy, the
period also diminishes. Equation (3–47) shows that P is proportional to E−3/2, so
that Ṗ /P = 3I/2Eµ ∼ 8 × 10−17 s−1.

6–13. To show this, use the total radiated power (6–86):
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2
3c3

d̈2 =
2e2

3c3

(
ṗ

m0

)2

.

Equations (6–13) and (5–40) then give

ṗ =
eB

m0c
pc =

(
eB

m0c

)(E
c

)
.

Substitute, to get the result (6–155).

6–14.B = 10−4 G,

νc =
ωc

2π
=

eB

2πm0c
= 300 Hz ,

ωm = γ2ωc = 1200 MHz for γ = 2 × 103 .

The peak lies at ω = ωm/2 = 600 MHz.

6–15. By (6–156)

I(ν)∆ν ∝
∫ E

0

P (E)n(E) dE ,

where, by (6–155)
P (E) ∝ E2B2 .

... I(ν)∆ν ∝ B2

∫ E

0

E2E−γ dE ∝ KB2E3−γ .

But by (6–151)

E ∝
[ωm

B

]1/2

... I(ν)∆ν ∝ B2B(γ−3)/2ω(3−γ)/2
m ,

I(ν) ∝ B(γ+1)/2ν(1−γ)/2.

6–16. Squaring (6–164) and (6–165) and adding gives

−2h2νν ′ cos θ + h2(ν2 + ν ′2) = (m0vγc)2 = m2
0c

4(γ2 − 1)

Squaring (6–162) gives

m2
0c

4(γ2 − 1) = h2(ν2 + ν ′2 − 2νν ′) + 2hm0γc
2(ν − ν ′) .

Equating these two expressions we obtain hνν ′(1− cos θ) = (ν− ν ′)m0γc
2 which

is equivalent to (6–166).

6–17. We can write

r = (x2 + y2 + z2)1/2, θ = cos−1(z/(x2 + y2 + z2)1/2), φ = tan−1(y/x) ,

to obtain
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∂r

∂x
= sin θ cos φ,

∂θ

∂x
=

cos θ cosφ
r

,
∂φ

∂x
= − sinφ

r sin θ
, (6-200)

∂r

∂y
= sin θ sinφ,

∂θ

∂y
=

cos θ sinφ
r

,
∂φ

∂y
=

cosφ
r sin θ

, (6-201)

∂r

∂z
= cos θ,

∂θ

∂z
= −1

r
sin θ,

∂φ

∂z
= 0 . (6-202)

Then, apply the rule (6–182) with (6–200) to obtain

∂f

∂x
= sin θ cosφ

∂f

∂r
+

cos θ cos φ
r

∂f

∂θ
− sinφ
r sin θ

∂f

∂φ
. (6-203)

The application of (6–182) to ∂f/∂x in similar fashion yields

∂2f

∂x2
=
(
∂r

∂x

)
∂

∂r

(
∂f

∂x

)
+
(
∂θ

∂x

)
∂

∂θ

(
∂f

∂x

)
+
(
∂φ

∂x

)
∂

∂φ

(
∂f

∂x

)
, (6-204)

the right side of which, through the use of (6–200) and (6–203), can be expressed en-
tirely in terms of spherical polar coordinates. With similar efforts to obtain ∂2f/∂y2

and ∂2f/∂z2 , and considerable care in collecting the many cancelling or simpli-
fying terms, one finally arrives at the equivalence of the Laplacians (6–180) and
(6–181).

6–18.
Ė = Kωn+1 = Iωω̇ ,

... ω̇ =
K

I
ωn, ω̈ =

K

I
nωn−1ω̇, and ω̈ω = nω̇2 .

Equations (6–89) and (6–96) show that n + 1 = 4 for the magnetic dipole, and
n + 1 = 6 for the gravitational quadrupole radiation. The current data therefore
are in closer agreement with a magnetic dipole mechanism. Since pulsars may emit
predominantly gravitational radiation when they are first formed, observations lead-
ing to a value n = 5 could be obtained right after the formation of such an object.
This would be interesting because the observations could be made in the radio do-
main but would give evidence of gravitational radiation that might be too difficult
to directly detect.
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7:1 Absorption and Emission of Radiation by Atomic Systems

In Chapter 6, we considered the means by which particles could absorb or emit
radiation. But we restricted ourselves to processes in which the Maxwell field equa-
tions of classical electrodynamics could be applied. These equations break down
on the scale of atomic systems. The electron bound to a positively charged nucleus
does not lose energy because of its accelerated motion, although the classical theory
of radiation predicts that it should. Instead, the ground state of hydrogen, or any
atom, is stable for an indefinitely long period. Moreover, when energy is actually
radiated from excited states, and the atomic ground energy state is finally reached,
we always find that only discrete amounts of energy have been given off in each
transition. Again, this is at variance with classical predictions.

Since the interpretation of astronomical observations often depends on an un-
derstanding of transitions that occur between atomic levels, we will consider how
they take place and what can be learned from them.

Almost everything we know about stars or galaxies is learned through spec-
troscopic observations. Our ideas of the chemistry of the Sun and of the chemical
composition of other stars is based entirely on the interpretation of line strengths
of different atoms, ions, or molecules. Our understanding of the temperature distri-
bution in the solar corona is based on the strength of transitions observed for sev-
eral highly ionized atoms, notably iron. Our picture of the distribution of magnetic
fields across the surface of the Sun is founded on the interpretation of the splitting
of atomic lines by magnetic fields in the solar surface. What we know about the
motion of gases and their temperatures at different heights above the solar surface,
again, is largely based on spectroscopic information. Small shifts in line positions
and the shape and width of the lines yields much of the information we need. Some
idea of the number densities of atoms, ions, or electrons at different levels of the
solar atmosphere can also be obtained from line width and shape.

Even more information can be obtained spectroscopically because the Sun is
nearby and can be clearly resolved. We can map photospheric velocities in fine detail
over the entire solar surface by observing Doppler-shifted spectral lines to detect a
large number of oscillatory modes. The Sun “rings” like a spherical bell. Some of
the observed modes probe surface layers while others test the deep interior. We can
thus conduct a seismological survey to obtain densities, temperatures, and rotation
rates throughout the Sun. Even for more distant objects like emission-line stars or
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quasars, where detailed resolution does not appear possible, new information can
still only be gained using spectroscopic techniques. Spectroscopy and a knowledge
of quantum physics provide essential insight into astronomical processes.

7:2 Quantization of Atomic Systems

Classical theories of physics no longer apply on atomic scales, but a number of
important features are shared by quantum and classical theory. Thus, in a closed
system we find that:

(a) Mass–energy is always conserved.

(b) Momentum and angular momentum are always conserved.

(c) Electric charge is always conserved.

On the atomic scale, these conservation principles take on a form that deviates
somewhat from classical formulations. However, where these differences are impor-
tant, we can still be sure that:

(d) As the size of an atomic system grows, features predicted by quantum the-
ory approach those calculated on the basis of classical physics. This is called the
correspondence principle.

However, three major differences must also be noted:

(a′) Action, a quantity that has units of (energy × time) or (momentum × dis-
tance), is quantized. The unit of action is �. By this we mean that in a bound atomic
system action can only change by integral amounts of Planck’s constant h divided
by 2π; h/2π ≡ �.

(b′) Even if they existed — and they do not — states of an atomic system whose
characteristic action differs by an amount less than �, cannot be distinguished. This
is Heisenberg’s uncertainty principle.

(c′) Two particles having half-integral spin cannot have identical properties in
the sense of having identical momentum, position, and spin direction. This is Pauli’s
exclusion principle (see Section 4:11).

The three statements (a′), (b′), and (c′) are not axioms of quantum mechanics.
Rather, they can be considered to be useful rules that emerge from the theory and
make quantitative predictions about the behavior of electrons, atoms, and nuclei.

The concept of action is not as familiar as the idea of angular momentum, which
has the same units and is subject to quantization in an identical way. We might
therefore take a brief look at how angular momentum changes occur in atoms.

In any bound atomic system a change of angular momentum along any given
direction in which we choose to make a measurement will always have a value �

or an integer multiple of �. The direction of this angular momentum is important.1

We shall therefore talk about a measured angular momentum component with the

1 Although the angular momentum along the measured direction can only change in steps
whose size is �, we have no such definite prescription for the changes that can simultane-



7:2 Quantization of Atomic Systems 267

understanding that we have a definite direction in mind whenever we make a mea-
surement.

Angular momentum quantization can be understood in more basic terms. All
the fundamental particles involved in building up atoms have well-defined spins.
For electrons, protons, and neutrons the values are ±�/2. A change from one spin
orientation of an atomic electron, over to another orientation amounts to a change of
one unit of � in the measured angular momentum component. Such a change can be
brought about by the absorption or emission of a single photon. Photon spin angular
momenta ±� are invariably collinear with the direction of motion — a Lorentz-
invariant property of the photon. In quadrupole and higher-order multipole radiation
photons, respectively, carry away angular momenta of 2� or higher, comprising both
spin and orbital angular momentum; but only the spin component is collinear with
the direction of propagation. All the different states of an atom can be reached from
any other state through a succession of photon absorption or emission processes, or
through a set of spin–flip transitions of the electrons or within the nucleus.

However, quantization is intrinsic to atoms even without this argument concern-
ing photons. We can therefore be sure that if an atomic system has a state of zero
angular momentum, then all other states must have integral values of the angular
momentum. Similarly, if the lowest angular momentum state has a value �/2, then
all other states must have half integral angular momenta (see also Section 7:6).

This is one way in which statement (a′), above, provides insight into the structure
of quantized systems. In addition, principle (b′) gives us some general quantitative
information. Let us consider the simplest atom, hydrogen, in terms of this principle.
The energy of the lowest state can be estimated directly. The smallest possible size
of an electrostatically bound atom must be related to the uncertainty in momentum
through

p2r2 ∼ 〈∆p2〉〈∆r2〉 ∼ �
2. (7-1)

Here we have taken the mean squared value of the radial momentum and the radial
position as being equal to the uncertainty in these parameters. Through the virial
theorem applied to a system bound by inverse square law forces, we can write the
energy of a state either as half the electrostatic potential energy for the interacting
proton and electron, or as the negative of the system’s kinetic energy (3–85). Thus
the lowest energy state is

E1 = −Z
2
e2

r
= − p2

2µ
∼ − �

2

2µr2
, (7-2)

where µ is the reduced mass of the electron. Here we have made use of equation
(7–1) and the extreme right side of (7–2), which also shows that

ously take place in the transverse angular momentum. The uncertainty principle precludes
a simultaneous definitive measurement of the longitudinal and transverse angular momen-
tum components. All that we can say is that there exist selection rules that also specify
allowed changes of the total angular momentum of a system, as we will see in Section 7:6.
They state that the magnitude of the angular momentum squared J2 changes by integral
amounts of a basic step size �

2. These integral amounts depend on the initial value of J
characterizing the system, and on the multipole considerations mentioned in Section 6:13.
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E1 = −Z
2µe4

2�2
, (7-3)

r =
�
2

Zµe2
. (7-4)

This root mean square radius r is called the Bohr radius of the atom and E1

is the atom’s ground state energy. For hydrogen Z = 1 and E1 = −13.6 eV,
r ∼ 5.29 × 10−9 cm. We have proceeded here on the assumption that the elec-
trostatic potential confines the electron to a limited volume around the proton, and
have derived a solution consistent with the uncertainty principle. Nothing has been
assumed about possible orbits that the electron might describe around the proton;
the very act of setting the mean squared value of position and momentum equal to
the mean squared value of their uncertainties, implied that the electron is to be found
in the whole volume, not just in a well-defined orbit having a narrow range of r or p
values. Neither, however, does the electron spend equal amounts of time throughout
the volume. Its dwell time in different locations has a probability distribution gen-
erally approximated by a standing wave that has zero amplitude beyond the zone of
confinement. The wavelength of this standing wave is called the de Broglie wave-
length, λ. Its associated momentum is p = h/λ. Most quantum systems permit a
confined particle to be in one of several possible states defined by energy, angular
momentum, or ambient electric or magnetic fields.

PROBLEM 7–1. If we wanted to distinguish successive states having different ra-
dial positions and momenta, the product pr for these states would have to differ
by �; otherwise, they would not be distinguishable in Heisenberg’s sense. Setting
pnrn = n�, show that

En = −Z2 µe
4

2n2
�
−2. (7-5)

If the nth radial state of the atom has a phase space volume (4πp2
n∆pn)(4πr2n∆rn),

show that the number of possible states with principal quantum number n is propor-
tional to n2. Show also that the Bohr radius of the nth state is rn = n2

�
2/Zµe2.

In order to find the actual number of states corresponding to the quantum number
n, we still have to invoke the Pauli exclusion principle — statement (c′) above. We
know that the state n = 1 corresponds to a single cell in phase space. Accordingly
there can only be two states, one in which the nuclear spin and electron spin are
parallel and the other in which they are antiparallel. Using the result of Problem 7–
1, we then see that the nth radial state comprises 2n2 different substates, all having
the same energy to the approximation considered here. The factor 2 enters because
the electrons can be in either of two spin states.

We see from this that just the most basic concepts (a′), (b′), and (c′) suffice to
tell a great deal about the structure of hydrogen and hydrogenlike atoms such as
singly ionized helium, five times ionized carbon, or any other bare nucleus orbited
by just one electron.
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We should, however, not pretend that all problems of atomic structure can be
handled as simply. Equation (7–2), for example, makes use of Newtonian mechanics
and electrostatic interactions alone. We have neglected all relativistic effects and all
interactions of the spins of particles that constitute the atom. In dealing with such
features, or with the interactions between particles and various types of fields, we
need to use the full mathematical structure provided by quantum mechanics. At the
basis of any such structure, however, are the elementary principles (a) to (d) and (a′)
to (c′). We shall make much use of them in the next few sections.

PROBLEM 7–2. We can show that the principles (a′) to (c′) also permit a determi-
nation of the size of the atomic nucleus. To see this consider the nucleons — protons
and neutrons — to be bound to each other by a short-range attractive potential

V = −V0 if r < r0, V = 0 if r ≥ r0 . (7-6)

Each nucleon is tied to the nucleus by a binding energy Eb, so that, while in the
nucleus, it has kinetic energy V0 − Eb. Using equation (7–1) show that

r ∼ �

[2M(V0 − Eb)]1/2
. (7-7)

where M is the nucleon mass. If V ∼ 2Eb, and Eb is roughly 6 MeV, show that a
typical nuclear radius is of order 10−13 cm. This gives a characteristic interaction
cross-section of ∼10−26 cm−2 for nucleons. We will find this to be of interest in
Chapter 8, where we will examine nuclear processes in stars.

Note that the nuclear radius is quite insensitive to the value of r0. The depth of
the potential well and the binding energy determine the size of the nucleus.

7:3 Atomic Hydrogen and Hydrogenlike Spectra

We next turn to the spectra of atomic hydrogen, the most abundant element in the
Universe (He44), (He67)*. The energy of a spectral line seen in absorption or emis-
sion is the energy difference of the atomic levels between which the transition oc-
curs.

To start with one of the simplest concepts, we notice that in (7–3) and (7–5)
the energy depends on the reduced hydrogenic mass. It therefore has a somewhat
different value for normal hydrogen, which has only a proton in its nucleus, and for
deuterium which has a nucleus composed of a neutron and a proton, making the
nucleus about twice as massive. The reduced mass, µD, of an electron orbiting a
deuterium nucleus accordingly is

µD =
memD

me +mD
∼ 2memP

me + 2mP
∼ me

(
1 − me

2mP

)
, (7-8)
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whereas

µP ∼ me

(
1 − me

mP

)
. (7-9)

Subscripts e, D, and P , here represent electrons, deuterons, and protons. Equations
(7–5), (7–8), and (7–9) lead us to expect that deuterium energy levels will lie further
apart than levels of ordinary hydrogen by about one part in 2mP /me ∼ 3700. In
the visible portion of the spectrum this corresponds to a line shift of the order of
1.5 Å toward shorter wavelengths. Such a spectral shift is readily determined. But
for many years, despite much searching, no deuterium was ever detected in any as-
tronomical object at levels comparable to the terrestrial abundance of deuterium,
D/H ∼ 2 × 10−4. In the interstellar medium, atomic D/H ratios are now reliably
measured at ∼1.5× 10−5 (O�03); and, as Fig. 12.5 indicates, the best estimates for
the cosmic abundance of deuterium give D/H ∼ 2 − 3 × 10−5. The high terrestrial
deuterium abundance appears to be an anomaly due to chemical fractionation. Deu-
terium and hydrogen bond to other molecules with different bond strengths and, at
identical temperatures and densities, tend to react differently to form quite differ-
ent molecules. In the interstellar molecular cloud NGC 1333, where temperatures
are estimated to be as low as 10 K, the ratio of deuterated to normal ammonia is
an astonishingly high ND3/NH3 ∼ 10−3 (vd02). Such measurements remind us
that, to avoid false conclusions in the compilation of tables of cosmic abundances
such as Table 1.1, it is important to check for the prevalence of elemental and iso-
topic species in a variety of different atomic, molecular, and ionic states that may be
favored at select temperatures and densities.

The reduced mass just mentioned also helps to distinguish hydrogenic transi-
tions from spectral lines of ionized helium. Singly ionized helium HeII has one
electron surrounding a nucleus with charge Z = 2. According to equation (7–5) the
energy of any given state should therefore be just four times as great as the corre-
sponding hydrogenic energy. This integral relation would sometimes lead to an ex-
act identity of line energies for transitions involving principal quantum numbers, n,
that were twice as great for helium as for hydrogen. The difference in reduced mass,
however, shifts these lines sufficiently, so that ambiguities can often be avoided in
astronomical observations. When the Doppler line shift for a moving source is not
known, identification on the basis of one or two lines may, however, not be possible,
and a search may have to be made for lines of other well-known atoms or — for
helium — lines that are not common to the hydrogen spectrum, that is, transitions
involving one level with an odd principal quantum number, and one level with an
even value of n.

Although we have presented this similarity of spectra as though it were a mat-
ter of difficulty, it is often a great help. After years of theoretical work that explains
many fine details, we understand the hydrogen spectrum well. Whenever it becomes
possible to relate properties of complex atoms to specific similar properties of hy-
drogen, a whole body of theoretical knowledge becomes available at once, and this
can lead to a better understanding of the more complex system.
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Until recent decades, interest in hydrogenic spectra centered largely around tran-
sitions in which at least one of the states had a low principal quantum number, say,
n ∼< 5. Not much thought was given to very high lying states, and transitions to
be found between such states were always thought to give rise only to very weak
spectral lines. It therefore came as a surprise that transitions involving states with
n = 90, 104, 159, 166, and many others in this same range were observable in
radio-astronomy (Hö65). Not only these, but also the correspondingly excited he-
lium states could be identified and again distinguished on the basis of reduced mass
differences. Transitions between such highly excited states are sometimes referred
to as Rydberg transitions. The spectral lines emitted in these transitions have permit-
ted the observation of ionized hydrogen regions over great distances in the Galaxy.
Ionized regions that are not detectable in the visible range now are readily accessi-
ble because radio waves are transmitted through dust clouds that extinguish visible
light from all but the nearest portions of the Galaxy. Often these regions had been
previously known, because dense ionized plasmas emit readily measured thermal
continuum radiation (Section 6:19). But the discovery of the line radiation from hy-
drogen and hydrogenlike ions in these incompletely ionized regions allowed us to
deduce the radial velocity of the region and its distance within the Galaxy calculated
on the basis of differential rotation models (Section 3:12).

For completeness we should still present some of the terminology used in dis-
cussions of the hydrogen spectrum. Transitions involving lower states n = 1, 2,
3, and 4, respectively, are members of the Lyman, Balmer, Paschen, and Brackett
spectral series (see Fig. 7.1). The line with the longest wavelength in each of these
spectral series is termed α; the second line is called β, and so on. Thus the transition
n = 4 → n = 2 gives rise to the Balmer-β line in emission. Members of the Balmer

Fig. 7.1. Energy-level diagram of atomic hydrogen.
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spectrum sometimes are written out as Hα, Hβ, and so on. Lyman spectral lines are
generally written as Ly-α, Ly-β, and so on.

Problem 7–1 showed that the nth energy level of the hydrogen atom comprises
2n2 distinct quantum states. Each of the n2 electronic states has two distinct com-
ponents, corresponding to the two different orientations of the electron’s spin rela-
tive to the nuclear spin direction. These two configurations have slightly different
energies and hence a transition from the higher to the lower state can occur sponta-
neously.

The energy separation is called the hyperfine splitting, shown for the hydrogen
ground state in Fig. 7.2. The split represents an energy difference between atoms

Fig. 7.2. Energy-level diagram for the hyperfine splitting of the ground state of the hydrogen
atom. The state in which the electron and proton spins are aligned has a slightly higher energy.
The transition frequency 1420 MHz corresponds to a radio wavelength of 21 cm.

having electron and nuclear spins opposed (total spin angular momentum quantum
number F = 0) or parallel (F = 1). This splitting is present at all levels n and
assures a total multiplicity of 2n2 states at any given level.

In radio-astronomy this transition within the state n = 1 has played a lead-
ing role. It occurs at a frequency of 1420 MHz, corresponding to a wavelength of
21 cm and an energy difference of ∼6 × 10−6 eV — less than one part in two mil-
lion of the binding energy of the atom in its ground state ∼13.6 eV. The distribution
of hydrogen in our galaxy was first mapped by means of 1420 MHz observations.
This was possible because, as already stated, radio waves are not absorbed by the
dust that extinguishes visible light. It is interesting that we now have rather good
maps showing the distribution of gas in the Galaxy, but no comparable map show-
ing the distribution of stars. Stars do not emit sufficiently in the radio or infrared
parts of the spectrum and, across the span of the Galaxy, their visible light is totally
extinguished by intervening dust clouds.

When we take a look at the first excited electronic state of the hydrogen atom,
n = 2, we encounter two types of sublevels whose energies happen to be close. First,
just as in the ground state, there are again two hyperfine states in which the electron
has zero orbital angular momentum about the nucleus. A transition from these two
states to the ground state through the emission of a photon is forbidden because the
orbital angular momentum of the atomic system would have to remain unchanged
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in such a transition. This is not possible because the photon involved always carries
off angular momentum. In tenuous ionized regions of interstellar space, the lifetime
of atoms in such a state of n = 2 can therefore be very long. Eventually, the atom
can revert to the ground state through the emission of two photons rather than just
one; but the lifetime against this two-photon decay is of the order of 0.12 s (Nu84),
in contrast to the usual 10−8 s required for normal allowed transitions. Metastable
helium atoms similarly have a two-photon decay time measured as ∼2 × 10−2 s
(Va70).

We might still ask whether the angular momentum criterion in such transitions
could be satisfied if the electronic transition was accompanied by a spin flip from
a parallel to an antiparallel configuration. The coupling between the electron spin
and the electromagnetic radiation, however, is low and does not suffice to make that
transition as probable as the two-photon decay.

The second set of levels, within the state n = 2, all have an orbital angular mo-
mentum quantum number l = 1, with a corresponding (total angular momentum)2

of l(l + 1)�2 = 2�
2. The (angular momentum)2 does not have the value l2�

2,
because, aside from a well-defined angular momentum component about one (ar-
bitrarily) chosen axis, there always remains an uncertain angular momentum about
two orthogonal axes, which adds an amount l�2 to the (angular momentum)2 (see
Section 7:6). Corresponding to l = 1, there are three sublevels, each split into two
further, hyperfine states. One of these sublevels has an angular momentum compo-
nent � along some given direction, the second has a component 0, and the third has
a component −� along that direction. These three components are labeled m = 1,
0, and −1. The label m is called the magnetic quantum number because the states
have different energies when a magnetic field is applied to the atom. In the absence
of a magnetic field, there is a splitting of the order of 10−5 eV between some of
these states. This is called the fine structure of the atom and is shown in Fig. 7.3 2

The excited state n = 3 again has a hyperfine split sublevel of zero angular
momentum, l = 0. There are three such pairs of states with l = 1, and five pairs
with l = 2, corresponding to magnetic quantum numbers m = 2, 1, 0, −1, and
−2. Under normal conditions, these levels are degenerate, meaning that they have
precisely the same energy. In an applied magnetic field, however, the energy of
the states is shifted somewhat and the energy separation between states becomes
proportional to the field strength H for low values of H . This splitting is called
Zeeman splitting.

Zeeman splitting can be understood in the following way. The orbital angular
momentum of the electron implies a loop current that has an associated magnetic
dipole field. Depending on whether this dipole, respectively, is aligned along, per-

2 For atoms other than hydrogen, the labeling of states does not proceed in this particular
way because the spins and orbital angular momenta of the electrons interact through their
magnetic moments. However, the enumeration of the different quantum states still pro-
ceeds in terms of their distinguishing characteristics — that is, in terms of the Heisenberg
and Pauli principles.
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Fig. 7.3. Energy-level diagram showing the fine structure of the n = 2 level of hydrogen. The
labeling in the left-hand column has the following significance. The letters S and P denote
the total orbital angular momenta 0 and 1, respectively. The right lower index gives the total
angular momentum resulting from a vectorial addition of the electron and orbital angular
momenta. The left upper index is the multiplicity (2S + 1) of the term, where S now is the
total electron spin. (This double meaning of S sometimes leads to confusion.) As an example,
the 2P3/2 state has l = 1; the orbital and electron spins are parallel, giving a total spin 3/2;
and, because the spin for a single electron has magnitude 1/2, the left superscript is 2.

pendicular to, or opposed to the field, we have an atomic state with decreased, unal-
tered, or increased energy.

Quantitatively, the orbital angular momentum of the electron about the nucleus
gives rise to a magnetic dipole moment with components along the field direction
of

µBmi =
e�

2mc
mi, i = 0,±1,±2, . . . , (7-10)

where µB is called the Bohr magneton. The energy of a state in a magnetic field is
then

E = E0 + µBHmi = E0 + �ωLmi, ωL =
eH

2mc
. (7-11)

The state with the smallest energy has its angular momentum antiparallel to the field
direction. This is the configuration in which the quantum number mi has its lowest
value. The Larmor frequency, ωL, should be compared to the gyrofrequency (6–13)
which is twice as large: ωc = 2ωL.

We note that the classical energy of a magnetic dipole in a magnetic field would
be M · H. But when this expression is used with equation (6–18), and we seek to
find the energy of a magnetic dipole aligned with the field, we obtain

E = M · H =
e(v ∧ r) · H

2c
=
eLH

2mc
=
ωcL

2
. (6–18a)

Here we have made use of equation (6–13) to see the classical energy dependence
on ωc. We can now see why ωL is only half the gyrofrequency. On the other hand, if
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Fig. 7.4. Zeeman splitting: Transitions between energy states shifted through the application
of an external magnetic field. The figure shows both the orientation of the angular momentum
components relative to the direction of the applied field, and the shifts in the transition energy.
We note that the angular momentum components along the field direction always have values
that are integral multiples of �. The total length of the angular momentum vector is [l(l +
1)]1/2, that is, nonintegral. Symbols σ and π denote the states of polarization of the emitted
radiation (see text). A large horizontal distance between levels indicates a large transition
energy between two states.

we make use of the Larmor frequency in (7–11) we preserve an analogy to photons
in that, for mi = 1, the magnetic energy becomes E − E0 = hνL = �ωL.

Figure 7.4 shows the splitting in the energy levels corresponding to quantum
numbers l = 2 and l = 1 and gives the spectral lines that arise from a transition
between such states.

Zeeman splitting provides us with useful information about the magnetic fields
on the surface of the Sun and distant stars. In some strongly magnetic stars of spec-
tral type A, fields higher than 30,000 G have been recorded. The general dipole field
for the Sun has a value of the order of a gauss, but the local field strength varies
greatly. In sunspots, fields of 3 × 103 G are not uncommon.

The determination of magnetic field strengths from the spectra alone would nor-
mally be difficult, because the lines are broad and often overlap since the splitting
is small. Fortunately, however, the lines marked σ in Fig. 7.4 have a different po-
larization from the line marked π. The magnetographic method makes use of this
polarization to separate out the different components through use of analyzers sen-
sitive only to light of a given polarization. By carefully measuring the line centers
of the variously polarized components, we can obtain the energy splitting between
states, even when the lines are strongly broadened through disturbing effects. For
solar work, spectral lines of iron or chromium are often used. The energy splitting
gives H directly through equation (7–11).

Interstellar magnetic fields have been measured in a similar way by means of
radio observations. The principle of this technique is identical to that used in solar
work.

In neutral hydrogen regions of interstellar space, magnetic fields split the
21 cm line of atomic hydrogen. Three different transitions are expected, correspond-
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ing to∆m = 0, ±1. Viewed along the direction of the magnetic field, only two lines
appear, respectively, at frequencies ν = ω/2π (see equation (7–11))

ν = ν0 ± eH

4πmc
, ν0 = 1420 MHz. (7-12)

These two components are circularly polarized in opposite senses (Fig. 7.5). They

Fig. 7.5. Zeeman shift of the positions of the two circularly polarized components of the
1420MHz hydrogen line viewed along the direction of the magnetic field.

are called the σ-components (Fig. 7.4) and appear linearly polarized when viewed
normal to the field direction; their direction of polarization is at right angles to the
direction of the field lines.

There is also an unshifted component, the π-component, which appears at fre-
quency ν0 when viewed normal to the direction of the field; it is linearly polarized
with the direction of polarization parallel to the field. Viewed along the field lines,
this component does not appear at all.

The observation of Zeeman splitting is made difficult by the rapid motion of
the interstellar gas atoms. This produces a Doppler broadening of the lines (Section
7:7). A 1 km s−1 random motion gives a frequency shift of order δν/ν ∼ 3× 10−6.
At the 21 cm line frequency of 1420 MHz, this corresponds roughly to 4×103 Hz. In
contrast, the frequency split∆ν due to the magnetic field is 2.8×106H Hz between
the two σ-components. This means that a field of order 10−5 G, only gives a split of
∆ν ∼ 30 Hz.

Normally such a splitting would be all but impossible to observe in the presence
of the overriding Doppler broadening. The saving feature is the difference in polar-
ization. By working at the edge of the line, where the slope is steep, the difference
in intensity∆I of the two polarized components can be accentuated (Fig. 7.5). This
technique has established the existence of fields of order ∼ 2×10−5 G in interstellar
clouds.
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7:4 Spectra of Ionized Hydrogen

(a) Positive Ions

Hydrogen can become ionized through the absorption of a photon whose energy is
13.6 eV or higher. Once the minimum energy required to loosen the electron from
the proton is reached, the excess energy can always be absorbed in the form of
translational kinetic energy of the electron and proton. This feature is important in
determining the appearance of very hot stars.

We might think that the recombination of electrons with protons would sim-
ilarly regenerate ultraviolet photons. However, this occurs only part of the time.
Frequently the recombination leaves the atom in one of its excited states, with a
subsequent cascade through lower states down to the ground state. In this process,
a number of less energetic photons are created. At energies somewhat higher than
the ionization limit, the absorption cross-section is of order 10−17 cm2 . Hence, for
typical interstellar densities of order 1 atom cm−3, the mean free path for absorp-
tion is only of order 1017 cm, in contrast to standard interstellar distances of order
3 × 1018 cm or more. In a random walk, an ionizing photon would then have 103

opportunities for ionization and recombination in crossing 3 × 1018 cm. The prob-
ability that an ionizing photon would penetrate the full 3 × 1018 cm without ever
ionizing a single hydrogen atom is of order e−30 ∼ 10−13. As a result, we seldom
observe ultraviolet photons beyond the ionization limit — the Lyman limit.

The small region of the Galaxy in which the Sun happens to be located, however,
has unusually low interstellar gas density. This low density region, referred to as the
Local Bubble has made it possible to observe nearby white dwarfs even at extreme
ultraviolet wavelengths.

(b) Negative Ions

A hydrogen atom can become ionized not only through the loss of an electron, but
also by gaining one to become a negative ion H−, a hydride ion.

H + e→ H− + hν. (7-13)

The structure of this ion is somewhat similar to that of the neutral helium atom in
having two electrons bound to a nucleus. The second electron is only weakly bound,
because the first electron is quite effective in screening out the nuclear charge. The
binding energy is 0.75 eV and there is only one bound state. All transitions from
or to this state involve the continuum, that is, a neutral hydrogen atom and a free
electron (Fig. 7.6).

Because its 0.75 eV binding energy is so low, H− ions readily absorb visible
starlight from cool stars like the Sun. This absorption continues out to a wavelength
of 1.65µm where photon energies drop below the bound–free transition energy.
However, even at longer wavelengths absorption can take place, since the H− ion
also can have free–free transitions — absorption in which energy is taken up by
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Fig. 7.6. Energy-level diagram of the H− ion. There is only one bound state with binding
energy 0.75 eV. All radiative transitions must be either between the bound state and a state
with a free electron, or else between two free states.

the translational energy of an unbound electron in the presence of a hydrogen atom.
This is no small effect. The H− ion plays an important role in the transport of energy
through the solar atmosphere (Ch58).

We should still explain how H− even happens to exist in the atmosphere of cool
stars. It survives because metal atoms such as sodium, calcium, and magnesium,
which have low ionization potentials, can be easily ionized even by the light of cool
stars. Some of the electrons generated in this way attach themselves to hydrogen
atoms to form the H− ions.

Absorption due to H− is always accompanied by subsequent re-emission. Most
of the light we receive from the Sun is due to a continuum transition in which atoms
and electrons recombine to form the hydride ion, H−.

Many other elements of course also have ions that play an important role in
astrophysics. Molecules can be ionized too and molecular ions have characteristic
spectra of their own. They are often observed in the ionized gaseous tails of comets,
where we detect OH+, CO+, H2O+, H3O+, and other ions spectroscopically or by
means of a mass spectrograph aboard a space probe sent into the comet’s tail.

7:5 Hydrogen Molecules

Molecules can have three types of quantized states. First, there is the possibility
that atoms in the molecule vibrate relative to each other. In that case the vibrational
energies are quantized. Second, there is the possibility of quantized rotation. This
means that the angular momentum is quantized. Third, just as in atoms, there exist
different quantized electronic states.
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The binding energy between atoms is relatively weak. By this we mean that
the energy required to separate two atoms that have formed a molecule is normally
smaller than the energy required to ionize an atom. Only some large alkali atoms
have ionizing energies lower than the highest molecular binding energies. Corre-
spondingly, the radiative transitions between excited vibrational states also tend to
occur at lower energies than those found for the transitions involving the lower elec-
tronic levels of most atoms. Characteristically, we tend to find that electronic tran-
sitions, that is, transitions between electronic excited states in atoms or molecules,
occur in the visible and ultraviolet part of the spectrum. Vibrational transitions oc-
cur in the near infrared part of the spectrum, roughly at wavelengths between 1 and
20µm, and rotational transitions occur in the far infrared λ ∼> 20µm and microwave
spectrum.

This is just a rule of thumb and is not strictly obeyed. We already know that
hydrogen atoms can have electronic transitions that reach way out to the very low-
est energies associated with radio wavelengths. We discussed those in Section 7:3.
However, pure vibrational transitions do not often occur in the visible spectra of as-
trophysically important substances, and pure rotational spectra are not expected at
wavelengths shorter than a few microns.

For many purposes, the vibrations of two atoms relative to one another can be
treated as quantized harmonic oscillations. Figure 7.7 shows the vibrational energy
levels for hydrogen H2 in the lowest electronic state of the molecule. If the vibra-
tions become too violent, the molecule dissociates into two separate atoms. The

Fig. 7.7. Vibrational energy levels in the hydrogen molecule H2 ground electronic state. The
lengths and positions of the lines along the abscissa indicate the range of separations d be-
tween nuclei in the molecule. The equilibrium separation is denoted by de. There are only
14 vibrational states below 4.48 eV, the energy at which H2 dissociates into two atoms. Each
of the vibrational states comprises a number of possible substates having rotational angular
momenta J ≥ 0.
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dissociation energy is 4.48 eV — slightly higher than the energy of the 14th excited
vibrational state.

The ground state of the molecule is not at zero energy. Rather, analogous to
photon energies (Section 4:13, equation (4–71)), the lowest vibrational state lies at
roughly half the energy difference between the ground state and first excited state.
This displacement is characteristic of ground vibrational levels.

Hydrogen molecules are a major constituent of interstellar space and are the
predominant constituent of dark clouds in the Galactic plane. Unfortunately, the
total mass present is only indirectly inferred. First, there is the difficulty of detect-
ing the gas. Hydrogen is a symmetric dipole molecule, and as we already saw in
Section 6:13, symmetric configurations can at best radiate if they have a quadrupole
moment. Moreover, the probability for this type of transition is many orders of mag-
nitude lower than for the more usual dipole radiation of asymmetric molecules. In
addition, however, even the lowest rotational states (Fig. 7.8) can be collisionally
excited only at gas temperatures above ∼100 K, while interstellar molecular clouds
are normally far cooler. Once excited, the lifetime before radiating to a lower state
is measured in years if not centuries. Pure rotational emission of H2 is, therefore,
rarely observed. Instead, the presence of the molecular hydrogen is inferred from
the observation of the lowest rotational transitions of carbon monoxide, CO, which
is far less abundant than H2 but radiates readily. These transitions, however, are not
entirely reliable tracers of H2 because the emitted radiation is readily reabsorbed by
layers of CO through which the transiting CO emission must pass to escape a cloud.

The vibrational spectrum of H2 can be excited in shocked regions where tem-
peratures rise to ∼2000 K. At these temperatures, colliding molecules excite each

Fig. 7.8. Rotational energy-level diagram of H2 for the ground vibrational state. Alternate
states have nuclear spins aligned: parallel, ortho (O), or antiparallel, para (P).
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other vibrationally. Once excited, H2 can undergo a radiative transition to a lower
vibrational state, with probability 10−6 s−1, meaning that the molecule typically re-
mains excited for a week or two before radiating its excitation energy away. The
photon energy then corresponds to the energy difference between two of the levels
in Fig. 7.7 and is well defined. The spectrum of the radiation observed identifies
the molecular hydrogen uniquely, and also tells us the state of excitation of the gas
(He50), (He67)*.

Though molecular hydrogen can be readily dissociated by ultraviolet photons
insufficiently energetic to ionize hydrogen atoms and, therefore, able to pass through
neutral atomic gas without much hindrance, H2 is well shielded inside dark clouds
by an abundance of interstellar dust. The dust absorbs the ultraviolet photons and
thus shields the hydrogen molecules.

7:6 Selection Rules

In Section 7:2 we saw that the interaction of an atomic system with radiation obeys
certain conservation principles. Compliance with these principles requires that some
transitions be forbidden while others are allowed. The rules that tell us about the
permitted transitions are called selection rules. We had already seen roughly how
these rules come about. Here we will examine the question in somewhat greater
depth.

When any two quantum systems combine to form a larger system, the addition
of angular momenta takes place so that, along any arbitrarily chosen direction z, the
final angular momentum Jzf is the sum of the two initial angular momenta along
that direction,

Jzf = Jz1 + Jz2, (7-14)

where subscripts 1 and 2 refer to the two original systems.
Because the precise measurement of the z-component precludes a simultaneous

precise measurement of the transverse components, equations of the form (7–14) do
not exist for the orthogonal x- and y-directions. But equation (7–14) holds whether
we interpret the symbols Jzi as the z-components of the angular momentum or
only as the quantum number for this angular momentum component which, when
multiplied by �, represents the actual angular momentum component. Below we
will interpret the symbol Jzi as a quantum number. The values that these quantum
numbers can assume are zero, half-integer, or integer.

A second statement can be made about the addition of the squares of the angular
momenta. The (angular momentum)2 is also a precisely measurable quantity. The
selection rules permit it to be measured simultaneously with Jzi. The allowed values
of (angular momentum)2 always take on numerical values

(angular momentum)2i = Ji(Ji + 1)�2, i = 1, 2, . . . , f . (7-15)

The right side of this expression resembles the right side of equation (6–191). To
understand why, it is useful to remember from Section 7:2 that quantization restricts
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angular momentum to values that are integer or half-integer multiples of �. Clas-
sically, we also know that an orbital angular momentum L is proportional to the
cross-product of a radial distance and a linear momentum, L = r ∧ p. But because
� already has the correct units for angular momentum, and the radial distance r
is a vector quantity that has units of length, the momentum p must be the prod-
uct of � and a vector quantity that has units of (length)−1. The quantum mechani-
cal formulation accomplishes this in representing linear momentum by an operator
−i�∇ — proportional to the gradient of the state ψ of the quantum system under
consideration.

We may write the square of the angular momentum as L ·L∗, where the asterisk
denotes the complex conjugate. This can now be rewritten as

L2 = −�
2(r ∧ ∇) · (r ∧ ∇)∗ = −�

2r2∇2 . (7-16)

Because radial components of gradients do not contribute to r ∧ ∇, ∇2 here is
restricted to the tangential components, represented by the second and third terms
on the right of equation (6–181). This tells us that L2 has precisely the angular
dependence of (6–185)

�
2

[
1

sin θ
∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1
sin2 θ

∂2ψ

∂φ2

]
= −L2ψ , (7-17)

and, correspondingly, L2ψ should have values �(� + 1)�2ψ. Here, we have simply
interchanged symbols � for Ji.

The relationship between Ji and Jzi requires that Jzi take on values
Jzi = Ji, Ji − 1, Ji − 2, . . . , 1 − Ji,−Ji. This too is reminiscent of the result
we cited, in Section 6:25, that well-behaved solutions of (6–185) required that m
take on positive or negative integer values with |m| ≤ �, except that for angular mo-
mentum both integer and half-integer values are permitted. The half-integer values
generally are associated with spins of electrons, protons or other fermions.

Since the maximum value that Jzi can assume is Ji, we note that, for this par-
ticular value, equation (7–15) tells us that there is an additional amount of angular
momentum (Ji�

2)1/2 to be associated with the transverse angular momentum com-
ponents. These components can therefore never be zero, unless Ji itself is zero also;
and in that case they must be zero. The transverse angular momentum contribution
comes about because the uncertainty principle does not permit a simultaneous pre-
cise measurement of two or more angular momentum components. But when the
(angular momentum)2 is zero, all angular momentum components must be zero,
because each individual component of (angular momentum)2 must be ≥ 0.

We said that the z-direction can be arbitrarily chosen. Let us choose it to repre-
sent the direction along which a photon approaches the atomic system. In the scheme
used here we can assign subscript 1 to the photon, 2 to the initial atomic state, and f
to the atomic state after photon absorption. Lorentz invariance requires the photon
spin angular momentum to lie along the direction of propagation, Jz1 = 1, and

Jzf = Jz2 ± 1. (7-18)
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This tells us that an atomic system with half-integer values of Jzi must have Ji half-
integer, and that no transitions to integer values of Jzi or Ji are possible through
photon absorption or emission. Similarly a system with integer angular momentum
quantum numbers always maintains those properties under photon absorption.3

We note that the quantum numbers Jzf and Jz2, alternatively, may be taken to
correspond to the magnetic quantum numbers we previously labeled m. Equation
(7–18) then gives a selection rule that states ∆m = ±1 when the direction of pho-
ton emission is along the magnetic field lines. This is why only two Zeeman shifted
lines are observed along that direction. Along a direction of emission perpendicular
to the field, equation (7–18) is still true, but the association of Jz2 withm is then no
longer valid. A division of photons into groups having Jz1 = ±1, that is, in terms
of left- or right-handed polarized light, then mixes the contributions from differ-
ent magnetic energy levels m. This happens because the photons from the various
levels m, viewed along that direction, are plane-polarized. In Section 6:12 we saw
that plane-polarized light can be considered to be a superposition of left- and right-
handed polarized components. Hence, viewed along the direction perpendicular to
the field, ∆m may have values 0, as well as ±1, even though (7–18) is still obeyed.

Equation (7–18) leads to one other important selection rule. It is impossible for
an atomic system to undergo transitions between angular momentum states whose
values are zero through absorption or emission of one photon. It is easy to see that
this must be true. If J2 = 0, then Jz2 = 0 also, and similarly if Jf = 0, Jzf = 0.
But by (7–18) both these z-components cannot be zero simultaneously. Hence the
selection rule as stated must be true. This rule is absolutely inviolable, no matter
whether electronic or vibrational transitions are involved. It is always true!

J = 0 |� J = 0. (7-19)

In quantum mechanics selection rules such as these are linked to the symmetry
of the atomic system. When the system has sufficiently complex symmetries, the
selection rules also become correspondingly complex. We have only shown one
or two of the simplest selection relations here, but it is worth remembering that
even the more complex appearing rules actually are basic symmetry statements,
which become relatively straightforward when viewed in terms of the appropriate
symmetry. The angular momentum selection rules discussed here are based on the
rotational symmetry of atomic systems.

Equation (7–19) holds true only for transitions involving a single photon. It is
possible, however, though with low probability, for two-photon transitions to occur
between states J = 0; the angular momentum carried off by the individual photons
is then oppositely directed. Such transitions are possible in tenuous nebulae in in-
terstellar space where atoms in an excited state of zero angular momentum can exist

3 This is true even for photons produced in the laboratory that carry not only spin but also
orbital angular momentum along the direction of propagation. The orbital angular momen-
tum component of these photons is always an integer multiple of � along the direction of
propagation, and so is their total angular momentum component Jz1 (A�99).
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undisturbed for long periods (Va70), (Sp51b). In laboratory systems, where pres-
sures are higher, such excited states normally become de-excited through atomic
collisions.

An interesting feature of angular momentum quantization is that the existence of
quantized states for all matter implies the impossibility of interacting with radiation
having nonquantized angular momentum. Whatever fields, electric, magnetic, weak
or strong nuclear, gravitational, or others that may exist in the Universe, should
therefore have radiation that is quantized in terms of half-integer spin angular mo-
mentum �, or multiples thereof if it is to interact with atomic matter. When gravita-
tional waves are discovered, we are confident we will find them to have quantized
spin angular momentum. The current prediction is that their spin should be 2� —
twice that of photons (Gu54).

PROBLEM 7–3. If a system of particles has a moment of inertia

I =
∑

j

mjr
2
j (7-20)

about its axis of rotation, show that the energy and angular momentum are related
by

E =
ωL

2
=
L2

2I
, (7-21)

provided we are talking about a classical, rigid, nonrelativistic rotator whose angu-
lar frequency of rotation is ω. From this, show that the energy carried away by each
quantum of radiation would have to be

δE = �ω (7-22)

due to quantization � of angular momentum. Equation (7–15) gives the square of
the total angular momentum as �

2[J(J + 1)]. Show that the energy of each state is

E = �
2 J(J + 1)

2I
(7-23)

and the energy of the quantum released in the transition J → J − 1 is

δE = �
2 J

I
. (7-24)

For massive objects rotating rapidly, show that this is equivalent to the classical
formula.

PROBLEM 7–4. If an interstellar molecule has a rotational energy kT in thermal
equilibrium with surrounding gas (Section 4:19), say T ∼ 100 K, what is the range
of frequencies it will radiate if typical values of atomic weights are 10−23 g and
typical molecular radii are 2 Å? Make use of some of the expressions obtained in



7:7 The Information Contained in Spectral Lines 285

the previous problem to show that radiation may be expected in the far infrared or
submillimeter region.

PROBLEM 7–5. Set up an expression for the probability that a molecule with mo-
ment of inertia I about a given spin axis will be found in an excited rotational state
J when it is in thermal equilibrium with gas at temperature T . From this convince
yourself that a molecule in a cool interstellar cloud (T ∼ 100 K) cannot be excited
into very high rotational states.

PROBLEM 7–6. If interstellar grains are in thermal equilibrium with the surround-
ing gas (T ∼ 100 K), and have typical radii, 10−5 cm with typical masses 10−15 g,
at what frequency could they be expected to radiate away angular momentum? This
process is possible because small inhomogeneous grains can be expected to have ap-
preciable electric dipole moments. Observations would, however, have to be made
from above the atmosphere, and interstellar plasma absorption might interfere.

PROBLEM 7–7. It has been suggested that massive cosmic objects might exist
having such high angular momenta that contraction to high density becomes impos-
sible. Such an object might slowly cool down without ever becoming a star because
its central temperature does not get sufficiently high to sustain nuclear reactions. It
might, however, be capable of losing angular momentum through systematic emis-
sion of circularly polarized radiation carrying spin angular momentum �.

An object like this might also emit gravitational radiation. Because the graviton
carries away twice the spin angular momentum of photons, see how the formulas of
Problem 7–3 would change if applied to gravitons. Try the same thing for neutrinos
that carry away only half the spin angular momentum of photons. Under normal
conditions, in any of these cases, the probability for the emission of a quantum
is quite small as the discussion of transition probabilities in the next sections will
show. If electromagnetic radiation were actually emitted it would not be transmitted
by the interstellar medium because the expected rotational frequency ω for massive
objects would be small. Why not? What would happen to the energy (Re71)?

7:7 The Information Contained in Spectral Lines

Left to itself an excited atomic system will spontaneously jump into a lower energy
state. The mean time required for such a transition varies from one system to another
and depends on the symmetries of the states, the selection rules discussed in Section
7:6, and other factors. If the system has a total probability P of leaving the excited
state in any unit time interval, its total life in the excited state is δt = 1/P . The
energy of the state therefore cannot be determined with arbitrarily great accuracy.
The limited time in the excited state implies that the energy can only be determined
to an accuracy δE given by the uncertainty principle
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δE =
�

δt
. (7-25)

Improbable transitions therefore have a narrow natural line width. The accuracy to
which the transition energy between two states i and k can be determined depends
on the lifetime of both the upper and the lower states; the total frequency width
of the line δν , then, is the sum of the widths of the two levels. This total width is
usually denoted by

δω = 2πδν =
(δEi + δEk)

�
≡ γ; (7-26)

γ is called the natural line width for the transition.
In Section 7:8 we will find that a spontaneously decaying atom emits radiation

with a spectral distribution or line shape

I(ω) = I0
γ

2π
1

(ω − ω0)2 + γ2/4
. (7-27)

The intensity drops to half the maximum value at frequencies ω0 ± γ/2.
In astronomical sources the natural line width is seldom directly observed, but

deviations from this width can give us a great deal of information. Let us list the
various line broadening effects.

(a) Doppler Broadening

This effect is due to random motions of emitting or absorbing atoms or molecules.
For small velocities the frequency shift of the radiation is roughly proportional to
the line of sight velocity component υr (see equation (5–44)):

∆ω = ω0
υr

c
, υr  c. (7-28)

Two kinds of motion can contribute to Doppler broadening: the thermal velocities
of emitting atoms within a cloud and the turbulent velocities peculiar to the clouds
superposed along a line of sight. Sometimes these two effects can be resolved.

We can, for example, observe the absorption of stellar radiation by interstellar
sodium atoms. Sodium absorbs strongly in the yellow part of the visible spectrum
in a pair of lines known as the sodium D lines at 5890 and 5896 Å. If these lines are
examined at very high resolution, so that shifts of the order of one part in 106 are
detected, velocity differences as low as ∼3×104 cm s−1 can be distinguished. What
we then observe is a series of discrete broadened absorption lines due to individual
clouds absorbing light along the line of sight, and a definite characterizing width
for individual lines representing a given cloud. Whether this individual line width
is entirely due to thermal motions, or also partially due to turbulent motions on a
smaller scale within each cloud, cannot be immediately recognized (Ho69).

PROBLEM 7–8. If atoms of massmmove with velocities determined by Maxwell–
Boltzmann statistics, the probability of observing a given line of sight velocity υr
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is proportional to exp(−υ2
rm/2kT ) (see equation (4–56)). Show that the line shape

for thermal Doppler broadening therefore should be of the form

I(ω) dω = I0 exp
[
−mc

2(∆ω)2

2ω2
0kT

]
dω. (7-29)

See also Problem 4–27 and show how the line width can be immediately related to
the temperature through equation (7–28).

In general the width at half maximum for Doppler broadening

δ = ω0

[
2kT (ln 2)
mc2

]1/2

(7-30)

is much greater than the natural line width γ. However, it drops off exponentially
and, therefore, much faster than the natural line width. The observed wings of very
strong lines, for example, Lyman-α in interstellar space, generally are due to natural
line width and to the other causes listed below (Je69).

(b) Collisional Broadening

In the relatively dense atmospheres of stars, atoms or ions often suffer a collision
while they are in an excited state. Because any given collision may induce a transi-
tion to a lower state, the collective effect of such collisions is to increase the total
transition probability. Thus, if the spontaneous transition rate were γ and the number
of collision-induced transitions in unit time is γc ,

δE
�

= γ + γc. (7-31)

The emitted line has the spectral intensity distribution of the natural line shape,
except that γ is replaced by γ + γc.

(c) Other Types of Broadening

There are other effects due to interactions with neighboring atoms that can cause
shifting and splitting of states; through the influence of electric fields — the Stark
effect; through resonance coupling between atomic systems; and other effects. These
processes all lead to line broadening but at low densities their effects are small.

PROBLEM 7–9. To obtain a better feel for the relative importance of the Doppler
and collision line widths for visual spectra obtained from stellar atmospheres, show
that: if the atmosphere has a density n, thermal velocities (3kT/M)1/2, and colli-
sion cross-section σ,

γc

δ
∼ nσc

ω0
, (7-32)
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where factors of order unity are neglected. For visible light ω0 ∼ 1015 s−1, and
collision cross-sections have typical dimensions of atoms, 10−16 cm2. In normal
stellar photospheres n 1021cm−3 and hence γc  δ.

7:8 Absorption and Emission Line Profile

In estimating the amount of neutral interstellar hydrogen along the light path be-
tween an ultraviolet emitting star and Earth, we need to know both the shape and
the total strength of the Lyman-α absorption line. These two pieces of information
permit us to determine the amount of hydrogen in terms of the observed absorption
line width. Intrinsically the calculation of line strength and shape is a quantum me-
chanical problem. Classical theory permits us to calculate the line shape on the basis
of a harmonic oscillator model. The model also yields the right order of magnitude
for the line strength. However, we must take care not to take the classical model too
seriously; by itself it does not lead to quantized energy states.

We will first derive an expression for the emission line profile using semi-
classical methods. We start with equation (6–88) for the total energy radiated per
second by a charged oscillator, I = 2e2r̈2/3c3. We can see that this intensity corre-
sponds to a force

F =
2
3
e

c3
...
d (7-33)

because the average work done by that force, in unit time, is then

〈F · ṙ〉 =
〈

2e
3c3

...
d · ṙ
〉

=
〈

2
3c3

d

dt
(ḋ · d̈) − 2

3c3
d̈2

〉
= I. (7-34)

Here the term containing ḋ · d̈ vanishes because ḋ and d̈ are exactly out of phase in
simple harmonic motion. The damping force F is small compared to the harmonic
force; the oscillation in other words lasts over many cycles. We can therefore write
the equation of motion as

mr̈ = −mω2
0r +

2
3
e2

c3
...
r. (7-35)

This equation is very much in the spirit of (6–107), except that we have a damping
(instead of a harmonic driving) force here. Because the damping is weak, the motion
is almost harmonic and we can approximate

...
r = −ω2

0 ṙ. (7-36)

We then rewrite (7–35) as

r̈ = −ω2
0r − γṙ with γ =

2
3
e2ω2

0

mc3
 ω0 . (7-37)
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Since γ  ω0 this has the approximate solution

r = r0e
−γt/2e−iω0t . (7-38)

The oscillating dipole thus sets up an oscillatory field of the form

E(t) = E0e
−γt/2e−iω0t (RP), (7-39)

where only the real part enters into physical consideration. This is not monochro-
matic any more because it changes with time; and only time-invariant oscillating
fields can be strictly monochromatic. A time-dependent change in intensity affects
the frequency spectrum.

The total field is now written in terms of an integral over the entire range of
frequency components:

E(t) =
∫ ∞

−∞
E(ω)e−iωt dω. (7-40)

By a theorem from Fourier theory, an integral of this form can be inverted to give

E(ω) =
1
2π

∫ ∞

−∞
E(t)eiωt dt. (7-41)

If we now introduce the field (7–39) into this equation and note that E(t) is defined
only for time t ≥ 0, we can readily integrate to obtain

E(ω) =
1
2π

E0

i(ω − ω0) − γ/2
(RP) . (7-42)

We then obtain the spectral line intensity (see Fig. 7.9):

Fig. 7.9. Natural width of a spectral line. The curve is normalized to peak intensity 2I0/πγ
(see equation (7–42)).
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I(ω) = |E(ω)|2 = I0
γ

2π
1

(ω − ω0)2 + γ2/4
,

I(ν) = I0

(
Γ

2π

)[
(ν − ν0)2 +

Γ 2

4

]−1

, γ ≡ 2πΓ , (7-43)

where I0 is the total intensity integrated over all frequency space and ω = 2πν ,
ω0 = 2πν0:

I0 =
∫ ∞

−∞
I(ω) dω =

∫ ∞

−∞
I(ν) dν . (7-44)

This type of line shape is sometimes called the Lorentz profile, and Γ and γ
are called the natural line width. This is the full frequency width at half maximum.
We have not yet shown that the absorption and emission profiles are the same. This
question is taken up next, in Section 7:9.

7:9 Quantum Mechanical Transition Probabilities

Much astrophysical information can be obtained from the intensity of absorption
or emission lines. The strengths of the lines define the number densities of atoms,
ions, or molecules in a source or along the line of sight to a source, and the ratio of
the strengths of lines can be used to determine the excitation temperature of gases
through application of the Saha equation (Section 4:16).

In order to obtain this information in useful form, we must first relate the inten-
sity of the spectral absorption or emission lines to the number density of atoms or
ions in different energy levels; and we can only do that if we know the transition
probability between states of the system.

Very roughly the transition probability depends on three factors: (a) on the sym-
metry properties of the atomic system, (b) on its size in relation to the wavelength
to be absorbed or emitted, and (c) on the statistics of the radiation field. The first
of these factors includes the selection rules discussed in Section 7:6, the statements
about charge-to-mass ratio made in Section 6:13, and other similar restrictions. The
second factor represents the relative probability for dipole, quadrupole, or higher
multipole radiation; this is size dependent as seen, for example, in (6–93). The third
factor, to be discussed now, depends only on the radiation field and is quite general
for any transition regardless of the atomic or nuclear system involved.

The probability that an atomic system will undergo a transition from some state
i to another state j is proportional to the number of ways in which a change in the
photon field can occur. For example, the probability for emission of a photon with
radial frequency ω is (see equation (4–65)) proportional to

ω2 dω dΩ

(2πc)3
=
ν2 dν

c3
dΩ (4–65)

for photons polarized in one sense. Here dΩ is the increment of solid angle. This
factor, considered in isolation, makes transitions in the optical domain, where
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ω ∼ 3 × 1015 rad s−1, much more probable than, say, in the radio region at
ω ∼ 3 × 109 rad s−1.

The emission probability is also proportional to nω + 1, where nω is the am-
bient density of photons per phase cell that already have the momentum and po-
larization characterizing the photon to be emitted. The newly emitted photon then
has precisely the same frequency, direction of propagation, and polarization as the
stimulating photon or photons and we speak of stimulated or induced emission.
Stimulated emission is the exact opposite of ordinary photon absorption. The num-
ber of absorptions is again proportional to nω + 1, if nω is taken to be the number
density per phase cell of photons left after the atom has reached the upper state.
We therefore see that the transition probability P (ω, θ, φ) per unit solid angle and
frequency range obeys the relation

P (ω, θ, φ) dΩ dω ∝ [n(ω, θ, φ) + 1]
ω2

(2πc)3
dΩ dω . (7-45)

Here n(ω, θ, φ) is the probability per unit frequency range that a photon state
is occupied when the atomic system is in its upper energy state and ν = 2πω is
the mean spectral frequency. Let us now return to the factors (a) and (b) mentioned
earlier. These have to be evaluated quantum mechanically to yield a matrix with
elements Uij giving the transition amplitude between any two states i and j of the
atomic system. The actual transition probability between these two states is pro-
portional to |Uij|2. The prescription for obtaining the transition probability per unit
solid angle, then, is to multiply the product |Uij|2P (ω, θ, φ) by the numerical factor
2π/�2. Thus the transition probability per unit time becomes

2π
�2

|Uab|2[P (ω, θ, φ)] dΩ =
2π
�2

|Uab|2[n(ω, θ, φ) + 1]
ω2

ab

(2πc)3
dΩ . (7-46)

Since the energy of the states is quite narrowly defined n(ω, θ, φ) normally does
not change appreciably over the bandwidth of the line. The matrix elements already
include the integration over the frequency bandwidth that appears explicitly in equa-
tion (7–45). The transition probability (7–46) thus includes an integration over the
entire frequency range ω and, specifically, includes consideration of strongly ab-
sorbed or emitted photons at the line center as well as the less readily absorbed and
emitted photons in the line wings. More precisely stated, it includes consideration
of the line shape (7–43).

We still need to relate the quantum mechanical transition probability to equation
(6–86) which expressed the intensity I absorbed by an oscillating dipole in terms of
the second time derivative of the dipole moment d.

I =
2

3c3
d̈2 =

2e2r̈2

3c3
. (6–86)

Because r has the time dependence (7–38), equation (6–86) is readily rewritten as

I =
2e2ω4

3c3
〈r2〉 =

32π4

3c3
e2ν4〈r2〉, (7-47)
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where the brackets 〈〉 indicate a time average. The intensity I is related to the spon-
taneous transition probability of quantum mechanics; and we must therefore set
n = 0 in equation (7–46) if a comparison with (7–47) is to be made. In the dipole
approximation the matrix element Uab makes a contribution

|Uab|2 = 2π�ωabe
2|rab|2 sin2 θ, (7-48)

where an integration has been carried out over the possible directions of polariza-
tion. The physical meaning of e2|rab|2 will be discussed below. The total intensity is
now given by the product of the transition probability (7–46) and the photon energy
�ωab:

I dΩ = �ωab · 2π
�2

ω2
ab

(2πc)3
· 2π�ωabe

2|rab|2 sin2 θ dΩ, (7-49)

where θ represents the angle between the vector r and the direction of propagation
of the emitted radiation. Integrating over all angles of emission we obtain the total
intensity of spontaneously emitted radiation

I =
4
3
e2

c3
ω4

ab|rab|2 =
64
3
π4 e

2

c3
ν4

ab|rab|2. (7-50)

We see that the formula obtained quantum mechanically is almost the same as the
classical expression (7–47). We only have to replace the time-averaged 〈r2〉 by
2|rab|2 if we wish to obtain identical forms. This connection is consistent with the
correspondence principle. We note, however, that e2|rab|2 is not an exact quantum
mechanical analogue to the mean square dipole moment. For each individual state
of the atomic system, a or b, the dipole moment would be given by expressions in-
volving the diagonal matrix elements eraa or erbb, respectively. The quantities erab,
instead, denote a property that is influenced both by the initial and the final state of
the system. They have no exact classical analogue and we therefore need not be
surprised that a factor 2 appears in equation (7–50). We had no reason to expect
complete identity of classical and quantum mechanical forms. After all, the quan-
tum theory of radiation is supposed to go a step beyond the classical results in order
to provide an understanding of abrupt transitions. Its results must therefore differ in
some essential form from those of classical theory.

Thus far we have only a formal solution that does not yet allow us to estimate
the strength of an emission or absorption line. We can, however, still make use of
equation (7–37) for this purpose. We note that γ−1 is a time constant, so that γ taken
by itself is equivalent to a transition probability. By setting the value for γ equal to
the transition probability (7–46), we are able to estimate Uab, and also an absorption
cross section for radiation. We write

γ =
2
3
e2ω2

ab

mc3
=

2π
�2

ω2
ab

(2πc)3

∫
|Uab|2[n(ω, θ, φ) + 1] dΩ . (7-51)

For spontaneous emission, n(ω, θ, φ) can be set equal to zero. The value for γ that is
used here has been derived on the basis of a dipole radiator model, and the integral
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on the right-hand side of equation (7–51) therefore contains the same factor 2
3 that

already came up in the evaluation of the classical expressions (6–85) and (6–86).∫
|Uab|2 dΩ =

2
3
|Uab|24π . (7-52)

Hence

|Uab|2 =
πe2�

2

m
. (7-53)

The absorption for a constant level of continuum radiation I(ω) is

σI(ω) =
∫
σ(ω)I(ω) dω , (7-54)

where σ(ω) is the cross-section at frequency ω and has the dimensions of area, say,
cm2. The integrated cross-section σ has corresponding dimensions cm2Hz. If an
atomic system is surrounded by an isotropic photon gas of density n′(ω, θ, φ), the
total number of photons absorbed can be expressed as

n′(ω, θ, φ)σc dΩ =
2π
�2

|Uab|2[n(ω, θ, φ) + 1]
ω2

ab

(2πc)3
dΩ . (7-55)

Here the left side represents the number of photons per unit frequency range of a
continuous spectrum intercepted by the cross-sectional area in unit time, and the
right-hand side gives the probability for absorption of a photon as expressed in (7–
46). We can cancel the photon densities in equation (7–55) if we follow the proce-
dure of letting n(ω, θ, φ) stand for the fractional number of photon states occupied
when the atomic system is in its upper state. Because we have taken n′ to represent
the number density of photons per unit frequency band present before absorption,
that is, when the atomic system still is in its lower state, we can see that

n′(ω, θ, φ) = [n(ω, θ, φ) + 1]
ω2

ab

(2πc)3
. (7-56)

The factor ω2
ab/(2πc)

3 appears because n is a number density per phase cell whereas
n′ is a density per unit volume of normal, three-dimensional configuration space.

From (7–53) and (7–55) it then follows that

σ =
2π2e2

mc
= 2π2rec , (7-57)

where

re ≡ e2

mc2
. (6–170)

The cross-section (7–57) has precisely the value we would obtain by classical
means if we modified equation (6–107) to include a radiative reaction force (see
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equation (7–33)) representing the force on the moving charge due to its emission of
radiation:

Frad =
2
3
e2

c3
...
r . (7-58)

A series of remarks is now in order:
(1) The cross-section obtained here holds only for atomic systems for which

an oscillating charged dipole represents a satisfactory description. This must be
strongly emphasized! Each type of atom or molecule has its own structure and there-
fore will interact with photons in its own way. However, an essential feature shared
by many atomic systems is that electrons are bound to a nucleus or core. In a stable
quantum state the electron then resists the efforts of an applied electromagnetic field
to move it from its equilibrium position or, more accurately, from its equilibrium or-
bital distribution within the atomic system.

In this respect the electron behaves as though it were harmonically bound to the
more massive core. This justifies the use of the classical dipole approximation as a
guide to the quantum treatment. However, it does so only for atoms or molecules
having a dipole moment and for wavelengths long compared to the atomic dimen-
sions. The limitations that held for classical radiators hold equally well in the quan-
tum limit. This was already pointed out in Section 6:13, but it is worth stating again.

(2) No atom behaves precisely like a classical harmonic oscillator. Its cross-
section is not precisely that given by (7–57). We can define an oscillator strength f
that represents the actual absorption strength of a given line in units of 2π2e2(mc)−1 .
A value f = 1 represents an absorption equal to that of the classical dipole.

(3) As already noted in equation (7–54), the cross-section of the atomic system
varies with frequency. Its frequency distribution is of the form (7–43).

PROBLEM 7–10. Show that if the absorption cross-section is

σab(ω) =
2πe2

mc
fab

γ/2
(ω − ωab)2 + (γ/2)2

,

(7–59)

σab(ν) =
2πe2

mc
fab

Γ

2

[
(ν − νab)2 +

(
Γ

2

)2
]−1

, Γ =
γ

2π
,

the total cross-section obtained in (7–57), multiplied by an oscillator strength fab,
is obtained on integrating over all frequencies.

(4) The identity of absorption and emission cross-sections is evident from the
form of equation (7–46). This is true both of the magnitude of the absorption and its
spectral distribution. When no radiation field at all is present, that is, n(ω, θ, φ) = 0,
we still have the vacuum field or zero-level photon population which induces the
spontaneous emission of radiation to be discussed in more detail in Section 7:10.

(5) The actual magnitudes of various kinds of transitions are also of interest. The
absorption cross-section (7–57) corresponding to unit oscillator strength has a value
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σ ∼ 0.17 cm2 s−1. When multiplied by the radiative flux in unit frequency interval,
σ gives the total amount of radiation absorbed by an atom.

PROBLEM 7–11. Show that the maximum absorption cross-section has the value
σ(ωab) = (3λ2/2π)fab, so that for fab ∼ 1 the apparent size of the atom at res-
onance is roughly a factor of two lower than λ2, the wavelength of the radiation
squared.

PROBLEM 7–12. What fraction of the radiation in an emission or absorption line
lies within the bandwidth γ defined by the natural line width?

PROBLEM 7–13. Show that the spontaneous transition probability is roughly
γ ∼ (5λ2)−1 in cgs units. It therefore has a value of 108 s−1 for visible light,
λ ∼ 5 × 10−5 cm.

In a different spirit we can use (7–50) to write the transition probabilityw as

w ∼ e2

c3
ω3

ab

�
|rab|2 ∼ e2

c3�

(
me4

�3

)2 (
�
2

me2

)2

ωab ∼
(
e2

c�

)3

ωab ∼ 1
(137)3

ωab,

(7-60)
where we have made use of equation (7–3) for a hydrogenlike atom to roughly
estimate the radiated frequency ωab and have set the Bohr radius (7–4) equal to
|rab|. The fine structure constant

α =
e2

�c
∼ 1

137
(7-61)

taken to the third power then appears in the last element of equation (7–60). The
transition probability for visible radiation is of order 108 s−1 and, correspondingly,
we can see from (7–60) that it should be of order 1011 s−1 for X-rays, ∼1014 s−1

for γ-radiation, and ∼<104 s−1 for radio waves. Interestingly, (7–60) is independent
of the mass of the emitting particle. It does not have to be an electron, but can be an
ion. The lifetime of the state is just the reciprocal of the transition probability.

Oscillator strengths can vary greatly. For the hydrogen Lyman series we have
values Ly-α(0.42), Ly-β(0.08), Ly-γ(0.03), Ly-δ(0.01), and so on. Occasionally f
values are slightly larger than 1.0. At the other extreme, values of 10−10 or even less
can also occur. The oscillator strengths must therefore be evaluated individually for
any given atom or molecule and depend strongly on the structural properties of the
atomic system.

The f values for different transitions in an atom or molecule are not indepen-
dent. In particular, a given atom cannot have an arbitrarily large number of strong
absorption or emission lines. If we sum f values for all possible transitions, between
all possible states in an atom or ion, we should obtain a number equal to the total
number of electrons in the atom. If the atom has strongly bound inner electrons, then
the sum should equal the number of the more weakly bound valence electrons, i.e.,
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electrons in the incompletely filled outer shell of an atom. This is the Thomas–Kuhn
sum rule (A� 63)*. For hydrogen the sum of all f values should equal unity.

PROBLEM 7–14. For many years astronomers believed that atoms could be
repelled by sunlight to a sufficient extent to account for the long comet tails we
observe.

For a small molecule having an oscillator strength f = 1 and a mass m =
5×10−23 g, calculate the ratio of solar radiative repulsion to gravitational attraction.
For comet tails the observed repulsive acceleration corresponds to an effective ratio
of the order 102 to 103. Assume that all of the sunlight is roughly evenly distributed
between 4×10−5 and 7×10−5 cm wavelengths. Does it appear likely that radiation
produces this repulsion?

Magnetohydrodynamic forces are currently thought primarily responsible for
the acceleration of tail constituents. In contrast, as seen from Problem 4–14, radia-
tion pressure does exert major forces on interplanetary dust grains and is responsible
for propelling grains away from the comet nucleus into a dust tail.

(6) Atomic systems that do not have a dipole moment can at best undergo tran-
sitions through quadrupole or magnetic dipole radiation. The transition probabili-
ties for such processes are of order (r/λ)2 smaller, where r is a typical dimension
of the atomic system. This is consistent with our finding in Section 6:13, because
r/λ ∼ rω/c ∼ υ/c. From (7–60) we also see that (rω/c)2 ∼ (1/137)2 for atoms.
In rough agreement with these estimates, we find that actual transition probabilities
for magnetic dipole and for quadrupole transitions are, respectively, of order 102 to
103 and 0.01 to 0.1 s−1 (He50).*

7:10 Blackbody Radiation

Two basic requirements need to be satisfied to obtain blackbody radiation. First, the
temperature of absorbing particles must be constant in the vicinity of the emitting
surface so that the photons emanating from the surface are in thermal equilibrium
at a well-defined temperature; second, for equilibrium to become established, we
require that the assembly of absorbing particles be large enough so that a succession
of absorptions and re-emissions occurs before energy escapes from the surface of
the assembly.

The number density n(E) of particles in an excited energy state E is given by
the Boltzmann factor (4–47) in terms of n0, the number density in a lower state:

n(E) = n0e
−E/kT . (7-62)

Let us look for the conditions under which the number of photons absorbed by the
assembly of particles just equals the number emitted. We may restrict our discussion
to transitions occurring between two specific energy states of the assembly. The
presence of other states will not alter the conclusions.
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A particle in the lower of the two states can absorb a photon and transit to the
upper energy state. In the upper state, it can either spontaneously emit a photon or
else be induced to emit one through stimulation by radiation of appropriate spec-
tral frequency. In equilibrium, the sum of the induced and spontaneous downward
transitions must equal the number of upward transitions. Let the probability of emit-
ting a photon of frequency ν in unit time interval be A(ν). Let the corresponding
probability of absorbing a photon be n(ν, T )cB(ν), where n(ν, T ) is the photon
density at temperature T and frequency ν , and B(ν) is a transition cross-section at
frequency ν ; then the probability for stimulated emission for a given excited particle
equals the probability for absorption by some other particle in the lower state. As
illustrated in Fig. 7.10, this is a consequence of time-reversal symmetry that holds

Fig. 7.10. In part (a) a photon of frequency ν stimulates the emission of a similar photon,
while the particle energy drops by an amount E = hν. In (b), the time-reversed process takes
place. The particle transits to the higher energy state E by absorbing a photon. As discussed
in the text, spontaneous emission of radiation from a singly excited radiation oscillator (c)
corresponds to the time-reversed process of absorption of energy (d) by a particle in its ground
state.

for all electromagnetic processes.
We are now ready to write the equation for equilibrium between absorption and

emission of photons in the frequency range dν around ν .

n(ν, T )B(ν)n0c dν = [A(ν) + n(ν, T )cB(ν)]n(E) dν . (7-63)

Combining this with equation (7–62) gives

n(ν, T ) dν =
A(ν)/[B(ν)c]
ehν/kT − 1

dν . (7-64)

If we consider spontaneous transitions to be stimulated by the ground state of the
radiation field discussed in Section 4:13, equation (4–72), we can set A(ν) equal to
the number density of radiation oscillators multiplied by the transition probability
per unit time B(ν). This is equivalent to stating that all emission processes are in-
duced, that the probability for emission is proportional to the sum of all populated
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radiation oscillator states, that the ground state of each oscillator (n = 1) is always
populated, and that some radiation oscillators containing what we have called pho-
tons are in higher states n. From the phase-space enumeration of the number density
of radiation oscillators at frequency ν (equation (4–65)) we then see that

A(ν) =
8πν2

c2
B(ν) . (7-65)

To relate these coefficients to earlier work, we note that (7–50) gives

I

hνab
=

64
3h
π4 e

2ν3
ab

c3
|rab|2 =

∫
A(ν) dν = Aab . (7-66)

Here, A(ν) is dimensionless, B(ν) is an area, and Aab has units of frequency, Hz.

PROBLEM 7–15. According to the correspondence principle, the transition proba-
bility should be related to the classical radiation intensity in the limit of large atomic
systems. In the ionized regions of interstellar space, transitions often occur between
highly excited states of atomic hydrogen (Ka59), (Hö65). Show that the correspon-
dence argument leads to

dE
dt

= hνAn,n−1 =
ω4e2r2n

3c3
, (7-67)

where rn is the Bohr radius in the nth state. Show that this gives

An,n−1 =
64π6mee

10

3c3h6n5
=

5.22× 109

n5
. (7-68)

PROBLEM 7–16. Show that B(ν) differs from σab(ν) in equation (7–59) only by
a factor of 2. Derive a relation between Aab and fab.

We see now, that

n(ν, T ) dν =
8πν2

c3
dν

ehν/kT − 1
. (7-69)

This corresponds to equation (4–72) for blackbody radiation and shows that the
blackbody process depends heavily on the concept of stimulated emission.

The process we have described is stable and self-regulating. If n(ν, T ) is lower
than the value given in equation (7–69), spontaneous emission will exceed the sum
of absorption and stimulated emission; the population of photons will then increase
until it reaches the value given by (7–69). Conversely, if n(ν) is too high, absorption
will lower it back to the equilibrium value.

We should still note that the Einstein coefficients A(ν) and B(ν) are sometimes
defined somewhat differently from the way we have — for example, in terms of
emitted or absorbed energy, rather than photons. Throughout this section we also
have taken the statistical weights gn, gn−1, discussed in Section 4:16 to be unity.
If this is not so, equations (7–62) and (7–63) must be modified but (7–69) remains
unaltered.
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7:11 Stimulated Emission and Cosmic Masers

Let us ask what would happen if the relationship between n0 and n(E) were not
given by the Boltzmann relation (7–62). For small deviations from thermal equilib-
rium the photon bath would tend to cause n0 and n(E) to come back to equilibrium.
But if the number of particles in the upper state starts to exceed the number in the
lower state, then an entirely different process comes into play. Clearly, this situation
can never come into existence under conditions of thermal equilibrium, because
exp(−E/kT ) is always less than unity for positive values of E and T . A population
inversion, n(E) > n0, can therefore only be brought about by an artificial process.
Sometimes we describe a population inversion as a state of negative temperature,
for then the exponential term in equation (7–62) can exceed unity. However, this is
primarily a descriptive device and does not define any physical process.

Under population inversion, the probability for stimulated emission always ex-
ceeds the probability of absorption. In any given transition, a radiation oscillator is
therefore more likely to rise to a higher energy state than to a lower one. As the
radiation propagates through the assembly of particles, it is amplified. Moreover,
because the emitted photons have the same characteristics as the stimulating pho-
tons, the amplified radiation is coherent. In the laboratory the process described here
corresponds to a maser. On a cosmic scale we therefore talk about maser processes.
A maser that operates at optical frequencies is called a laser.

Cosmic maser action is maintained provided that the pumping of energy into
the assembly of particles — the rate of excitation of the upper levels — keeps
up with the downward spontaneous and induced transitions. The density of par-
ticles in the upper energy state n(E) must remain greater than that in the lower
state n0.

The pumping process can take several forms. We might have a very energetic
photon excite particles into an energy state E ′ from which the transition probability
to the ground state is low and the probability for transition to a metastable state with
energy E is high. This type of maser is called a three-level maser. Another means
for producing a population inversion can come about chemically. Suppose that a
molecule is formed in the interaction of two atoms and that it is formed in a high
energy state. If the formation rate is sufficiently high, a population inversion can be
maintained and maser action can set in.

In select circumstellar clouds and interstellar regions, OH radicals and/or water
vapor molecules H2O have certain energy states pumped up to population inversion.
It is curious that different regions of space show a variety of different OH levels
inverted. We therefore seem to have a number of different pumping mechanisms
that evidently come into play under different conditions (Me97).

Cosmic masers emit extremely intense coherent radiation. Because all induced
photons travel along the same direction, they appear to come from an improbably
compact region (Fig. 7.11). The radiation reaching our telescopes arrives contained
in a well-defined, extremely small, solid angle.

The smallness of the observed solid angle is misleading. It may not represent
the actual size of the cloud, but might represent only the dimension of the region in
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Fig. 7.11. Maser emission. The observer may not see the entire cloud of particles (dashed line)
in coherent radiation. He may see only that portion in which the coherent wave originated.
(See text.)

which the coherent radiation originated. This volume can be seen, from phase-space
arguments, to equal h3/p3, or c3/ν3 = λ3 where λ is the wavelength of light.

Several types of masers are known. There are OH and H2O masers whose posi-
tions coincide with those of Mira variable stars. Assuming that it emits isotropically,
such a maser’s luminosity is roughly 10−4L�. It shows variability, over periods of
months, synchronized with the star’s pulsations. We also recognize OH and H2O
masers associated with dust clouds in or near HII regions. The H2O masers can
have isotropic luminosities up to ∼L�, and show variability over periods of weeks.
A number of other molecules such as SiO, also form interstellar masers. Some types
of masers may be pumped by a strong infrared radiation flux. For other masers the
pumping mechanism is not known. Megamasers, extremely powerful emitting re-
gions, are also found around nuclei of active galaxies. A water vapor megamaser
with isotropic luminosity as high as 23, 000L� has been detected in an AGN at red
shift z = 0.66 (Ba05a).

One characteristic of the interstellar masers is that the radiation is highly po-
larized. As already explained, stimulated emission always involves formation of
photons with the same sense of polarization as the stimulating photon. This means
that all the photons derived from a given progenitor will have identical polarization
and the radiation is 100% polarized.

To realize how quickly the intensity of a beam increases as it traverses a cloud
in which the population is inverted, we note that for a gain g per interaction, and for
an optical depth n in the cloud, the outgoing beam will have an intensity of

N = gn.

Suppose that the gain is 1.1 — that is, the probability for stimulated emission is 10%
higher than for absorption. After 100 mean free paths, the total number of photons
in the beam will be 104. After 200 such successive absorption–emission processes,
the number would have reached 108, and so on. An emitting region, therefore, need
not have an opacity in excess of several hundred in order to emit extremely bright
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maser radiation. Maser radiation is concentrated into a very narrow spectral band-
width and in this narrow spectral range it often has the equivalent brightness of a
fantastically hot body, with T up to 6 × 1013 K (Ra71)*. This temperature can be
considerably higher than that of the brightest synchrotron sources mentioned at the
end of Section 6:22, because no free electrons are involved and hence no inverse
Compton scattering to limit the brightness.

7:12 Stellar Opacity

In the interior of a star, where matter is highly ionized, the interaction of photons
with ions often determines the rate at which energy is transported through the star.
We will be interested in four distinct types of interaction of radiation with matter: (a)
Thomson or Compton scattering of radiation by free electrons (Sections 6:15, 6:22),
(b) free–free absorption or emission (Section 6:18), (c) bound–free interactions in
which an electron undergoes a transition between a bound and a free state, and (d)
bound–bound transitions, as in the excitation or de-excitation of atoms or ions by
photons.

In order to compute the mean opacity of stellar matter we proceed in three steps.
First, we need to know the interaction cross-section of radiation with matter for each
of the four processes. This gives us the opacity due to the individual interactions
through a simple proportionality. However, the total opacity of stellar matter is not
just the sum of the individual opacities. A suitably chosen mean opacity must be
computed, properly weighting the individual contributions made by processes (a) to
(d) and also taking induced emission into account. Stimulated emission decreases
the opacity because the energy transport rate is increased.

The contributions of the various processes to the opacity depend strongly on the
temperature. In the cool surface layers of a star, where atoms are only partially ion-
ized, the opacity may be dominated by bound–bound and bound–free transitions.
At high temperatures where ionization may be nearly complete, the opacity due
to free–free interactions becomes dominant. At the highest temperatures where in-
duced emission reduces the opacity due to factors (b) through (d), electron scattering
plays a dominant role, because Thomson scattering is frequency independent.

We will let extinction denote the amount of radiation eliminated from a beam of
light through absorption or scattering. We can then define the extinction /E of a slab
of matter of unit thickness through which radiation passes at normal incidence as

/E ≡ κρ, (7-70)

where the opacity of the medium is denoted by the symbol κ and ρ is its density. The
opacity for radiation at a particular spectral frequency ν is denoted by κ(ν). Sum-
ming over the opacity contributions of processes (a) to (d) at any given frequency,
we can write a total opacity κ∗(ν) as

κ∗(ν) = κe + [κff(ν) + κbf(ν) + κbb(ν)][1− e−hν/kT ] , (7-71)
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where the subscripts, respectively, represent electron scattering and free–free, bound–
free, and bound–bound transitions. κ∗ is the true opacity with induced emission
taken into account.

The proper averaging of κ∗(ν) over the entire range of frequencies depends on
our purpose. In the case of stellar energy transport, which will be discussed in Chap-
ter 8, we need to know the mean free path of the radiation as it travels through the
star. Since this is inversely proportional to the opacity, we need to average 1/κ∗(ν)
over the entire spectral range. This average, however, must still take into consider-
ation that the radiation spectrum is not flat and that the energy transport rate will
therefore also depend on the radiation spectrum defined by the local temperature
at any given point of the star. We will consider this later in Chapter 8. For now,
we show only how κ∗(ν) depends on the individual opacities, and how these are
determined by atomic interaction cross-sections for radiation.

(a) Scattering by Free Electrons

At temperatures sufficiently low for photon energies to lie well beneath the elec-
tron rest–mass energy, that is, T  mc2k−1 ∼ 1010 K, relativistic effects can be
neglected and the scattering cross-section is simply the Thomson cross-section

σe =
8π
3

(
e2

mc2

)2

= 6.65× 10−25 cm2 . (6–103)

This is frequency independent. At the centers of highly dense stellar cores the
temperature may become large enough so that the Klein–Nishina cross-section for
Compton scattering (6–169) gives a more accurate representation, and a frequency
dependence then does exist. At the mean density of the Sun, ρ ∼ 1 g cm−3 , the
number of electrons per cubic centimeter is of order 1024, so that the mean free path
of radiation between electron scattering events is only of the order of 1 cm. If ne is
the number of electrons in unit volume the opacity for scattering is given by

κeρ = σene . (7-72)

(b) Free–Free Interactions

This process was discussed for tenuous plasmas in Section 6:18. The same theory
also describes the denser plasmas inside stars. We note that the classical expression
(6–137) must unwittingly contain the induced emission factor [1− exp(−hν/kT )]
which at long wavelengths approaches hν/kT . If we, therefore, divide (6–137) by
this factor and also by the number densities, we obtain an absorption coefficient per
ion for unit density of ions and electrons. It has the form

αff =
8

(6π)1/2

Z2e6

cm2hν3υ
ln[. . .] , (7-73)
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where we have set υ = (3kT/m)1/2 and have assumed that the argument of the
logarithmic function has the same character as in (6–137). The actual, quantum
mechanically correct, result is (To47)

αff =
4πe6

3
√

3chm2

Z2

υ

gff

ν3
, (7-74)

where Z is the effective charge of the ion considered and gff is called the Gaunt
factor. It contains the logarithm in (6–137) and is of order unity for most cases of
interest.

(c) Bound–Free Absorption

Quantum mechanically, one can also compute an absorption coefficient for bound–
free transitions, when only one electron per atom is active in absorbing radiation.
This has the form (C�68)*

αbf =
64π4me10Z4

3
√

3ch6n5

gbf

ν3
, (7-75)

where n is the principal quantum number and the Gaunt factor, gbf , again is of
order unity and only mildly dependent on n and ν . This equation only holds when
the photon energy exceeds the ionization energy χn in the nth state

hν > χn ∼ 2π2me4Z2

n2h2
. (7-76)

(d) Bound–Bound Transitions

These have cross-sections already discussed in Section 7:9. They depend strongly
on the actual structure of the individual atom, and do not give rise to a continuum
absorption cross-section as do the factors (a) to (c). As discussed in the next section,
these cross-sections play an important role in determining the radiative transfer rate
through a stellar atmosphere; they do not play a significant role in the stellar interior,
where processes (a), (b), and (c) dominate radiative transfer rates (Chapter 8).

The opacity of low-density ionized matter also is a measure of the radiant power
emitted from unit volume at given temperature T . If the chemical composition of
the plasma corresponds to the cosmic abundance (Table 1.1), Fig. 7.12 shows the
radiated power; it assumes that self-absorption by the plasma can be neglected. At
high densities where that assumption no longer is valid the plasma would radiate
with a brightness characteristic of any blackbody at temperature T .

For these low-density plasmas, forbidden line emission dominates. Forbidden
transitions are those for which dipole (and sometimes higher multipole) radiative
transitions are not allowed by the selection rules. When a plasma is at sufficiently
low densities so that collisions are rare, a forbidden radiative transition with a cor-
respondingly low transition probability may imply a metastable lifetime of seconds
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Fig. 7.12. Radiated power for unit volume of a low-density ionized gas in collisional equi-
librium. The power indicated is for electron and hydrogen concentrations of ne = nH =
1 cm−3. nH represents the total number density for hydrogen atoms and protons. To obtain
the total power radiated from unit volume, the ordinate would have to be multiplied by nenH .
The plasma considered has a chemical composition typical of cosmic sources (see Table 1.1)
(after D. P. Cox and E. Daltabuit (Co71a)).

or years for the excited metastable atom. Because collisions are rare in the low-
density medium, these transitions may take place nevertheless. As the gas density
increases, collisions not only excite higher energy states, they also start dominating
the de-excitation of atoms, whose energy is transferred to the colliding particles,
and the forbidden lines disappear. If we know the lifetimes of a number of differ-
ent metastable atoms in a hot interstellar nebula we can often conclude a great deal
about temperature and density conditions by studying the forbidden lines.

In stars and dense stellar atmospheres collisions between atoms and ions are
frequent and no forbidden lines are expected; but even the Earth’s upper atmosphere
is sufficiently tenuous that forbidden oxygen lines appear in auroral spectra.

7:13 Chemical Composition of Stellar Atmospheres — The
Radiative Transfer Problem

In order to determine the abundance of various chemical elements in the atmo-
spheres of stars we must be able to correctly interpret their absorption and emission
spectra. This is complicated and depends on the correct choice of a model of the
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stellar atmosphere. By this we mean that we have to choose an effective tempera-
ture Te, a value for the star’s surface gravity, and a parameter ξt representative of
the turbulent velocity in the atmosphere.

In interpreting individual Fraunhofer lines — absorption lines — in terms of the
number density ni of a given atom or ion in an excited state i, we find that the theory
always yields expressions proportional to nifg, where f is the oscillator strength of
the transition and g represents the statistical weight of the lower energy level — the
level from which the transition takes place. For hydrogen, helium, and other one-
and two-electron ions, the f values can be quantum mechanically computed. For
such complex spectra as those of iron, however, f values must be obtained through
laboratory experiments.

Another important parameter required for an abundance determination when the
absorption line is very strong is the damping constant γ, which represents the broad-
ening of the line due to the intrinsically finite lifetime of the states and due to the
shortening of this life through collisions.

We can define an equivalent width Wλ of a Fraunhofer line. It represents the
total energy absorbed in this line, divided by the energy per unit wavelength emitted
by the star in its continuum spectrum around wavelength λ. Figure 7.13 shows this
relationship.

For very weak lines the amount of radiation absorbed, and hence the equivalent
width, depends linearly on the abundance ni and on the product gfni . As Wλ ap-
proaches the Doppler width due to thermal and turbulent motion, the absorption line
becomes saturated and the curve of growth (Fig. 7.14), which represents the growth

Fig. 7.13. Profile and equivalent width Wλ of a Fraunhofer line. The intensity of the contin-
uum has been set equal to 1. The area under the line profile is equal to that of a completely
“black” strip in the spectrum of width Wλ, usually measured in milliangstroms (after A.
Unsöld (Un69)).
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Fig. 7.14. Curve of growth showing increasing absorption with increasing amount of material
traversed in a stellar atmosphere. The equivalent width Wλ is plotted against nigf where ni

is the abundance of an element in a particular energy state, f is the oscillator strength of the
Fraunhofer line, and g is the statistical weight of the absorbing state (after A. Unsöld (Un69)).

of Wλ with increasing material traversed, flattens out. For still stronger lines ab-
sorption in the wings of the lines becomes possible. Here the parameter γ (equation
(7–51)) determines the amount of radiation that is absorbed.

In determining the abundance of various chemical elements in stars we have to
keep in mind that the population of different atomic or ionic energy states depends
quite critically on the atmospheric temperature and also to some extent on the sur-
face gravity that determines the pressure. The Boltzmann and Saha equations are
applied in these computations, on the assumption that the atmosphere is in thermo-
dynamic equilibrium. Often, the f values for a given transition are not well enough
understood, but in some instances we can at least obtain an idea of the relative abun-
dance of an element in a given star compared to its abundance in the Sun.

To relate quantitatively the total flux from a star or nebula to its chemical and
physical properties we proceed in the following way. The intensity I(ν) of radiation
at spectral frequency ν changes as it crosses a layer of matter of thickness dx. There
is a loss of intensity through absorption and a corresponding gain through emission.
For normal incidence on the layer the total intensity change is

dI(ν)
dx

= −κ(ν)ρI(ν) + j(ν)ρ , (7-77)

where the first term represents extinction (see equation (7–70)) and j(ν) is the spon-
taneous emission coefficient, whose units are erg g−1 s−1 sterad−1 Hz−1. The func-
tion j(ν) may strongly depend on the radiation intensity itself as in the case of strong
scattering or induced emission. When j(ν) is entirely due to induced emission the
opacity κ∗(ν) in (7–71) is the difference between κ(ν) and j(ν)/I(ν).

Equation (7–77) can be rewritten as
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1
ρκ(ν)

dI(ν)
dx

= −I(ν) + J(ν) , where J(ν) ≡ j(ν)/κ(ν) . (7-78)

J(ν) is called the source function and (7–78) is the transfer equation. Sometimes
one sees the expression j(ν)ρ in (7–77) written simply as j(ν) with correspondingly
changed units erg cm−3 s−1 sterad−1 Hz−1 (Ry71*), (Ch50*). The definition of the
source function in (7–78), however, remains unchanged in either notation.

In Sections 8:7 and 8:8 we will discuss the transfer of radiation from the center of
a star to its periphery. It will then be necessary to consider not only normal incidence
on a layer, but also incidence at other azimuthal angles θ. For arbitrary angles of
incidence (θ, φ) we can express the energy density of radiation as∫

ρ(ν) dν =
1
c

∫ ∫
I(ν, θ, φ) dΩ dν , (7-79)

where I(ν, θ, φ) is the specific intensity or brightness in the direction (θ, φ). Its units
are erg cm−2 s−1 sr−1 Hz−1.

The integrated flux, measured in units of erg cm−2 s−1, depends on the intensity
as

F =
∫
F (ν) dν =

∫ ∫
I(ν, θ, φ) cos θ dΩ dν , (7-80)

where F (ν) is called the net flux, whose units are erg cm−2 s−1 Hz−1. If we con-
sider I(ν, θ, φ) to be a function that specifies the angular distribution of radiation
at frequency ν , then ρ(ν) and F (ν) involve the zeroth and first moments of this
function. The second moment leads to the radiation pressure

P =
∫
P (ν) dν =

1
c

∫ ∫
I(ν, θ, φ) cos2 θ dΩ dν , (7-81)

as follows from the discussion of Sections 4:5 and 4:7. The radiation pressure is
important in the theory of stellar structure, where hydrostatic equilibrium requires a
balance between gravitational forces and pressure gradients. In some stages of stel-
lar evolution, notably in stages leading to planetary nebulae, these gradients depend
more strongly on radiant than on kinetic gas pressures. Radiant pressures also play
a role in determining the atmospheric structure particularly of giant and supergiant
stars.

Let us still describe the factors that determine the shape of a spectral absorp-
tion or emission line seen in a star’s atmosphere. We have already discussed fac-
tors that lead to broadening of a line. However, we still should mention that for
gas at a given temperature T , the emission line intensity I(ν) will normally not
exceed the blackbody intensity at that temperature and at frequency ν . Stimu-
lated and spontaneous emission will therefore tend to increase the brightness of
an emission line in its wings, as radiation is transferred through the star’s atmo-
sphere. The center of the line may already have become saturated — reached its
peak intensity — close to the surface of the star. This effect will lead to emis-
sion line broadening. Similarly, absorption lines become broadened on passage
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through the cool outer portions of a star’s atmosphere because absorption in the
wings becomes increasingly probable as more matter is traversed. We talk about
a curve of growth for a spectral line. By this we mean a plot of the equiva-
lent width Wλ (Fig. 7.13) against the product nif — the number of atoms ni

in a column of unit area through the atmosphere, the column density, and the
oscillator strength of the transition f . Sometimes, as in Fig. 7.14, the curve of
growth is a plot of Wλ not against nif but against some other specified func-
tion, in this case lognigf , where g is the statistical weight of the absorbing
state.

7:14 A Gravitational Quantum Effect

While we know that the behavior of electrons in an electromagnetic field is respon-
sible for the quantized structure of atoms, we now ask whether particles in a gravi-
tational field would also have quantized states. Gravitational experiments to detect
quantization are difficult because the gravitational attraction between an electron
and a proton is ∼1040 times weaker than the electrostatic force between them, so
that even the dipole–dipole interactions between atoms can completely mask any
gravitational effects. Neutrons, however, carry no electric charge, and experiments
show their dipole moments, if not zero, to be lower than 10−25 e cm – less than
10−12 electron charges across a neutron diameter of 10−13 cm. These properties
make them ideal for testing quantum effects of gravity.

Quite generally, a neutron trapped between two reflecting surfaces should ex-
hibit quantized energy states and obey all the rules of quantum mechanics outlined
in Section 7:2. In the Earth gravitational field, we could place these reflecting sur-
faces horizontally. If the plates initially are touching, and we slowly move them
apart to where the de Broglie wavelength λ of a low-energy neutron is just twice the
separation ∆, a standing wave would be set up with nodes at both upper and lower
plates. The neutron momentum would then be p = h/λ, as discussed in Section 7:2.
By “low energy”, we mean a neutron that has just enough kinetic energy to reach the
upper plate against the gravitational pull, namely, E = mng∆ = mngλ/2, where
g = 980 cm s−2 is the surface gravity on Earth. We can now write

E =
p2

2mn
=

h2

2λ2mn
=
mngλ

2
and λ = 2∆ =

(
h2

m2
ng

)1/3

. (7-82)

This corresponds to a separation between plates of only ∼1.3 × 10−3 cm, a very
small height indeed, but the experiment has been carried out with a beam of cold
neutrons projected almost horizontally between two plates. Only the bottom plate
in this experiment was reflecting. The top plate was an absorber; but because the
low energy neutrons naturally reached only a limited height in Earth’s gravitational
field, the top plate was needed solely to weed out excessively energetic neutrons.
Initially, as the separation between the two plates was gradually increased from zero,
the almost horizontally directed beam was totally blocked from transmission. Only
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when a separation of order 1.5×10−3 cm was reached, could the first neutrons in the
beam pass through. They passed horizontally between the two plates by rebounding
several times off the bottom plate, reaching a height ∆ before falling back for the
next bounce. Higher quantized transmission levels were observed as ∆ was further
increased, though these were less reliably detected in what already was a technically
difficult experiment (Ne02). The experiment, however, clearly showed that energy
states in a gravitational field are quantized.

Answers to Problems

7–1. From the virial theorem (3–85) and in analogy to equation (7–2),

En = −p
2
n

2µ
= −n

2
�
2

2r2nµ
= −Ze

2

2rn
.

From the last two equalities we can solve for the Bohr radius rn and obtain the
energy,

En = −Z
2e4µ

2n2�2
.

Using (7–1), together with the values of pn and rn just derived,

the number of states =
phase-space volume
volume of unit cell

=
16π2n2

�
3

�3
= 16π2n2 .

7–2.

r ∼ �√
p2

where
p2

2M
= V0 − Eb .

7–3. For rigid rotation at angular frequency ω,

E =
1
2

∑
i

miυ
2
i , L =

∑
miυiri = 2E/ω ,

and I =
∑

mir
2
i ... E =

Iω2

2
, L = Iω, and E =

ωL

2
=
L2

2I
.

Because angular momentum is quantized, δL = � and δE = (L/I)δL = ω�. Since
L = �{J(J + 1)}1/2,

EJ =
L2

2I
=

�
2(J + 1)J

2I
and δE = EJ − EJ−1 = �

2 J

I
.

For rapidly rotating massive objects �J ∼ L and δE = LδL/I.

7–4. 1
2
Iω2 = 3

2
kT , and T = 100 K. If the molecule is roughly spherical,
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I ∼ 2
5
mr2 ∼ 2

5
(10−23 g)(2 × 10−8cm)2 = 1.6 × 10−39 g cm2.

Hence ω ∼ 5 × 1012 s−1, ν =
ω

2π
∼ 8 × 1011 Hz, and λ ∼ 3

8
mm.

7–5. From Section 4:15 we see that the excitation probability is proportional to a
Boltzmann factor. Its form is

exp
(
−�

2J(J + 1)
2IkT

)
,

which is small for large J and lowT . For the molecule of Problem 7–4, the exponent
is of order −(0.025)J(J + 1), so that rotational states far above J = 6 are unlikely
to be excited.

7–6. For two rotational degrees of freedom (Section 4:19),

E =
1
2
Iω2 = kT ∼ 1.4 × 10−14 erg, and I =

2
5
(10−15)(10−10) g cm2 .

... ω ∼ 6 × 105 s−1, and ν ∼ 105 Hz, which is slightly below the AM radio band.

7–7.

δEgrav = 2�ω, δEneutrino =
1
2

�ω ,

and results of Problem 7–3 apply. For electromagnetic radiation the emitted fre-
quency would lie far below the interstellar plasma frequency (6–55) and the radia-
tion would be rapidly absorbed by ambient gas.

7–8. Equation (4–56) gives the velocity distribution function

f(υr) =
( m

2πkT

)3/2

exp
(
−mυ

2
r

2kT

)
,

and (7–28) gives

υr =
∆ω

ω0
c .

Combining these yields

I(ω) = I0 exp
(
−mc

2∆ω2

2ω2
0kT

)
.

From Problem 4–27

〈υ2
r 〉 =

kT

m
=

〈∆ω2〉
ω2

0

c2 , so that T =
m〈∆ω2〉
kω2

0

c2 .

7–9. With δ from (7–30) and γc = nσ〈υ〉 = nσ(3kT/m)1/2, we obtain
γc/δ = (nσc/ω0)[3/(2 ln2)]1/2.
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7–10. Making use of the definite integral∫ ∞

−∞

(γ/2) dω
(ω − ωab)2 + (γ/2)2

= π

in equation (7–59) yields

σ =
∫ ∞

−∞
σab(ω) dω =

2π2e2

mc
fab .

7–11. Equation (7–59) shows that at maximum

σmax =
2πe2

mc
fab

1
γ/2

and (7–51) gives
γ

2
=
e2ω2

ab

3c3m
,

where ωab = 2πc/λ, so that

... σmax =
3
2
λ2

π
fab .

7–12. The fraction we are seeking is given by the ratio of the integrals I1 and I2 :

I1 =
Iab

π

∫ ωab+γ/2

ωab−γ/2

(γ/2) dω
(ω − ωab)2 + (γ/2)2

=
Iab

2
,

I2 =
Iab

π

∫ ∞

−∞

(γ/2) dω
(ω − ωab)2 + (γ/2)2

= Iab ,

I1/I2 = 1/2 .

7–13. From (7–51) and the definition of ωab,

γ =
2
3
e2

mc3
ω2

ab ∼
2
3
e2

mc3
4π2c2

λ2
∼ 1

5λ2
.

7–14. As Problem 7–12 shows, half the absorbed light lies within a bandwidth γ.
Hence, effectively all the light absorbed lies within a bandwidth 2γ. If the total
bandwidth of light from the Sun resides in a bandwidth∆ = (c/λmin)−(c/λmax),
the absorbed fraction is 2γ/∆. For a molecule with absorption cross-section σ(ω),
the radiative repulsion from the Sun becomes Fr = 2L�γσ(ω)/4πR2c∆, while the
gravitational attraction is Fg = MmG/R2. This results in

Fr

Fg
=

L�γσ(ω)
2πMmGc∆

.
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7–15. By (7–47) and (7–66)

I =
dE
dt

=
e2ω4〈r2〉

3c3
= �ωAn,n−1 ,

and from (7–5)

En = �ω =
µ

2
e4

�2

{
1

(n− 1)2
− 1
n2

}
.

For n large ω ∼ µe4/�3n3, and from (7–2) and (7–5), r2n = (n2
�
2/µe2)2 to obtain

An,n−1 = 64π6µe10/3c3n5h6.

7–16. In equations (7–63) and (7–65) we called the number of photons of a given
polarization absorbed per particle per second n(ν, T )cB(ν). In defining σ, we talked
about photons of either polarization, so that σ(ν) = 2B(ν).

I

hν
=
∫
A(ν) dν = Aab, (7–66)

I(ω) =
Iab

π

γ/2
(ω − ωab)2 + (γ/2)2

, (7–43)

σ(ω) =
2πe2

mc
fab

γ/2
(ω − ωab)2 + (γ/2)2

. (7–59)

... A(ω) =
1
π

Aab(γ/2)
(ω − ωab)2 + (γ/2)2

, A(ν) =
8πν2

c2
B(ν) .

... A(ω) =
2ω2

πc2
B(ω) .

=
ω2

πc2
σ(ω) ,

... Aab =
8π3e2ν2

mc3
fab .



8 Stars

8:1 Observations

We do not really know how stars are formed, nor just how they die. But we think
we understand the structure of the most commonly found stars and the mechanisms
that generate the energy we see as starlight.

How sure can we be of this understanding? How correct is the theory of stellar
structure? Such questions are difficult to answer. Many of the most important stellar
processes take place deep in a star’s interior, whereas the observations available to
us mainly register surface characteristics. Conditions in the star’s central regions are
inferred, and our evidence is indirect.

Generally, the merit of a theory is judged by the number of unrelated observa-
tions it can explain; when the observations are indirect, a larger than usual body of
data is desirable. For the theory of stellar structure and evolution we have several
different classes of observations:

(a) We have measurements on the masses of a variety of stellar types. However,
the number of precision measurements is small. Each such measurement involves
the detailed analysis of a stellar binary system (Section 3:5), and binary stars may
be atypical.

(b) We can determine the luminosity of a star quite accurately provided the star is
near the Sun where its distance is easily measured and interstellar extinction is negli-
gible. In the past few decades, bolometric magnitudes have become well established
as satellite observations have increasingly provided far-infrared, far-ultraviolet, and
X-ray fluxes. These observations suggest frequent sizeable deviations from black-
body behavior.

(c) The surface temperature of stars can be obtained in three different ways.
(i) We can define a color temperature, using equation (4–77),
(ii) We can determine an effective temperature if the star’s angular diameter

is known from (4–78),
(iii) We can observe the strengths of spectral lines representing transitions

between various excited atomic states. Because the relative population of excited
states is governed by the (temperature-dependent) Boltzmann factor, the temper-
ature can be computed directly, provided the relevant transition probabilities are
known. These probabilities can be calculated or, preferably, measured in the labora-
tory.
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These three independent techniques yield a satisfactory estimate of stellar sur-
face temperature, but the temperature in the interior of stars remains unobserved.

(d) We can determine the angular diameter of a star by interferometric means
(Section 4:12). Occultation of a star by the Moon or by a planet can also be used,
with accurate timing giving the angular diameter in terms of the occulting body’s
motion across the star’s surface (Ev96). Eclipse data from binaries can also yield
stellar diameters.

The luminosity, diameter, and surface temperature of a star are related. They
involve no more than two independent parameters, provided the star’s spectrum is
sufficiently simple to allow the assignment of a single representative temperature.

(e) The chemical makeup of stars is spectroscopically determined. The abun-
dance of the different elements obtained in this way refers only to the surface layers
of the stars. Using current observational techniques, we cannot directly verify con-
jectures about the composition inside a star.

We find that the abundance of elements on the surfaces of stars varies. Normally,
hydrogen is by far the most abundant constituent. By mass its concentration lies
between 68 and 76%. Helium, the next most abundant element, has a concentration
of 24 to 30% by weight. Oxygen, carbon, nitrogen, and neon follow in order of
decreasing abundance; together they account for <0.01 to 2% of the total mass.
Magnesium, silicon, iron, and sulfur are next; each of these has an approximate
abundance of the order of one part per thousand, by mass. Stars that appear to have
formed long ago, when the Galaxy was young, have the lowest abundances of heavy
elements.

One task of a theory of stellar evolution must be the correct prediction of the
abundance of chemical elements in different types of stars. The interior of stars is
the most plausible place for heavier elements to be formed from the relatively pure
hydrogen–helium mixture that was the main constituent of the Galaxy at the time
the earliest stars formed in globular clusters.

The relative abundances of the various isotopes of different elements are repeat-
edly found in similar ratios in the Earth’s crust, in meteorite fragments, and in the
interstellar medium and many but not all stars in our neighborhood of the Galaxy.
The similarity of these ratios cannot be accidental and should be explained by a
comprehensive theory of stellar evolution.

(f) For a limited number of stars we have measurements on the surface magnetic
fields. Peculiar stars of spectral type A have fields of order 104 G. White dwarfs
have fields B ∼ 105 to 108 G. Neutron stars generally have magnetic field strengths
around 1012 G, but the magnetars among them have field strengths ranging up to
∼1015 G. Current theories of stellar evolution have not yet incorporated magnetic
effects to any great extent.

(g) Although projection effects preclude an analysis of the rotational velocity of
individual stars, statistical studies indicate that young O and B stars have extremely
high rotational velocities, and that these velocities progressively diminish with spec-
tral type from O to M (see Table A.4). We are only just starting to consider effects
of rotation on stellar evolution.
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(h) Similarly, a statistical study of stellar velocities in the Galaxy (see Table
A.6) tells us that the history of stars of different spectral types must be dissimilar.
Presumably these stars originated at different epochs in the Galaxy’s evolution. A
final theory of stellar evolution will have to consider such age differences for stars,
and will have to take into account the extent to which the chemical composition of
the interstellar gas from which stars are formed has changed as the Galaxy aged.

(i) For a number of different stars, notably K-giants, O-stars, and nuclei of plan-
etary nebulae, we now have data on mass loss. For the first two of these spectral
types, the information comes from spectral measurements of gas outflow. In the
case of planetary nebulae, we actually see the accumulation of ejected gas. Such ev-
idence is important both for studying unstable states of stars, and for understanding
chemical changes in the interstellar medium when material which has undergone
nuclear transformation in stars is returned to interstellar space. Nova and supernova
ejecta also yield important data in this respect. Unfortunately we do not as yet have
enough information to judge the extent to which violent but infrequent explosive
events contribute to the cycling of matter between stars and interstellar space. Nor
do we know the fraction of explosively ejected matter escaping a galaxy.

(j) For the Sun, we also have data on internal rotation rates from helioseismology
and oblateness studies (Di86); and we know the rate of neutrino emission (Sc02).
For other stars such data are completely lacking. Similarly, we have information on
solar cosmic-ray and X-ray emission; X-ray data by now also exist for an appre-
ciable number of other stars. In each of these cases, however, it is unclear how the
circumstellar regions from which this radiation reaches us are affected by conditions
prevailing inside the stars.

(k) Finally, a very important body of statistical information is contained in the
Hertzsprung–Russell and color-magnitude diagrams (Figs. A.2 and 1.3 to 1.7).

The confinement of stars to quite narrow ranges on an H–R diagram sets a con-
dition that must be met by any theory of stellar structure and evolution. The theory
must prohibit the appearance of stars in empty regions, and account for the relative
density of stars in populated portions of the H–R diagram. An acceptable theory
must explain the significance of the main sequence, the existence of the red-giant
and horizontal branches, the variable turn-off point that has the main sequence join-
ing the red-giant branch at different locations in different groups of stars, and other
features.

Stellar masses and diameters, the Hertzsprung–Russell diagrams available for a
large number of different stellar groups and populations, and the tables of chemical
abundances compiled for many astronomical objects, provide a wealth of observa-
tional detail against which to gauge the merit of our theories.

The purpose of the present chapter is to outline the main ideas involved in cur-
rent theories of stellar structure and to show the extent to which these theories fit
observations (Bu57)*.
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8:2 Sources of Stellar Energy

We have shown how one determines the overall characteristics of stars — their radii,
masses, and luminosities. But what is the source of energy that heats a star and
replenishes the energy it loses in radiated starlight?

Before this problems can be discussed, we may want to answer a somewhat
different question. How much energy does a typical star radiate away in the course
of its life? Here we may want to know the average luminosity of the star and its age
at death — whatever form that death might take. It is not easy to decide how old a
given star is, because stellar ages are far greater than the few hundred years during
which reliable astronomical observations have been carried out; but two pieces of
information are useful.

First, stars like the Sun occupy positions on the lower main sequence of the
Hertzsprung–Russell diagram, and are found not to have noticeably changed either
in brightness or in color since photographic techniques became well established
around the turn of the nineteenth to twentieth century.

Second, the Sun must be older than the Earth which, as judged from the abun-
dance of the radioactive uranium isotope 238U and its decay products is ∼4.7 Gyr
old. From paleontological evidence, we surmise that the temperature of the Sun can-
not have varied a great deal in the past ∼1.9× 109 yr during which life is definitely
known to have existed on Earth (Mo05). Fossil remains that we find today indicate
that liquid water must have been present on Earth during this entire interval. Other
indicators suggest that life may have existed significantly earlier (Section 14:4). Had
the Sun been somewhat cooler or hotter during these epochs the oceans might have
frozen or evaporated away, and the observed early forms of life would have died
out.

We may therefore assume that, to rough approximation, the Sun has radiated at
its present rate for ∼5 Gyr. Because its luminosity is L� = 4 × 1033 erg s−1, the
total radiated energy emitted thus far is ∼6 × 1050 erg. Because the solar mass is
M� = 2 × 1033 g, this amounts to an energy-to-mass ratio of 3 × 1017 erg g−1.

Could this much energy have been provided by chemical reactions, or else
through slow gravitational contraction which, as seen from equation (4–141), yields
radiant energy of the order of the potential energy released?

Neither of these sources turns out to be adequate. The energy yield of chemi-
cal reactions, including the burning of fossil fuels, normally does not exceed 100
kilocalories, or ∼4 × 1012 erg g−1. If the Sun had depended on chemical sources it
could have continued to shine no more than ∼5 × 104 yr, a factor of 105 too short.

If we assume, for purposes of a rough estimate, that the Sun has the same density
throughout, the total potential energy released to date would be

V = −
∫ R�

0

(
4π
3

)
ρr3

G

r
(4πρr2) dr = −3

5
M2�G
R�

, (8-1)

which amounts to ∼2 × 1048 erg. This corresponds to 1015 erg g−1, still two or
three orders of magnitude short of the required energy. Even a hundredfold density
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increase at the center of the star could not change this result significantly. We cannot
rule out, without further evidence, a much denser central core with ρ ∼ 1015 g cm−3

and radius R ∼ 105 cm. Approximately the right amount of gravitational energy
would then be available. But whereas this source of energy seems to be important
for very compact stars, it appears to play no significant role in normal stars.

The only remaining source of energy involves nuclear reactions. The high abun-
dance of hydrogen and helium in the Universe suggest that hydrogen may be trans-
muted into helium at the centers of stars. We note that the mass difference between
four hydrogen atoms and one atom of helium is

4mH −mHe = 0.029mH . (8-2)

The transmutation of hydrogen into helium therefore includes a mass loss of the
order of 7 × 10−3 g for each gram of converted hydrogen. Since the energy given
off in the annihilation of mass m is mc2, this amounts to an energy liberation of
6× 1018 erg g−1 — ample compared to the amount required, even if only a fraction
of a star’s hydrogen content is converted into helium (Be39).

If we now ask about the life span of stars on the main sequence and about the rate
at which stars are born, we can proceed in the following way. Let us first assume that
we know the life span τi for a given type, i, of main sequence star. Let the number
density in the Galaxy be φi for this kind of star. We can then define a birthrate
function — usually called the Salpeter birthrate function ψi

ψi =
φi

τi
, (8-3)

giving the rate of star formation in unit volume of the Galaxy (Sa55) (Fig. A.6). For
disk population (Population I) stars the formation rate will of course be high only in
and near the Milky Way disk, while the birthrate will be negligible in the halo.

We can also obtain an estimate of the age of a star as it moves off the main
sequence. Suppose that a fraction of the stellar mass f(M) needs to be exhausted of
hydrogen before the star moves onto the red-giant branch. If the initial composition
of the stellar material contains a fraction (by mass, not by number of atoms) X, in
the form of hydrogen, the energy E liberated by the star while it still resides on the
main sequence is

E = f(M)X
(

0.029mH

4mH

)
Mc2 = 6.4× 1018f(M)XM erg. (8-4)

The numerical factor gives the energy in ergs liberated by one gram of hydrogen
converted into helium. The time taken to expend this energy is just the energy E
divided by the star’s luminosity L. Now, Fig. 8.1 shows that the mass–luminosity
relation for main sequence stars is roughly L = L�(M/M�)a, where 3 ∼< a ∼< 4 .
Taking a ∼ 3.5, the star’s life τ on the main sequence becomes

τ =
E
L

= 6.4× 1018Xf(M)
(
M�
M

)5/2
M�
L�

seconds. (8-5)
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Fig. 8.1. Mass-luminosity diagram for main sequence stars. The dashed and solid lines are
different theoretical fits to the data represented by solid points (Re87). (Reprinted with per-
mission from the Royal Astronomical Society.)

f(M) is of order 15% for stars with solar composition for whichX ∼ 0.7. Inserting
these two numerical values, making use of the mass–luminosity relation once more,
and converting the time scale to years we find, very roughly, that

τ ∼
(
L�
L

)5/7

× 1010 yr. (8-6)

The Sun should therefore have a total life span of order 1010 yr, whereas O stars,
which are some ten thousand times more luminous and ten times more massive,
survive only a few million years.

8:3 Requirements Imposed on Stellar Models

Granted that sufficient energy is available from hydrogen burning (8–2) and perhaps
from other nuclear reactions, we still need to investigate whether the hypothesis of
nuclear energy conversion also fits all the other observations. These are:

(a) Conditions inside stars must be compatible with adequate nuclear reaction
and energy generation rates to match the observed luminosity of stars. The energy
released at the star’s surface must further be predominantly in the form of visible,
ultraviolet, or infrared radiation since most of a normal star’s radiation is observed
at these wavelengths. If a predominant fraction of the generated nuclear energy were
channeled elsewhere, say into neutrino emission, then we would still be faced with
the problem of accounting for the visual starlight.

(b) Nuclear reaction rates depend on the temperature, density, and chemical
composition of the matter in stars. The values of these parameters required to main-
tain the star’s luminosity must remain compatible with stable stellar structure.



8:4 Mathematical Formulation of the Theory 319

Pressure equilibrium, for example, must be maintained throughout the star. This
is determined by two factors. First, the pressure in any region is determined by the
local temperature, density, and chemical composition. The relationship among these
quantities is summarized in an equation of state such as the ideal gas law or some
similar expression. Second, the local pressure must be just able to support the weight
of material lying overhead — matter at larger radial distance from the center of the
star. This is called the condition of hydrostatic equilibrium.

If the temperature and density are too high, the local pressure becomes too large
and the star expands. If the pressure is too low, the star will contract. We will see
that any appreciable deviation from pressure equilibrium leads to a readjustment that
takes no more than about an hour. A star that lives for many æons must therefore be
very close to pressure equilibrium throughout, unless it pulsates.

(c) The energy generated at the center of the star must be able to reach the
surface within a time small compared to its evolutionary age; otherwise, the whole
life of the star would have to be described by transient conditions, and the stable
characteristics of main sequence stars could not be explained.

(d) The temperature at any given distance from the center of the star must not
only lead to the correct pressure (condition (b)), it must also be compatible with
adequate energy transfer rates to assure that the luminosity just equals the rate of
energy generation (condition (c)).

(e) At the center of the star the luminosity must be zero. This means that there
is no finite outflow of energy, no mysterious source pouring out energy from an
infinitesimal volume about the center of the star.

At the same time, there can be no more than an infinitesimal mass enclosed in
an infinitesimal volume about the center of the star. These two requirements impose
boundary conditions on the differential equations implied by requirements (a) to (d).

(f) At the surface of the star the pressure and temperature can usually be taken to
be very small compared to values found in the central regions. This follows from the
equation of state and from condition (b) which required pressure balance throughout
the star. It is a statement of the fact that stars have high internal pressures and that the
boundary between star and surrounding empty space is relatively sharp. Neverthe-
less, some caution has to be observed in applying this last condition; and differences
will arise between early spectral-type stars — where energy is transported through
the surface layers primarily by radiation — and late spectral types whose surfaces
are convective.

8:4 Mathematical Formulation of the Theory

The requirements described above can be summarized in a number of differential
equations. In giving this formulation we will find it convenient to follow a procedure
slightly different from that of Section 8:3.

(a) The change of pressure dP on moving a distance dr outward from the center
of a star is
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dP = −ρGM(r)
r2

dr, (8-7)

where ρ is the local density and M(r) is the mass enclosed by a surface of radius
r. This increment of pressure is produced by the gravitational attraction between
M(r) and the mass ρ dr enclosed in the incremental volume of height dr and unit
base area. G is the gravitational constant.

(b) The change of mass dM(r) on moving a distance dr outward from the center
is

dM(r) = 4πr2ρ dr. (8-8)

(c) The change of luminosityL(r) within an increment dr at distance r from the
center of the star is

dL(r) = 4πr2ρε dr, (8-9)

where ε is the energy generation rate per unit mass.
(d) In general, this generation rate is a function of the local density ρ, tempera-

ture T , and the mass concentrations Xi of elements i. Hydrogen and helium mass
concentrations are usually labeled X and Y , respectively:

ε = ε(ρ, T,X, Y,Xi) where i = 1, . . . , n, (8-10)

when n elements other than hydrogen and helium are present in significant amounts.
(e) The local pressure is related to the temperature, density, and chemical com-

position. We will find it convenient to write this in the form

P = P (ρ, T,X, Y,Xi), i = 1, . . . , n, (8-11)

because it will facilitate comparison of pressures derived from expressions (8–7)
and (8–11). The right side of this equation is a general form for an equation of state
which often is well approximated by Dalton’s law (4–38).

(f) Next, the temperature gradient must be related to the parameters that assure
a stable luminosity profile throughout the star. Two possibilities arise here:

(i) If the star has a low opacity κ,

κ = κ(ρ, T,X, Y,Xi), i = 1, . . . , n, (8-12)

light can travel long distances within the star before being absorbed or scattered, and
no large temperature gradients arise. In this case the transfer of energy is achieved by
radiation alone. The photons are emitted, scattered, absorbed, and re-emitted many
times; and their energy and number density changes as they diffuse through the star
in a complex random walk that eventually takes them from the center to the star’s
surface. There they start on their long journey through space.

(ii) If the opacity is high, this random walk may be excessively slow. The
center of the star then becomes too hot and the stellar material starts to convect. A
convective pattern of heat transfer sets in and, as we will see below, the temperature
gradient is given by the so-called adiabatic lapse rate which depends on the ratio of
heat capacities of the material, γ = cp/cυ (see Section 4:19).
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Corresponding to these two alternatives, we can derive temperature gradients of
the form

dT

dr
= F1[κ, L(r), T, r] for radiative transfer, (8-13)

or
dT

dr
= F2(T, P, r, γ) for convective transfer. (8-14)

(g) The two boundary conditions implied by (e) and (f) in Section 8:3 are:

(i) at r = 0, M(r) = 0, and L(r) = 0, (8–15)

(ii) at r = R, T  Tcentral and P  Pcentral, (8–16)

where R is the star’s radius. For purposes of computing hydrostatic pressures, the
relations (8–16) are tantamount to writing

T (R) ≈ 0, P (R) ≈ 0 (8-17)

Equations (8–7) to (8–17) constitute the foundations of the theory of stellar struc-
ture.

One point of particular interest should still be mentioned. The equations pre-
sented state nothing about the physical source of the generated energy. The overall
structure and appearance of the star can therefore give no clue about whether nu-
clear reactions indeed are responsible for stellar luminosities, or which particular
reactions predominate at any given evolutionary stage. We have to derive this infor-
mation by indirect means — mainly by looking at the debris ejected from stars that
become unstable or by spectrally analyzing stars whose surfaces become denuded
to expose matter previously evolved at the center.

8:5 Relaxation Times

Suppose we could artificially perturb the temperature or pressure within a star. Af-
ter this perturbation stopped, the star would again relax to its initial temperature and
pressure equilibrium. We will find that the relaxation time in response to a pres-
sure change is very much faster than the time required to re-establish temperature
equilibrium.

(a) We first wish to estimate the time required to reach pressure equilibrium.
Let the perturbed pressure Pp(r) differ from the equilibrium pressure P (r) by a
fractional amount f

Pp(r) − P (r) = fP (r) . (8-18)

This pressure acts on a mass M −M(r) lying at radial distance greater than r with
a force F = 4πr2fP (r). As a result this material moves with an acceleration

r̈ =
4πr2fP (r)
M −M(r)

. (8-19)
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We suppose that a displacement ∆r amounting to a fraction g of the total radius R
is required to relieve the pressure difference

∆r = gR . (8-20)

Then the time required to obtain this displacement with the acceleration given in
equation (8–19) is of the order of

τp ∼
(

2∆r
r̈

)1/2

=
[
gR[M −M(r)]

2πr2fP (r)

]1/2

. (8-21)

Let us compute the approximate value of τp. We can estimate P (r) and M(r) by
assuming a uniform density throughout the star and considering a star with one solar
mass M = M� = 2×1033 g contained in one solar radiusR = R� = 7×1010 cm.
The density then is ρ ∼ 1, and from (8–7),

P (r) = −
∫ r

R

4π
3
ρ2rG dr =

2π
3
ρ2G(R2 − r2). (8-22)

Let us choose r ∼ R/2; then

P

(
R

2

)
∼ 1015 dyn cm−2 ,

M(R) −M

(
R

2

)
∼ 2 × 1033 g ,

and

τp ∼ 5 × 103

√
g

f
s−1 .

For small perturbations, g/f can be expected to be of order unity and the relaxation
time is of the order of an hour.

In Section 9:3, we will see that the speed of propagation of pressure information,
the speed of sound, is roughly (P/ρ)1/2, which is also roughly the speed of ideal
gas particles (4–31). This speed is of order 3 × 107 cm s−1 in the Sun. Pressure
information can therefore be conveyed over distances R� in ∼2 × 103 s, a time
comparable to the pressure adjustment time.

PROBLEM 8–1. (a) Show that the temperature T (R/2) under the conditions as-
sumed above is ∼107 K.

(b) One difference between a planet and a star is that for planets, Coulomb forces
on electrons and ions are more important than gravitational forces (Sa70a). The
opposite is true of a star. Let Ec be a typical Coulomb binding or repulsive interaction
energy. Show that the planet’s mass Mp is of order

Mp ∼<
1
ρ1/2

[ |Ec|
GAmH

]3/2

∼ R|Ec|
GAmH

, (8-23)
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where A is an average atomic mass measured in atomic mass units, and mH is the
mass of the hydrogen atom.

(c) If Ec is of the order of the binding energy ∼10−11 erg per chemical bond,
show, by referring to Table 1.4, that Jupiter, which consists largely of hydrogen, lies
near the upper limit of the mass range for planets.

(b) Next we wish to estimate the time taken to transport heat from one point
within the star to another. If the transport process is radiative, the time can be com-
puted from a random walk model; we only need to know the mean free path of
radiation, given by the opacity of the material κ (see Section 7:12). When a beam of
n photons passes through a layer of thickness dl, a fraction dn will be absorbed or
scattered by the material. The loss of photons from the beam can then be expressed
as

dn = −nκρdl, (8-24)

where ρ is the density of the material. We note that we have not gone into detail
about the scattering process. Some processes strongly scatter light into a forward
direction. Such scatterers make a medium much less opaque than isotropic scatter-
ing centers. We will assume here that the scattering is isotropic. Alternatively, we
could count a photon as being lost from the beam only after a large number of col-
lisions has increased its angle with respect to the original direction of propagation
significantly, say to 90◦, so that all memory of the original direction is lost. We made
a similar assumption about electron scattering in Section 6:18. We wish to calculate
the mean free path of the photons under such conditions. Integrating equation (8–24)
we obtain

n = n0e
−κρl . (8-25)

The mean distance 〈l〉 traveled by a photon before it is absorbed or strongly scattered
is then

〈l〉 = −
∫ n0

0
l dn

n0
=
∫ ∞

0

lκρe−κρl dl =
1
κρ
. (8-26)

For a star like the Sun κρ is of order unity, and the mean free path is of the order
of a centimeter. To traverse a distance of the order of the solar radius R ∼ 1011 cm,
we would require 1022 steps, which would cover a total distance ∼1022 cm. The
total time taken is ∼(R2κρ/c) when we do not count the time required between
absorption and re-emission. The time constant therefore is at least of the order of
1011 s, several thousand years.

(c) Energy can also be transported by convection, where sufficiently high ther-
mal gradients exist. A buoyancy force then accelerates a hot blob of matter upward
and returns cooler material down toward the center of the star. For nondegenerate
matter we can take ∆ρ, the density difference between hot and cold material, to be

∆ρ ∼ ρ

T
∆T . (8-27)

The upward force on unit volume of the hotter material is
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F (r, ρ, ∆T ) =
M(r)G
r2

ρ

T
∆T , (8-28)

which leads to a convective motion accelerated at a rate

r̈ =
M(r)G
r2

∆T

T
. (8-29)

If the blob travels a distance of the order of one-tenth of a solar radius the time
required is

t =
[
2R�
10r̈

]1/2

∼ 3 × 106 s ∼ 1 month (8-30)

for Mr ∼ 1033 g, T ∼ 107 K, and ∆T ∼ 1 K. By (8–27) the density gradient is
then ∆ρ/ρ ∼ 10−7, vindicating our assumption of a constant density in applying
(8–22) to estimate the pressure deep in the Sun. Equation (8–30) implies a rather
fast transport rate. It sets in whenever radiative heat transfer is too slow to maintain
thermal equilibrium within a star. We will return to this stability problem in Section
8:9, where we will also justify the choice of ∆T ∼ 1 K.

(d) If the electrons at the center of a star are degenerate, they can readily trans-
port heat at a rate much faster than is possible by either radiative or convective
means. Degenerate electrons cannot readily transfer their energy to other electrons
because all the lower electron energy states already are filled and there is no space
for another electron that is about to lose energy. The mean free path for electrons
therefore becomes extremely long, and heat transport proceeds swiftly. In the limit-
ing case an electron could traverse the entire degenerate region and not lose energy
until it reached the nondegenerate surroundings. If the span in question amounts to
a distance of the order of R�/102, the traversal times at T ∼ 107 K would be of the
order of one second. This represents the thermal relaxation time for the degenerate
core of a star.

8:6 Equation of State

The equation of state needed to define the pressure in terms of temperature, den-
sity, and composition depends on whether: (i) conditions at the center of a star are
nondegenerate or degenerate; and (ii) the temperature is sufficiently high to involve
relativistic behavior.

(a) Nondegenerate Plasma

At the high temperatures found within stars all but the heaviest elements are com-
pletely ionized. Electrons and ions are far apart compared to their own radii since
electrons and bare nuclei have radii of order 10−13 cm. The ideal gas law can there-
fore be expected to hold:

P = nkT , (4–38)



8:6 Equation of State 325

Table 8.1. .

Number of Ions Number of Electrons

Hydrogen
Xρ

mH

Xρ

mH

Helium
Y ρ

4mH

Y ρ

2mH

Others
Zρ

〈A〉mH

Zρ

2mH

where n is the number of particles in unit volume.
In Table 8.1 we enumerate the contribution to the number density by the various

particles. The symbolsX, Y , Z, represent the concentration, by mass, of hydrogen,
helium, and heavier elements, respectively. 〈A〉 is the mean atomic mass of the
heavier elements. In the last column of the table the number of electrons contributed
by the heavier elements is given on the hypothesis that the number of electrons per
atom is 〈A〉/2. This is a fairly good approximation for the less massive elements.
The number of ions contributed by the heavier elements amounts to a negligibly
small fraction of the total population — only about one part per thousand. The total
number density of particles to be inserted in the ideal gas or Dalton’s law relation
(4–38), therefore, is roughly

n =
ρ

mH

[
2X +

3
4
Y +

1
2
Z

]
, (8-31)

and the equation of state reads

P =
ρkT

mH

[
2X +

3
4
Y +

1
2
Z

]
. (8-32)

At first we might think that P represents the total pressure; but it is only the
pressure contributed by particles. A further pressure due to electromagnetic radia-
tion must be added to yield the total pressure. This is true for both nondegenerate
and degenerate matter.

We had already found in Section 4:7 that the radiation pressure has a value
numerically equal to one-third of the energy density. Inside the star that density is
aT 4; the refractive index is practically unity, and the relationship of Problem 4–21
reduces to equation (4–74). Hence

PRad =
aT 4

3
. (8-33)

The equation of state for nondegenerate matter then reads

PTotal =
ρkT

mH

(
2X +

3
4
Y +

1
2
Z

)
+
aT 4

3
. (8-34)
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(b) Degenerate Plasma

For a momentum p0 corresponding to the Fermi energy, equation (4–65) tells us that
the maximum number of electrons that can occupy unit volume is

ne =
8π
3
p3
0

h3
. (8-35)

The number density of electrons can also be written as

ne =
(
X +

1
2
Y +

1
2
Z

)
ρ

mH
≡ 1

2
(1 +X)

ρ

mH
, (8-36)

because
X + Y + Z = 1 . (8-37)

The pressure contribution due to isotropically moving electrons is then given through
equations (4–27), (4–28), and (4–30), as

Pe =
∫ p0

0

∫ 2π

0

∫ π/2

0

2ne(p)p cos θυ cos θ sin θ dθ dφ dp , (8-38)

=
1
3

∫ p0

0

8πp2

h3
pυ dp , (8-39)

where ne(p) is the number density of electrons having momenta in the range p to
p+ dp .

(i) In the nonrelativistic case υ = p/me and the electron pressure is

Pe =
8π
15

p5
0

meh3
. (8-40)

Substituting for p0 from (8–35) and (8–36), equation (8–40) becomes

Pe =
h2

20memH

(
3

πmH

)2/3((1 +X)
2

ρ

)5/3

. (8-41)

(ii) In the relativistic case υ ∼ c, and equation (8–38) integrates to

Pe =
2πc
3h3

p4
0 . (8-42)

Using (8–35) and (8–36) again to eliminate p0, we obtain

Pe =
hc

8mH

(
3

πmH

)1/3(1 +X

2
ρ

)4/3

. (8-43)

To obtain the total pressure we need to add the pressures Pi contributed by individual
ions. These normally are nondegenerate, as was pointed out in Section 4:15.

Pi =
(
X +

1
4
Y

)
ρkT

mH
. (8-44)

Finally, we have to add the radiation pressure from equation (8–33) to obtain

PTotal = Pe + Pi + PRad . (8-45)
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8:7 Luminosity

We have estimated the time required for a star to recover from a thermal perturba-
tion when a range of different conditions prevails within the star. However, we still
have to ask ourselves, “When does each of these different conditions predominate?
Under what circumstances is radiative heat transfer dominant? When is convection
a major contributor, and what are the conditions that favor degeneracy?” These are
the questions we must examine next. When we obtain an answer we will also be able
to quantitatively express the rates of energy transfer that add to give the bolometric
luminosity of a star. Luminosity is expressed in units of power – energy emitted per
unit time.

The total flux at radial distance r = r0 from the star’s center is the difference
between the outward and inward directed energy flow through a surface that can be
assumed to be plane because the radiation mean free path is very small compared
to r0. Let the temperature at r0 be T0. Radiation passes through a surface r0 at all
values of azimuthal angle θ (Fig 8.2). The unattenuated flux originating at a distance

Fig. 8.2. Illustration to show the relation between luminosity and temperature gradient.

l along direction θ, which passes through the surface in unit time, is

aT 4(l, θ) · c cos θ · 2π sin θ dθ
4π

, (8-46)

where

T (l, θ) = T0 − dT

dr
l cos θ , (8-47)

c cos θ represents the cylindrical volume from which radiation crosses unit area of
the surface in unit time, and 2π sin θ dθ/4π gives the fraction of the total solid angle
at (l, θ) containing the radiation that will pass through the appropriate unit area, at
r0.

In actuality, radiation from (l, θ) does not reach r0 unattenuated. A photon orig-
inating at l only has a probability π(l) of reaching r0:
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π(l) = κρe−κρl . (8-48)

This follows from (8–24) and also gives the proper normalization∫ ∞

0

π(l) dl = 1 . (8-49)

The radiant flow F (r0) through unit area is now formally given as

F (r0) =
∫ ∞

0

∫ π

0

a

(
T0 − dT

dr
l cos θ

)4

· c cos θ · 2π sin θ dθ
4π

π(l) dl . (8-50)

However, to obtain the actual radiative flux we must decide what value of κ to use
in equation (8–48). Equation (8–24) did not take into account stimulated emission
which, as explained in Section 7:12, is important. On the other hand, if we use κ∗(ν)
from (7–71) we have to average properly over all frequencies to arrive at a suitable
mean opacity. We will do this in Section 8:8 below.

PROBLEM 8–2. The luminosityL(r) at any radial distance within the star is

L(r) = 4πr2F (r) . (8-51)

Show by integration that to first order

L(r) = −16πac
3κρ

r2T 3 dT

dr
. (8-52)

8:8 Opacity Inside a Star

In Section 7:12 we had discussed the four sources of opacity: electron scattering,
free–free transitions, free–bound transitions, and bound–bound transitions. How-
ever, we have not yet indicated how to compute the mean opacity obtained from
these four contributing factors. It is this opacity that has to be used in expression
(8–52).

Two factors enter. First, we have to average over all radiation frequencies; but
clearly, if the opacity is to give an accurate assessment of the radiative transfer rate,
those frequencies at which the radiation density gradient is greatest should receive
greater weight in the averaging process. Second, those frequency ranges in which
the opacity is smallest potentially make the greatest contribution to energy transport.
We therefore will be more interested in averaging 1/κ(ν) rather than κ(ν).

Let us write (8–52) in its more fundamental form, involving energy density ρ(ν)
of radiation at frequency ν and temperature T (see equation (4–72)).

L(r, ν) =
−4πr2

3ρκ∗(ν)
c
dρ(ν)
dr

. (8-53)
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Here we have defined a contributionL(r, ν), at frequency ν , to the total luminosity
L(r) at r; and we have set the total energy density U equal to the blackbody en-
ergy density. κ∗(ν) is the opacity at frequency ν that takes account of stimulated
emission:

L(r) =
∫ ∞

0

L(r, ν) dν and U =
∫ ∞

0

ρ(ν) dν = aT 4 . (8-54)

We can neglect bound–bound transitions since they play a negligible role in the
stellar interior. Equation (7–71) therefore simplifies to

κ∗(ν) = [κbf(ν) + κff (ν)](1− e−hν/k) + κe , (8-55)

and we can define a mean opacity

1
κ

=

∫ ∞

0

1
κ∗(ν)

dρ(ν)
dT

dT

dr
dν∫ ∞

0

dρ(ν)
dT

dT

dr
dν

, (8-56)

called the Rosseland mean opacity, in which (4–72) can be used to obtain dρ(ν)/dT .
As can be seen from (8–53), the Rosseland mean opacity does indeed favor the
frequencies important to the transfer process by using the energy density gradient
dρ(ν)/dr as a weighting function for 1/κ∗(ν), which is a measure of the mean free
path at frequency ν . The opacity at any frequency is the sum of contributions from
bound–free (bf) and free–free (ff) transitions, and from electron scattering (e).

κff (ν) and κbf(ν) themselves are sums over the opacity contributions of the
individual states of excitation n of the various atoms and ions A present at radial
distance r in the star,

κff (ν)ρ =
∑
A

∫
αff

ρXA

AmH
ne(υ) dυ , (8-57)

κbf(ν)ρ =
∑
A,n

αbf

(
ρXA

AmH

)
NA,n . (8-58)

Here ρXA/AmH is the number density of atoms of kind A, XA is the abundance
by mass of atoms or ions with mass numberA, mH is the mass of a hydrogen atom,
and NA,n is the fraction of these atoms or ions in the nth excited state. ne(υ) is the
number density of electrons in a velocity range dυ around υ. The quantitiesαff and
αbf are the atomic absorption coefficients defined in (7–74) and (7–75). As shown
in (7–72),

κeρ = σene , (8-59)

where the right side is the product of the electron number density and the Thomson
(or — at high energies — the Compton) scattering cross-section.

To evaluate NA,n we make use of the Saha equation (4–107), which for high
ionization leads to
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NA,n = n2

[
ne

h3

2(2πmekT )3/2
eχn/kT

]
, (8-60)

where we have considered that most of the ions are in the (r+ 1)st ionization state.
We can understand this equation in the following way.

χn is the energy needed to ionize the atomic species A from the nth excited
state; me is the electron mass. Using a Bohr atom model this energy is (7–5, 7–76)

χn ∼ 2π2e4me

h2

Z′2

n2
, (8-61)

where Z′ is the effective charge of the ion considered. Equation (8–61) assumes that
all the excited atoms of a given species A will be in the same state of ionization at
radial distance r from the star’s center. In our present notation this means that in
equation (4–107), nr/nr+1 = NA,n. We note that NA,n is proportional to n2. This
is because the statistical weight gr — the number of sublevels — of the nth excited
state is 2n2 (see Problem 7–1). From Section 4:16 we also have ge = 2. Similarly,
the ion can also exhibit two spin states gr+1 = 2. But for any given final state there
are only two possible combinations of spin, gr+1ge = 2.

Making use of equation (7–75) for αbf , with χn from (8–61) substituted into
this expression, we can now obtain

κbf(ν) =
2
3

√
2π
3
Z′2e6h2ρ(1 +X)Z
cAm2

Hm
1.5
e (kT )3.5

[
1
n

χn

kT
eχn/kT

(
kT

hν

)3

gbf

]
. (8-62)

Here Z is the metal abundance by fraction of the total mass. We have summed
(8–58) only for these constituents, because hydrogen and helium do not contribute
significantly to the bound–free transitions. The summation over states has been ne-
glected, since the lowest state n usually contributes most. We also have used an
electron density from Table 8.1:

ne =
1
2
(X + 1)

ρ

mH
. (8-63)

Equation (8–62) can be considerably simplified if approximate values of the opac-
ity suffice. For example, we can restrict our attention to those levels for which
χn/kT ∼ 1, hν/kT ∼ 1, because this makes use of the frequencies and ioniza-
tion potentials that will contribute most to the opacity. Constituents which would be
ionized at lower temperatures, χn  kT , are already almost fully ionized and have
too few bound electrons to be effective, while those with higher χn values absorb
too few of the photons present. Similarly the photons of frequency ν ∼ kT/h are
weighted most favorably by the Rosseland mean.

For most elements we can also choose a typical value Z′2/A ∼ 6.
With these approximations we obtain Kramer’s Law of Opacity for

bound–free absorption:

κbf = 4.34× 1025Z(1 +X)
ρ

T 3.5

〈gbf〉
f

cm2

g
, (8-64)
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Fig. 8.3. Opacity as a function of density and temperature in a star of population I com-
position. The diagram is divided into four regions characterized by different mechanisms of
energy transport. The sources of opacity that dominate these mechanisms are electron scatter-
ing, bound–free transitions, free–free transitions, and the effective opacity that would describe
the energy transport by degenerate electrons. The dashed line shows where the degeneracy
parameter α (see equation (4–94)) equals zero (after Hayashi, Hoshi, and Sugimoto (Ha62).

where 〈gbf〉 is the mean Gaunt factor (7–75), which is always of order unity, and f
contains correction factors — all of order unity also — which arise because of the
approximations we have made. For free–free transitions, we can similarly obtain
expressions (Sc58b)*:

κff =
2
3

√
2π
3
e6h2(X + Y )(1 +X)ρ
cm2

Hm
1.5
e (kT )3.5

gff

196.5
(8-65)

= 3.68× 1022〈gff 〉(X + Y )(1 +X)
ρ

T 3.5

cm2

g
,

where 〈gff 〉 is the mean Gaunt factor (7–74). We note that if we had taken κ(ν)
in equation (6–137) and substituted into (8–56) for κ∗(ν), we would have obtained
an opacity expression proportional to e6n2c−1(mekT )−1.5 and a weighted mean
function proportional to ν−2 that would be proportional to h2(kT )−2. This is just
the dependence found in (8–65). For electron scattering, (8–59) combined with the
number of free electrons (8–63), yields

κe =
4π
3

e4

c4mHm2
e

(1 +X) ∼ 0.19(1 +X)
cm2

g
. (8-66)
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Electron scattering is the main contributor to the opacity at low densities and high
temperatures, where the interaction between electrons and ions is weakened.

Figure 8.3 shows the relative importance of scattering and absorption for differ-
ent densities and temperatures. At high densities, where electrons become degener-
ate, heat is transferred most rapidly through conduction by these electrons.

Figure 8.4 shows the opacity as a function of temperature in stars whose com-

Fig. 8.4. Opacity for stars whose composition is similar to that of the Sun. Each curve repre-
sents a different density value ρ, measured in g cm−3. (After Ezer and Cameron (Ez65). With
permission of the editors of Icarus. International Journal of Solar System Studies, Academic
Press, New York.)

position is similar to that of the Sun.
Thus far we have discussed radiative transfer only in the interior of a star. How-

ever, the equations of radiative transfer also play a dominant role in the transport of
energy through stellar atmospheres (Section 7:13).

PROBLEM 8–3. Using equations (8–7), (8–52), and the ideal gas law, show that
the luminosity of stars should be roughly proportional toM3.

We find, in reality, that main sequence stars more nearly obey the mass-luminosity
relation (Fig. 8.1):

L ∝Ma, 3 ∼< a ∼< 4. (8-67)
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Presumably this relation holds in main sequence stars because radiative transfer
dominates there, while convective transfer (Section 8:9 below) is more important
in the giants, and degenerate electron transfer dominates in compact stars and in
compact stellar cores.

Radiative transfer is always present, even when other processes dominate. The
total energy transfer rate is the sum of all the different rates.

8:9 Convective Transfer

Let us establish the conditions under which the temperature gradient becomes so
large that the medium starts to convect and the spherically symmetrical temperature
distribution about the stellar center becomes unstable.

Consider an element of matter at some density ρ′1 and pressure P ′
1 surrounded

by a region with exactly the same characteristics (ρ1, P1) (see Fig. 8.5):

Fig. 8.5. Convective outward motion of a low-density “bubble.” When thermal gradients be-
come too high, convective motion sets in and becomes the dominant vehicle for heat transport.

ρ′1 = ρ1, P ′
1 = P1. (8-68)

The element is then moved to a new position, subscript 2, where its final pressure
P ′

2 equals the ambient pressure P2:

P ′
2 = P2. (8-69)

Using (8–30) we found that a convective motion of this kind is fast compared to the
time required for radiative heat transfer. We can therefore consider the process to be
adiabatic. Equations (4–129) then imply that

ρ′2 = ρ′1

(
P2

P1

)1/γ

. (8-70)
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For the highly ionized plasma in a star, the ratio of heat capacities is γ = cp/cυ = 5
3

.
If the initial displacement of the element was upward, and we find that ρ′2 > ρ2,

then the element will be forced down toward its initial position, 1; the medium is
then stable. However, if ρ′2 < ρ2, then the initial displacement leads to further mo-
tion along the same direction — upward — and the medium is unstable. Convection
sets in.

The condition for stability therefore is

ρ2 < ρ′2 = ρ′1

(
P ′

2

P ′
1

)cυ/cp

= ρ1

(
P2

P1

)cυ/cp

, (8-71)

where we have made use of expressions (8–68) to (8–70). This can be rewritten as

dρ

ρ
<

(
P + dP

P

)cυ/cp

− 1 =
cυ
cp

dP

P
. (8-72)

In terms of radial gradients this becomes

1
ρ

dρ

dr
<

cυ
cpP

dP

dr
, (8-73)

which, with the ideal gas equation (4–37), leads to the stability condition

dT

dr
>
T

P

(
1 − cυ

cp

)
dP

dr
. (8-74)

Both dP/dr and dT/dr have negative values. The right side of (8–74) is called the
adiabatic temperature gradient, and we conclude that stability will prevail when the
absolute value of the temperature gradient dT/dr is less than that of the adiabatic
gradient. When the absolute value of dT/dr becomes larger than the absolute value
of the adiabatic gradient, instability sets in and heat is transferred by convection.

To compute the heat transfer rate we have to know four quantities: the velocity
υ of the buoyant element, its heat capacity C , its density, and the temperature dif-
ferential ∆T between the element and the surroundings to which it finally imparts
this temperature. The heat transport rate per unit area is then

H = Cρυ∆T. (8-75)

HereC is the heat capacity under the assumed adiabatic conditions. Using the accel-
eration given in equation (8–29) and assuming transport over a distance one-tenth
of a solar radius, the mean velocity υ is of order [r̈R�/10]1/2

H ∼ Cρ

[
GM(r)
Tr2

R�
10

]1/2

(∆T )3/2

(8-76)

∼ Cρ

[
GM(r)
Tr2

]1/2(
d∆T

dr

)3/2(
R�
10

)2

.
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The distance R�/10 is chosen somewhat arbitrarily since convective theories are
currently not clear on how to estimate the convection cell size — the distance � over
which an element is transported before it diffusively mixes with its surroundings
and ceases to exist. This mixing length � is sometimes taken to be proportional to
the local pressure scale height but without specifying the proportionality constant.
A more accurate estimate appears to be that � is simply equal to a buoyant element’s
distance beneath the outer surface of the convection zone, suggesting that material
from all layers beneath this surface strives to deposit its energy at the outermost
radial distance it can convectively reach (St97).

We take d∆T/dr to be the difference between the actual and the adiabatic gradi-
ent. The equations we have obtained hold equally well for the upward convection of
hot matter and downward convection of cool material. For a given gradient d∆T/dr
we can now obtain the order of magnitude of H if the heat capacity is known. We
have not yet discussed the equation of state, although we have assumed an ideal gas
law above. For a completely ionized plasma the heat capacity is roughly known,
even though the process described here proceeds neither at constant pressure nor
at constant volume. We will, however, not be far wrong in taking 2RT per gram,
where R is the gas constant (see equation (4–34)).

We now wish to see at what gradients the convective flux exceeds radiative trans-
fer. This can be done by checking the value of d∆T/dr at which the total convec-
tive flux equals the luminosity. With r ∼ R�/2, M(r) ∼ M/2, ρ ∼ 1 g cm−3,
C ∼ 2× 108 erg g−1 K−1, T ∼ 107 K, and L ∼ 1034 erg s−1, we have

L = 4πR2
�H ∼ 4πR2

�Cρ
(
GM(r)
Tr2

)1/2(
R�
10

)2(
d∆T

dr

)3/2

,

d∆T

dr
∼ 10−10 K cm−1. (8-77)

The average temperature gradient for a star is of order Tc/R ∼ 107/1011 ∼ 10−4

K cm−1 , where Tc is the central temperature. The required excess gradient is only
of the order of one millionth of the total gradient. Over a distance ∆r ∼ R0/10,
the excess temperature drop corresponds to ∼1 K, the figure we had previously used
in establishing the time constant for convective transport in equations (8–29) and
(8–30).

We have now dealt with all the differential equations discussed in Section 8:4;
but we still have to derive the energy generation rate through nuclear reactions at
the center of a star. This is done in the next section.

8:10 Nuclear Reaction Rates

The nuclear reactions that take place in stars are largely reactions in which two
particles approach to within a short distance, become bound to each other, and at
the same time release energy. These exergonic processes are the ultimate source of
energy for the star.
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Let us look into the various factors that determine the reaction rate. We will
assume that two kinds of particles are involved and will label them with subscripts
1 and 2, respectively. The reaction rate then is proportional to:

(i) The number density n1 of nuclei of the first kind;
(ii) The number density n2 of nuclei of the second kind;
(iii) The frequency of collisions, which depends on the relative velocity υ with

which particles approach each other; and
(iv) The velocity-dependent interaction cross-section σ(υ) which normally is

proportional to 1/υ2. However, in order for a reaction to occur, the Coulomb bar-
rier, which bars positively charged particles from approaching a nucleus, must be
penetrated.
This makes the reaction rate proportional to

(v) The probability Pp(υ) for penetrating the Coulomb barrier; this has an ex-
ponential form

Pp(υ) ∝ exp
[
−4π2Z1Z2e

2

hυ

]
. (8-78)

Here Z1e and Z2e are the nuclear charges.
Once the nuclear barrier has been penetrated there is a probability PN for nu-

clear interaction. This is insensitive to particle energy or velocity but does depend
on the specific nuclei involved.
We therefore introduce a factor proportional to

(vi)PN the probability for nuclear interaction. For the interaction of two protons
this interaction is known from theory. For all other reactions laboratory data have to
be used to evaluate the probability.
The rate of the process further is proportional to

(vii) The distribution of velocities among particles. This can be assumed to be
Maxwellian because the nuclei normally are not degenerate. Equation (4–59) gives

D(T, υ) ∝ υ2

T 3/2
exp
[
−1

2
mHA

′υ2

kT

]
, (8-79)

whereA′ = A1A2/(A1+A2) is the reduced atomic mass, measured in atomic mass
units.

We can now write the overall reaction rate in unit volume as

r =
∫ ∞

0

n1n2υσ(υ)Pp(υ)PND(T, υ) dυ . (8-80)

This integral is readily evaluated because of the narrow range of velocities in which
the product of Pp and D is high. Outside this velocity range the integrand is too
small to make a significant contribution to the integral. We proceed in the following
way. The integral in equation (8–80) has the form∫ ∞

0

υ exp
[
−a
υ

+ bυ2
]
dυ . (8-81)
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The integrand has a sharp maximum at the minimum value of the exponent. We take
the derivative of the exponent with respect to υ and set this to zero. This gives the
value υm

υm =
( a

2b

)1/3

=
(

4π2Z1Z2e
2kT

hmHA′

)1/3

. (8-82)

To evaluate the integral, however, we still need to estimate the effective velocity
range over which the integrand is significant. For order of magnitude purposes it
will suffice to take a range between points where the value of the integrand has
dropped a factor of e. This happens at υ values for which

(a
υ

+ bυ2
)
−
(
a

υm
+ bυ2

m

)
= 1 . (8-83)

Because the deviation from υ will be small, we set

υ = υm +∆ , (8-84)

and substitute in equation (8–83). Terms linear in∆ drop out through use of (8–82),
but the quadratic terms yield(

a

υ3
m

+ b

)
∆2 = 3b∆2 = 1 , (8-85)

∆ = ±
√

1
3b

= ±
√

2kT
3A′mH

. (8-86)

The integral (8–80) can now be readily evaluated. First, however, we would like
to lump all the proportionality constants into a single constantB and relate velocity
to temperature everywhere.

We note that
∆ ∝ T 1/2 (8-87)

and that the integrand is proportional to

υm · 1
υ2

m

· υ2
m

T 3/2
=

υm

T 3/2
= T−7/6 , (8-88)

where we have made use of the relation (8–82). This means that r ∝ T−7/6∆ ∝
T−2/3

We can set
n1 =

ρ1

m1
=

ρ

m1
X1 and n2 =

ρ

m2
X2 , (8-89)

where X1 and X2 are the concentrations, and m1 and m2 the masses of nuclei of
species 1 and 2. Absorption of factors m1 and m2 into the proportionality constant
B then yields the reaction rate

r = Bρ2X1X2T
−2/3 exp

[
−3
(

2π4e4mHZ
2
1Z

2
2A

′

h2kT

)1/3
]
. (8-90)
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Thus far we have developed an estimate of reaction rates without much thought
about the individual reactions involved, the required temperatures and densities, and
the resulting energy liberation rate. We now turn to these.

We first ask ourselves how much energy would be needed for two particles to
interact. It is clear that a nuclear reaction can only take place if the particles approach
to within a distance of the order of a nuclear diameter D ∼ 10−13 cm. However,
because both nuclei are positively charged they tend to repel. The work required to
overcome the repulsion is

E =
Z1Z2e

2

D
∼ 2 × 10−6Z1Z2 erg ∼ Z1Z2 MeV . (8-91)

This might lead us to think that temperatures of the order of 1010 K would be re-
quired for nuclear reactions to proceed. This is far higher than the 107 K temperature
we had estimated in Problem 8–1.

Two factors allow the actual reaction temperature to be so low. First, a small
fraction of the nuclei with thermal distributionD(T, υ) has energies far above the
mean (Fig. 8.6). Second, two particles have a small but significant probability of ap-

Fig. 8.6. Energies involved in nuclear reactions.

proaching each other by tunneling through the Coulomb potential barrier rather than
going over it. This probability is quantum mechanically determined and is included
in the function Pp(υ).

These two factors suffice to allow nuclear reactions to proceed at mean energies
some 103 times lower than those employed to produce nuclear interactions in the
laboratory. The main difference is that in the laboratory speed is essential, whereas
the star is in no hurry. In the laboratory we want high reaction rates so that results
may be obtained within a few minutes or, at most, hours. In contrast, a reaction
having a probability of transmuting a given particle in the course of ten billion years
is sufficiently fast to produce the luminosities characterizing many stars like the Sun.
This extension of the available time by a factor of ∼1014 is the prime difference that
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permits low-temperature generation of energy and transmutation of the elements at
the centers of stars at cosmically significant rates.

8:11 Particles and Basic Particle Interactions

A number of basic particles are involved in most nuclear reactions in stars. We list
their properties in Table 8.2.

Table 8.2. Particles That Take Part in Many Stellar Nuclear Reactions.

Rest–Mass
Particle Sym- g MeV Charge Spin Class

bol esu

Photon γ 0 0 0 1 Photon

Neutrino ν ∼< 4× 10−34(b)

∼< 2.5 × 10−7 0 1
2

Lepton

Antineutrino ν ∼< 4 × 10−34

∼< 2.5 × 10−7 0 1
2

Antilepton

Electron e 9 × 10−28 0.511 −5× 10−10 1
2

Lepton

Positron e+ 9 × 10−28 0.511 +5× 10−10 1
2

Antilepton

Proton P 1.6 × 10−24 938.256 +5× 10−10 1
2

Baryon

Neutron(a) N 1.6 × 10−24 939.550 0 1
2

Baryon

(a) Half-life 614 ± 1 s (b) (Sp03).

The spin of a particle tells us the type of statistics it obeys. Integral spin implies
obedience to the Bose–Einstein statistics, and half-integral spin labels a particle as
a fermion.

A number of basic conservation laws govern all nuclear reactions:

(a) Mass–energy must be conserved (Section 5:6).
(b) The total electric charge of the interacting particles is conserved.
(c) The number of particles and antiparticles must be conserved. A particle can-

not be formed from an antiparticle or vice versa. But a particle–antiparticle pair may
be formed or destroyed without violating this rule. In particular:

(d) The difference between the number of leptons and antileptons must be con-
served (conservation of leptons); and

(e) The difference between the number of baryons and antibaryons must be
conserved (conservation of baryons).

With these rules in mind we enumerate some of the most common nuclear reac-
tions in stars.
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(i) Beta Decay

A neutron, as a free particle or as a nucleon inside an atomic nucleus, can decay
giving rise to a proton, an electron, and an antineutrino. This reaction often is exer-
gonic and can proceed spontaneously. A proton inside a nucleus, however, can also
combine with an electron in inverse beta decay, giving rise to a nuclear neutron and
the emission of a neutrino:

N → P + e− + ν, P + e− → N + ν . (8-92)

(ii) Positron Decay

Here a proton gives rise to a neutron, positron, and neutrino. This process is ender-
gonic — requires a threshold input energy — because the mass of the neutron and
positron is considerably greater than the proton mass.

P → N + e+ + ν . (8-93)

In principle all these reactions could go either from left to right or right to left; but
normally the number of available neutrinos or antineutrinos is so low that only the
reaction from left to right need be considered.

(iii) (P , γ) Process

In this reaction a proton reacts with a nucleus with charge Z and mass A, to give
rise to a more massive particle with charge (Z + 1). Energy is liberated in the form
of a photon, γ:

AZ + P → A+1(Z + 1) + γ . (8-94)

A typical reaction of this kind involves the carbon isotope 12C and nitrogen isotope
13N,

12C + 1H → 13N + γ . (8-95)

(iv) (α, γ) and (γ, α) Processes

In processes of this kind an α-particle — helium nucleus — is added to the nucleus
or ejected from it. The excess energy liberated in adding an alpha particle is carried
off by a photon. The energy required to tear an alpha particle out of the nucleus
also can be supplied by a photon. These two processes are particularly important in
nuclei containing an even number of both protons and neutrons — the even–even
nuclei. These nuclei are especially stable and play a leading role in processes that
determine the formation of heavy elements.

(v) (N , γ) and (γ, N ) Processes

Such processes involve the addition or subtraction of a neutron. The nucleus emits
or absorbs a photon in the reaction to assure energy balance.
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8:12 Energy-Generating Processes in Stars

A variety of different energy-generating processes can take place in stars. We will
enumerate them in the succession in which they occur during a star’s life.

(a) When the star first forms from the interstellar medium, it contracts radiating
away gravitational energy. During this stage no nuclear reactions take place.

(b) When the temperature at the center of the star becomes about a million de-
grees, the first nuclear reactions set in. From the discussion of Section 8:10 it is
clear that these reactions do not switch on sharply as some given temperature value
is exceeded. The temperature is not a threshold in this sense, even though threshold
energies are involved. Instead, we can think of a critical temperature Tc at which
reactions will proceed at a certain rate. We may choose to define the critical temper-
ature as that temperature at which the mean reaction time becomes as short as five
billion years. Because of the rapid increase in reaction rates with temperature, the
nuclear reactions would be quickly exhausted (on the scale of a billion years) if Tc

were significantly exceeded.
The first reactions to occur in a star are those that destroy many of the light

elements initially in the interstellar medium and convert them into helium isotopes.
We list the reactions and the energy released (Sa55a). Note that this energy is carried
away by photons or neutrinos, but we have not specifically shown this here:

2D + 1H → 3He, 5.5 MeV
6Li + 1H → 3He + 4He, 4.0
7Li + 1H → 2 4He, 17.3
9Be + 2 1H → 3He + 2 4He, 6.2
10B + 2 1H → 3 4He, 19.3
11B + 1H → 3 4He, 8.7

}
two − step
reactions

(8-96)

These reactions have lifetimes of the order of 5 × 104 yr at respective temper-
atures ∼ 106, 3×106, 4 × 106, 5 × 106, 8 × 106, and 8 × 106 K. At temperatures
ranging from about half a million degrees to five million degrees, these reactions
take place rapidly as the star contracts along the Hayashi track (Fig. 1.5) — a fully
convective stage in the star’s pre-main sequence contraction. The elements burn up
everywhere including the surface layers of the stars, where they can be destroyed
because convection circulates the material between the interior and the surface.

Brown dwarf stars are stars more than ten times as massive as Jupiter, but with
0.01M� ≤M < 0.08M�. They are not sufficiently massive to ignite hydrogen fu-
sion in their centers (Bo96). However, they can overcome the Coulomb barrier that
prevents planets from indefinitely contracting (Problem 8–1). Hydrostatic equilib-
rium in the core of a brown dwarf is maintained by electron degeneracy pressures.
Regardless of brown dwarf mass, this equilibrium sets in when the brown dwarf
has contracted to a radius roughly equal to that of Jupiter. Their elevated central
temperature permits brown dwarfs to derive nuclear energy through the deuterium-,
lithium-, and beryllium-burning reactions listed in (8–96). Once these light elements
are exhausted, the dwarfs slowly contract, feebly radiating until degeneracy pressure
(8–41) stops further contraction.
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With few exceptions these light elements are only found in small concentrations
in the surface layers of stars. However, large concentrations of, say, lithium can be
found in some stars; these are called lithium stars and constitute a puzzle (De02).
The theory of stellar structure and evolution seeks to explain both such anomalies
and the more general origin of the chemical elements.

None of the reactions listed in (8–96) contribute a large fraction of the total
energy emitted by stars during their lifetime. However, they are of interest in con-
nection with the theory of the formation of elements; and the low abundance of these
chemical elements in Nature provides one test of the accuracy of our notions.

(c) When the temperature at the center of the star reaches about ten million
degrees, hydrogen starts burning (Be39). The reactions and mean reaction times
for any given particle are given below for T = 3 × 107 K. The amount of energy
liberated in each step is also given.

1H + 1H → 2D + e+ + ν, 1.44 MeV, 14 × 109 yr,
2D + 1H → 3He + γ, 5.49 MeV, 6 s,
3He + 3He → 4He + 2 1H, 12.85 MeV, 106 yr.

(8-97)

The first and second reactions have to take place twice to prepare for the third re-
action. Not all of the energy liberated contributes to the star’s luminosity. Of the
energy generated in the first step, 0.26 MeV is carried away by the neutrino and is
lost. The total contribution to the luminosity is therefore 26.2 MeV for each helium
atom formed. This set of reactions is the main branch of the proton–proton reaction.
Other branches are shown in Fig. 8.19.

Hydrogen burning can also take place in a somewhat different way, making use
of the catalytic action of the carbon isotope 12C. This set of reactions comprises the
carbon cycle or a more elaborate scheme sometimes called the CNO bi-cycle, since
carbon, nitrogen, and oxygen are all involved; the CN portion is energetically the
more significant (C�68)*. The reaction times are given for 15×106 and 20×106 K.

Reaction MeV 15 × 106 K 20 × 106 K
12C + 1H → 13N + γ 1.94 ∼ 106 yr ∼ 5 × 103 yr
13N → 13C + e+ + ν 2.22 15 min
13C + 1H → 14N + γ 7.55 2 × 105 yr 2 × 103 yr
14N + 1H → 15O + γ 7.29 2 × 108 yr 106 yr
15O → 15N + e+ + ν 2.76 3 min
15N + 1H → 12C + 4He 4.97 104 yr 30 yr
15N + 1H → 16O + γ 12.1 4 × 10−4 of

15N(P, α)12C rate
16O + 1H → 17F + γ 0.60 2 × 1010 yr 5 × 107 yr
17F → 17O + e+ + ν 2.76 1.5 min
17O + 1H → 14N + 4He 1.19 2 × 1010 yr 106 yr

(8-98)
The second part of the cycle occurs about 4 × 10−4 times as often as the first,

because the 15N(P, α)12C reaction is about 2.5×103 times more probable than the
15N(P, γ) 16O reaction.
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In the decay of the 13N particle, 0.71 MeV is carried off by the neutrino; and in
the 15O decay 1.00 MeV is similarly lost on average. The total energy made avail-
able to the star per helium atom formed is therefore only 25.0 MeV, slightly less
than the energy available from the proton–proton reaction. The reaction rates given
here are for total concentrations of the carbon and nitrogen isotopes amounting to
XCN ∼ 0.005. The relative predominance of the proton–proton reaction and the
carbon cycle as a function of temperature is given in Fig. 8.7. The 13C formed in the

Fig. 8.7. Nuclear energy generation rate as a function of temperature (with ρX2 = 100,
XCN = 5 × 10−3X for the p–p reaction and carbon cycle, but ρ2Y 3 = 108 for the triple-α
process) (Sc58b). (From Martin Schwarzschild, Structure and Evolution of the Stars, c©1958
by Princeton University Press, p. 82.)

CN cycle can act as a source of neutrons as can other particles with mass number
4n+ 1. We will see this in reactions (8–103) and (8–104) below.

The hydrogen-burning reactions we have discussed contribute the energy given
off by the star during its long stay on the main sequence. Once the hydrogen at
the center of the star is largely depleted, helium burning can set in as described
immediately below. In general, hydrogen burning continues in a shell surrounding
the depleted core.

(d) When the hydrogen-burning phase of a star is completed, no further nuclear
energy-generating processes may be available in the core for some time, and the
central portions of the star slowly contract. Hydrogen burning may, however, con-
tinue in a shell surrounding the central core. (Figs. 8.8, 8.9). Meanwhile, the star’s
central temperature rises as potential energy lost in contraction is converted into
heat. At about 108 K, helium burning sets in (Sa52). In this triple-alpha process
three α-particles are transmuted into a carbon nucleus. Two steps are involved:

4He + 4He → 8Be + γ, −95 keV,
8Be + 4He → 12C + γ, +7.4 MeV. (8-99)
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Fig. 8.8. Shell structure of a red giant in whose central regions hydrogen has become depleted
(after Iben (Ib70)). The section on the left is a blown-up version of the tiny disk in the center
of the drawing at the right. (“Globular Clusters Stars” c©1970 by Scientific American, Inc.
All rights reserved.)

The first reaction is endergonic. Energy has to be supplied to make it proceed. The
8Be nucleus is unstable and decays back into two alpha particles. An equilibrium is
set up between alpha particles and 8Be nuclei in which the concentration of 8Be is
quite small, of the order of 10−10 times the concentration of alpha particles. This
particular abundance is determined by the lifetime of the metastable 8Be, the density
and energy (temperature) of the helium, and by the magnitude of the (negative)
binding energy, −95 keV.

(e) The star’s core does not stay long in the helium-burning phase because the
available amount of energy is small (∼10%) compared to the energy generated in
the hydrogen-burning phase. At higher internal temperatures a succession of (α, γ)
processes may set in to form 16O, 20Ne, and 24Mg. This type of process is called
the α-process. After depletion in the core, helium burning may continue in a shell
surrounding the depleted core. This shell is surrounded by a hydrogen-burning shell.
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Fig. 8.9. The change of the internal structure as a function of time of a 25M� star with an
initial elemental composition like that of the Sun (Tables 1.1, 1.2). The time sequence starts
107 yr before final collapse and progresses from left to right, each vertical slice through
the star representing its state at a given time. The sequence terminates at the extreme right,
about an hour before the star undergoes a pre-supernova collapse. Shaded regions indicate the
evolving convective zones and are labeled according to their physical origin. ICZ stands for
an intermediate convective zone, separating interior zones from an external nonconvective
region. The star undergoes an initial mass loss that lowers its mass to ∼19M� about 104

yr before collapse. By then the initial hydrogen core has burned up and hydrogen burning
continues in a shell; helium burning that replaced hydrogen burning in the core has also been
exhausted but continues in a shell interior to the hydrogen-burning shell. A short-duration
carbon-burning phase in the core is succeeded in turn by core neon and oxygen burning, with
both elements subsequently continuing to burn in inner shells. (Courtesy of M. F. El Eid, B.
S. Meyer and L.-S. The (E�04).)

(f) At higher temperatures yet, 109 K, reactions may take place among the 12C,
16O, and 20Ne nuclei. At this stage there would be no supply of free helium, but
these particles can be made available through a (γ, α) reaction. The densities at this
stage are of the order of ρ ∼> 106 g cm−3 . A typical reaction is

2 20Ne → 16O + 24Mg, 4.56 MeV . (8-100)

24Mg can capture alpha particles to form 28Si, 32S, 36A, and 40Ca.
That this equilibrium or e-process actually takes place may be partly confirmed

by the relatively large natural abundance of these isotopes compared to isotopes
of the same substances, or neighboring elements in the periodic table. The even–
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even isotopes of magnesium, silicon, sulfur, argon, and calcium, account for 79,
92, 95, 84, and 97%, by number, of all the isotopes of these respective elements
(An89). That these elements also are abundant relative to neighboring elements is
evident from Table 1.1. The α and e processes probably occur rapidly — perhaps
explosively.

These processes eventually terminate in the iron group of nuclei, the most stable
of all the elements, because their masses per nuclide are at a minimum. By the
time an equilibrium concentration is reached between these even–even nuclei, the
expected temperature and density have risen to

T ∼ 4 × 109 K, and ρ ∼ 108 g cm−3 . (8-101)

(g) In a second generation star — one that has formed from interstellar gases
containing appreciable amounts of the heavier elements — we may find that 21Ne
is produced

20Ne + 1H → 21Na + γ, 2.45 MeV, 109 yr at 3 × 107 K,
21Na → 21Ne + e+ + ν, 2.5 MeV, 23 s . (8-102)

At high temperatures in the helium core we can then have the exergonic reaction

21Ne + 4He → 24Mg + N , 2.58 MeV. (8-103)

Similarly from the carbon cycle there will be some 13C available and we may have
the reaction

13C + 4He → 16O + N , 2.20 MeV. (8-104)

These neutrons are preferentially captured by the heavy nuclei, particularly those
in the iron group, and these can then be built up into heavier elements yet. There
are of the order of a hundred 13C and 21Ne nuclei available for each iron group
element; hence, an abundance of neutrons is at hand. Elements as heavy as 209Bi
can be built up in this way. The chain only ends at 210Po, which α-decays with a
half-life of only 138d. In addition, light nuclei such as 22Ne can also be built up
and, with the exception of the even–even nuclei, most particles with 24 ≤ A ≤ 50
are believed to have been built up through neutron capture. This neutron process
is slow; it is therefore called the s-process. Neutron capture at this stage typically
requires several years to several thousand years. This time scale is slow compared
to beta decay rates, and only those elements can be built up that involve the addition
of neutrons to relatively stable nuclei.

Evidence for a stage with abundant neutrons comes from peaks in the abundance
curve at mass numbers A ∼ 90, 138, and 208. These nuclei have closed shells of
neutrons withN = 50, 82, and 126.

The s-process occurs after the star has traversed the horizontal branch of the
H–R diagram during hydrogen shell and helium burning, and returns to the asymp-
totic giant branch (AGB) portion of the diagram shown in Fig. 1.7. The s-process
is set in motion by a series of helium shell flashes that convectively mix both por-
tions of the outermost hydrogen-rich layer and parts of the helium-rich shell into the
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carbon-rich core. At the o(108) K core temperatures involved, 12C and 1H (see re-
actions (8–98)) can rapidly yield 13C which produces the required neutrons through
interaction with 4He as in reaction (8–104) (Ri99), (He04).

(h) In addition to the slow neutron process, neutrons can also be added to heavy
nuclei in a rapid process (r-process) that takes place at least in some stars. Some
such process is required to explain the existence of elements beyond 210Po.

If a star runs out of all energy sources, a rapid implosion can take place on a free-
fall time scale which, as we saw earlier, corresponds to times of the order 1000 s.
Extremely high temperatures then set in and iron group nuclei can be broken up
into alpha particles and neutrons; for, in 56Fe there are 4 excess neutrons for 13
alphas. All this takes place at temperatures of order 1010 K and with neutron fluxes
of order 1032 cm−2 s−1. The r-process can build up elements to about A ∼ 260
where further neutron exposure induces fission that cycles material back down into
the lower mass ranges.

In the breakup of iron group elements into helium, the ratio of specific heats γ
becomes less than 4

3
so that an implosion occurs (Section 4:20). This is accompa-

nied by γ-photon production, pair formation, and electron–positron pair annihilation
which at these high pressures gives rise to large neutrino fluxes. The neutrino flux
lifts off the outer layers and the rapid neutron process then takes place while the
star is again expanding explosively. It is believed that this is the process involved at
least in some types of supernova explosions. A neutron star forms from the central
imploding core. Prominent among the ejecta is 56Ni, which decays with a mean life
of 8.8 days into 56Co, which in turn decays with a mean life of 111.3 days into
56Fe. This sequential decay powers the optical emission of supernovae for the many
weeks during which they can be seen far across the Universe (Bu00).

Detailed computations based on neutron capture cross-sections and nuclear de-
cay times, both measured in the laboratory, show that many features of the abun-
dance curve in the region between A = 80 and A = 200 can be explained by the
r-process. This leads us to believe that the sequence of events described above is at
least roughly correct. In particular, as Figure 8.10 indicates, the very earliest, most
metal-poor stars, formed from nearly pure hydrogen–helium mixtures early in the
evolution of the Universe, appear to have undergone r-process nucleosynthesis. We
will discuss these Population III stars further in Chapter 13.

Two notes may be added.
(i) Proton-rich isotopes are relatively rare although they can be produced in

(P, γ) processes (sometimes called p-processes) or in a (γ, N ) reaction. Such nuclei
could be produced if hydrogen from the outer layers of a star could come into con-
tact with hot material from the core in convective processes. Generally, however,
the r-process can account semiquantitatively for the abundance ratios of many of
the heavier elements.

(ii) The uranium isotopes 235U and 238U might be expected to arise in roughly
equal abundances in the r-process. Their present ratio as found in the Earth is of
the order of 0.0072. This would be expected on the basis of their respective half-
lives of 0.71 and 4.5 Gyr if we assume a common time of formation ∼6 Gyr ago.
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Fig. 8.10. r-process abundances estimated for the Solar System by subtracting the calculated
s-process contribution from the total observed abundances of nuclear masses. Isotopes of a
given element are joined by lines, dashed lines for even Z and solid lines for odd Z . All
abundances are normalized to silicon, whose abundance would be 106 on the same scale.
Three peaks, and a broad rare earth bump, are the most prominent features of this plot. The
question marks indicate a high uncertainly about the relative roles of the r- and s-processes
in producing krypton (after Seeger, Fowler, and Clayton (Se65)).

Radioactive dating of terrestrial and meteoritic materials, however, still faces many
uncertainties, some of which are illustrated by Problem 13–16 in Section 13:36.

A brief stage in which carbon, oxygen, and silicon are successively burned at
progressively higher temperatures during the explosion of a star in the mass range of
20 to 40M� has been suggested (Ar70) as responsible for the observed abundances
of elements in the range 20 ≤ A ≤ 64. Initially carbon in the helium-depleted core
of a star would undergo fusion reactions of the kind:

12C + 12C → 23Na + P, 2.238 MeV,
23Mg + N , −2.623 MeV,
20Ne + α, 4.616 MeV.

(8-105)

These reactions would take place at a temperature of 2 × 109 K. The initial density
would be of order 105 g cm−3. The reactions are assumed to last for about one-tenth
of a second, after which the explosive expansion has cooled matter enough to stop
the processes. If the star collapses further, however, and reaches higher tempera-
tures, 3 × 109 K, oxygen also burns and thereafter silicon 28Si disintegrates. In this
latter process, the silicon splits into seven α’s, which are absorbed by other 28Si
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nuclei to form increasingly massive nuclei in the range up to 56Fe, as indicated in
Figure 8.11.
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Fig. 8.11. The evolution of nuclear species at the center of a massive star, under constant ther-
modynamic conditions at a central stellar temperature T = 5 × 109 K and density ρ = 109

g cm−3. These calculations track the evolution from helium burning to statistical equilibrium
and show the evolution of nuclear abundances under the α- and e-processes to the final pro-
duction of the iron peak nuclei. Curves for the individual isotopes shown are for α-particles,
12C, 16O, 20Ne, and 24Mg. The silicon group mass fraction is the sum of the mass fractions
of 28Si, 32S, 36Ar, 40Ca, and 44Ti. The iron group mass fraction represents the sum of the
mass fractions of the more massive even–even nuclei, 48Cr, 52Fe, 56Ni, and 60Zn. The species
shown represent the complete set of even–even nuclei from 4He out to the iron peak nuclei.
Silicon burning to the iron group does not proceed directly through capture of heavy nuclei,
but rather through photodisintegrations and lighter particle captures. The initial abundances
at the start of the calculations are shown at the left edge of the diagram, a time 10−7 seconds
after the onset of the assumed temperature and density. After only one microsecond, the iron
group abundance has significantly risen, while C, O, Ne, and Mg have all declined and the
α-particle mass fraction has gradually risen. These trends continue with a steepening decline
in the silicon group mass fraction after a millisecond. By the time a second has passed, final
equilibrium is all but reached. These plots show the very rapid evolution of nuclear species at
the center of a massive collapsing star and explain the predominant formation of iron group
nuclei in stars that collapse just before exploding as supernovae. Courtesy of W. Raph Hix, J.
Craig Wheeler, and their colleagues (Hi98).

These processes will occur if ignition of the nuclear fuel takes place at a tem-
perature ∼5× 109 K and peak density 2× 107 g cm−3 in the helium depleted core,
and give an r-process isotope distribution in accord with solar values, provided a
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neutron excess

η =
(nN − nP)
(nN + nP)

(8-106)

of order ∼0.002 is assumed. This excess, however, appears unnecessary at higher
central temperatures and densities, such as those cited in Fig. 8.12, where statistical

Fig. 8.12. Neutron-capture elements observed in the low-mass ultra-metal-poor star CS
22892-052, whose abundance of iron relative to hydrogen is <10−3 times that of the Sun.
The elements shown are all formed in the r-process. The observed abundances and their error
bars are shown in bold. Calculated r-process abundances for the Sun are shown joined by thin
lines, culminating in error bars plotted with dotted lines. These calculated values are scaled
to the observed abundances of strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), and
molybdenum (Mo) in CS 22892-052, but the absolute abundance of those metals in the Sun is
much higher. The Sun also exhibits appreciable abundances of s-process isotopes produced
in and ejected from relatively low-mass stars. These are absent in the ultra-metal-poor halo
population stars, which appear to have formed early in the Galaxy’s evolution, in the wake
of the earliest, rapidly evolving, massive stars that ended life as supernovae of type II (SNe
II). The r-process elements ejected in those explosions were apparently incorporated in this
next generation of ultra-metal-poor stars, whose low masses and luminosities have permitted
them to shine to this day. For the Sun, the r-process elemental abundances are calculated by
subtracting the more readily computed s-process abundances from the total observed metal-
licities. (Ar70, Co04b). Courtesy John Cowan (Tr04).

equilibrium between nuclear species sets in (Me02a). It appears as though a variety
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of different explosive conditions can provide abundance ratios roughly compatible
with observed values, and that several of these may have been active over the æons.

The central structure of a star may also alter the outcome of an explosion. Neu-
tron stars that are formed in the course of a supernova explosion occasionally are
observed moving at high velocities relative to the center of the expanding, explo-
sively ejected supernova remnant. This suggests that the explosion was asymmetric
and that the star’s original structure could not have been concentric.

8:13 Compact Stars

Thus far we have dealt with stars whose densities are roughly comparable to the
Sun’s, except late in life when their central cores become very compact. We now
turn to stable stars that are orders of magnitude more compact, throughout: the
white dwarfs and neutron stars. The structure of these stars can be considered from
the same general viewpoint that allowed us to understand processes in the interior
of ordinary stars. Before proceeding in this direction we should, however, review
one particular argument that we had brought out to demonstrate the importance of
nuclear reactions in stellar interiors. In (8–1) we had shown that the potential en-
ergy per unit mass of stellar substance is ∼3MG/5R, whereas the available nuclear
energy is of the order of 10−2c2, if matter–antimatter annihilation is ruled out. It fol-
lows that very compact stars may be able to liberate amounts of gravitational energy
in excess of the normal nuclear energies available. This happens when

R ∼<
MG

10−2c2
∼ 107 cm = 100 km (8-107)

for stars of one solar mass. This radius is still appreciably larger than Rs, the
Schwarzschild radius:

Rs =
2MG

c2
. (8-108)

Because white dwarfs typically have masses of the order of 1033 g, the correspond-
ing Schwarzschild radius would be

Rs ∼ 1.5× 105 cm = 1.5 km,

which is small compared to the white dwarf radii ∼<104 km noted below in Section
8:14, but only an order of magnitude lower than the neutron star radii ∼15 km,
considered in Section 8:16.

8:14 White Dwarf Stars

We previously suggested that a compact star can be so dense that matter becomes
degenerate in its interior. At the surface of a white dwarf the density and its outer
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layers are not degenerate. However, the nondegenerate layer is so thin that we can
treat the star as completely degenerate throughout.

We first note that most of the pressure in the star’s interior must be provided by
the degenerate electrons. The more compact the star is, the higher the Fermi energy
of the electrons and the higher the electron gas pressure. The partial pressure of
the nuclei is negligibly low, because, as discussed in Section 4:15, the nucleons are
nondegenerate. This permits us to set the total pressure equal to that of the electrons
alone, P = Pe.

In Section 8:6 we gave the electron pressure for a nonrelativistic and for a com-
pletely relativistic degenerate electron gas, respectively, as

P =
h2

20memH

(
3

πmH

)2/3( (1 +X)
2

ρ

)5/3

nonrelativistic (8–41)

and

P =
hc

8mH

(
3

πmH

)1/3((1 +X)
2

ρ

)4/3

relativistic. (8–43)

In general, there will exist an important transition region where the gas is neither
highly relativistic nor completely nonrelativistic. In that region the pressure can be
shown (Problem 8–4) to take the form:

P =
8πm4

ec
5

3h3
f(x), ρ = µe

8πmHm
3
ec

3

3h3
x3 , (8-109)

where
x =

p0

mec
, (8-110)

µe =
2

1 +X
. (8-111)

The function f(x) is

f(x) =
1
8
[x(2x2 − 3)(x2 + 1)1/2 + 3 sinh−1 x] . (8-112)

PROBLEM 8–4. For a degenerate relativistic gas all momentum states (4–65) are
filled, and equation (5–30) holds. Using equation (4–27) show that

P =
1
3

∫ p0

0

pυ(p)ne(p) dp (8-113)

=
8π

3meh3

∫ p0

0

p4 dp

[1 + (p/mec)2]1/2
. (8-114)

Setting sinhu = p/mec, show that
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P =
8πm4

ec
5

3h3

∫ u0

0

sinh4 u du . (8-115)

We see that (8–115) has the same coefficient as (8–109). We can also show that
integration of (8–115) yields the expression (8–112) for f(x).

Small values of x, x  1, correspond to the lower density, outer regions of
the star, where the gas is nonrelativistic, while high x-values correspond to the fre-
quently relativistic central portions of the star.

PROBLEM 8–5. Evaluate f(x) in the limits x  1 and x � 1 and show that
equations (8–41) and (8–43) are obtained.

Equation (8–109) is computed on the basis of statistical mechanics and involves
no assumptions concerning stars. It is an equation of state for a partially relativistic
degenerate gas no matter where it may be found. We should note that the pressure is
temperature independent in this equation. It only depends on x, which is a measure
of the momentum at the Fermi energy of the electron gas; this is only density depen-
dent. The mathematical problem of computing conditions at the center of the star
can therefore be separated into two parts: one hydrostatic, the other thermodynamic.

The hydrostatic equilibrium conditions are the same as those obtained earlier:

dP

dr
= −ρGM(r)

r2
,

dM(r)
dr

= 4πr2ρ . (8–7), (8–8)

To integrate these equations, we assume that we know what the chemical compo-
sition of the white dwarf is, because that composition determines the value of µe

in equation (8–111). We next choose an arbitrary central density ρc for the star, and
then integrate the hydrostatic equations outward from the star’s center until we reach
a radius r where the pressure has dropped to zero. In this computation that radius
represents the surface of the star. The value of M(r) at this radial distance corre-
sponds to the total mass of the star and the value of r represents the actual stellar
radius.

This procedure can be repeated for a range of different central densities, and
we therefore obtain a whole family of stellar models with varying central densi-
ties. Similarly, we can obtain a new family of models having different chemical
compositions; but no recomputation is required here, because a change of chemical
composition is mathematically equivalent to a simple change of variables.

Let us see why.
If the initially computed values are denoted by primes, and new variables —

corresponding to a new chemical composition — are denoted by unprimed symbols,
we find that the required relations are

P = P ′,

ρ =
µe

µ′
e

ρ′,



354 8 Stars

M(r) =
(
µ′

e

µe

)2

M(r′) , (8-116)

r =
(
µ′

e

µe

)
r′ .

We can readily see that substitution of these expressions into equations (8–109),
(8–7), and (8–8) leaves their form unchanged; a change in the chemical composition
is therefore equivalent to a change in central density. Consequently we are dealing
with a one-parameter family of models. Everything about a given star can be de-
scribed entirely in terms of an equivalent central density. We present the results of
the described computations in the form of Table 8.3.

Table 8.3. Central Densities, Total Mass, and Radius of Different White Dwarf Models, Tak-
ing µe = 2 (Negligible Hydrogen Concentration).a

log ρc M/M� log R/R�

5.39 0.22 −1.70
6.03 0.40 −1.81
6.29 0.50 −1.86
6.56 0.61 −1.91
6.85 0.74 −1.96
7.20 0.88 −2.03
7.72 1.08 −2.15
8.21 1.22 −2.26
8.83 1.33 −2.41
9.29 1.38 −2.53
∞ 1.44 −∞

a See text for comments. (After M. Schwarzschild (Sc58b), from Structure and Evolution of
the Stars c©1958 by Princeton University Press, p. 232.)

We note that:

(1) The larger the mass of the white dwarf, the smaller is its radius.
(2) For masses comparable to the Sun, the white dwarf’s radius is a factor of

∼102 smaller than R�.
(3) There exists an upper limit to the mass — the Chandrasekhar limit — above

which no stable white dwarf configuration exists — infinite central pressure would
be needed to keep the star from further collapse. This limit is ∼1.4M�.

The reasons for the limit are apparent if we consider that there are quite different
relations between central pressure and density in the relativistic and nonrelativistic
extremes. From (8–41) and (8–43):

nonrelativistically : P ∝ ρ5/3,
dP

dr
∝ ρ2/3

(
dρ

dr

)
, (8-117)
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relativistically : P ∝ ρ4/3,
dP

dr
∝ ρ1/3

(
dρ

dr

)
. (8-118)

For both the gravitational pressure gradient given by (8–7) and (8–8) is

dP

dr
∝ −ρ(r)

r2

∫ r

0

ρ(r′)4πr′2 dr′ . (8-119)

In the crudest approximation, we can set the density equal to the stellar mass divided
by the cube of the radius R so that

nonrelativistically : dP/dr ∝M5/3/R6 ,

relativistically : dP/dr ∝M4/3/R5 ,

gravitational : dP/dr ∝M2/R5 .

(8-120)

We note that the dependence of the relativistic pressure gradient on radius has
the same power as the gravitational force. Both increase as R−5 as the star con-
tracts. This means that once a relativistic white dwarf core is forced to contract by
hydrostatic pressure, the counterforce produced through contraction increases at the
same rate as the gravitational attraction, and that tends to compress the star even
further. There is, therefore, no way in which the star can come into equilibrium.
On the other hand, a nonrelativistic gas at the center of a white dwarf can always
adjust itself through contraction, until the gravitational forces compressing the star
are countered. We then have the following situation. For small stellar masses, the
central pressure is determined more nearly by the nonrelativistic approximation,
and the star can find a stable equilibrium position. For more massive objects, the
central density becomes so high during contraction that the relativistic regime is
reached and further contraction no longer leads to equilibrium. The Chandrasekhar
limit is therefore symptomatic of the transition from a predominantly nonrelativistic
to a predominantly relativistic central core (Ch39)*. Rather similar arguments set
roughly similar limits to the masses of neutron stars, as we will see in Section 8:16
and Figure 8.17.

8:15 Stellar Evolution and The Hertzsprung–Russell Diagram

At this stage it is useful to draw a connection between events in the interior of a
star and the star’s appearance at its surface. As described in Chapter 1, a star leaves
the main sequence of the Hertzsprung–Russell diagram on exhausting the hydrogen
content of its central core. The theory of stellar evolution allows us to determine the
ages of stars at this stage. Using plausible stellar models, we can compute what the
hydrogen-burning time scale should be for stars having different masses. A globu-
lar cluster contains stars with a variety of masses; but at any given time only stars
having a particular color and magnitude are about to leave the main sequence to em-
bark onto the red-giant branch. Since stellar luminosities and masses are related (see
Problem 8–3), we can use the turn-off point where stars leave the main sequence as
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Fig. 8.13. Visual magnitude V plotted against the visual-infrared (V−I) color for the globular
cluster M12. The plot in the panel on the left shows the selection of stars from which the
age of the cluster was estimated. In the panel on the right the best fit to these data is shown
by the filled circles. Additional data at fainter magnitudes (vB02), are shown as open cir-
cles. The theoretical curves are isochrones – snapshots of the trajectories of stars of different
masses through the (V, V−I) color-magnitude diagram at different epochs. From upper left
to lower right the isochrones refer to cluster ages 10, 11, 12, and 14 Gyr, the least massive
stars taking the longest time to turn off the main sequence. Reflecting the great age of the
cluster, whose stars formed when the abundance of heavy elements in the Universe was still
low, the isochrones assume the abundance of iron relative to hydrogen, indicated by [Fe/H]
= −1.31 — the notation is logarithmic — to be ∼20 times lower than the solar abundance.
Reddening of the starlight by interstellar dust needs to be taken into account and is one of the
main uncertainties in producing such a plot. In deriving the isochrones the authors concluded
that the intrinsic (V−I) color of M12 is E(V−I) = 0.249 magnitudes lower than shown in this
plot. The absolute magnitude Mv is 14.11 magnitudes lower than the apparent magnitude
V ≡ mv. Although the isochrone fit to the data is not perfect at the high luminosity end of
the plots, the indicated age of ∼12 Gyr is consistent with a variety of other cosmological age
measures. (Courtesy of J. R. Hargis, E. L. Sandquist, and M. Bolte (Ha04).)
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an indicator of the masses of stars that are just completing the hydrogen-burning
phase. The age of these stars can then be calculated and this defines how long ago
the stars must have been formed — assuming that the cluster stars were all born
at roughly the same time. The right-hand portion of Fig. 8.13 shows the calculated
tracks that stars with ages in the range 10 to 14 Gyr would follow near the turn-off
point, and show that the age of the globular cluster M12 must be about 12 Gyr. Inter-
estingly, the ages of different clusters computed in this way vary considerably, indi-
cating that they were formed at different epochs. They may have originally formed
in smaller galaxies that eventually were tidally captured and merged with the Milky
Way.

Figure 8.14 indicates the path through the Hertzsprung–Russell diagram follow-
ing evolution off the main sequence. Lifetimes here are far shorter. For stars of 15
and 120M�, the hydrogen-burning phase, respectively, ranges from roughly 12 to
3×106 yr, and the corresponding helium-burning phase lasts only 2 to 0.5×106 yr
(Sc92). The detailed evolution depends not only on the mass of the star but also on
its initial chemical composition. When the Universe was young, metal abundances
were orders of magnitude lower than today, and helium abundances were ∼20%
lower. The impact of these differences on a star’s evolution is reflected by the dif-
ferences in the two panels of Fig. 8.14.

Let us still consider the appearance of white dwarfs in the Hertzsprung–Russell
diagram. Once a white dwarf’s interior becomes degenerate no further contraction
takes place. The star then gradually cools down over a long period, but no further
nuclear reactions take place. This determines the star’s location in the H–R diagram.
We recall the definition of the effective temperature of a star

L = σT 4
e (4πR2) (4–78)

and rewrite this in terms of the solar luminosity and surface temperature:

log
L

L�
= 4 log

Te

Te�
+ 2 log

R

R�
. (8-121)

If we then use the white dwarf radii and masses from Table 8.3, we can obtain
plots of L against Te as a function of different mass values. Choosing five different
representative masses, we obtain the curves shown in Fig. 8.15.

The agreement with observations is satisfactory, and we can feel reasonably
confident that the discussion pursued here is at least roughly correct. This is im-
portant. In our neighborhood of the Galaxy white dwarfs have a number density of
∼5× 10−3 per cubic parsec, corresponding to ∼3.5× 10−3M� pc−3 (Ho02). The
local overall mass density is ∼0.1M� pc−3. We should come to understand white
dwarfs well if we are to learn how low-mass stars die.

Stars more massive than the Chandrasekhar limit cannot maintain themselves as
white dwarfs and collapse to become even more compact.
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Fig. 8.14. Theoretical post-main-sequence evolutionary tracks through the Hertzsprung–
Russell diagram for stars of different masses. The left panel shows plots for an initial so-
lar composition, X = 0.68, Y = 0.30, Z = 0.02. The right panel shows plots for an
initially primordial composition with almost no heavy elements, Z = 0.001, a helium abun-
dance Y = 0.243, and a hydrogen abundance X = 0.756. Slow phases of nuclear burning,
where a star spends appreciable time, are indicated by hatched areas. For stars more mas-
sive than 7M� the tracks show evolution through the end of carbon burning. For stars with
2 ≤ M/M� ≤ 5 the tracks show the stars evolving to the early phase on the asymptotic-
giant branch (AGB) on the right. For stars with M ≤ 1.7M� the evolution is traced up to the
helium flash. For stars M > 15M� and Z = 0.001, helium burning takes place mainly in
the blue supergiant region, whereas for solar-abundance stars with 15 < M/M� < 25, most
of the helium burning occurs in the AGB phase. Stars with M > 40M� for Z = 0.02, and
M > 85M� for Z = 0.001, are Wolf–Rayet stars with low surface-hydrogen abundances.
During helium burning they undergo mass losses at rates ≥ 10−4M� yr−1. At the end of
carbon burning, stars with Z = 0.02 are very blue and have a lowered luminosity. (After
Schaller et al. (Sc92).)

8:16 Supernovae, Neutron Stars, and Black Holes

Stars of intermediate mass develop a core of densely packed neutrons. The masses
of relatively few neutron stars are known. They are derived from observed orbital
motions of binary pulsars and, as seen in Figure 8.16, cluster closely around 1.4M�
(Th93).

We can imagine the evolution toward this state in the following way (Sa67)*.
As a star evolves, the value of µe in the equations of Section 8:14 changes. Ini-
tially, as hydrogen is depleted, µe assumes a value of 2. This holds, for exam-
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Fig. 8.15. White dwarf Hertzsprung–Russell diagram. Lines of constant radius are shown.
Also shown are the masses based on completely degenerate core models containing elements
having µe = 2. (After Weidemann (We68). Reprinted with permission from Annual Review
of Astronomy and Astrophysics, Vol. 6, c©1968 by Annual Reviews, Inc.)

ple, for a star in which the major constituent is 12C. But as the chemical ele-
ments evolve toward the more neutron-rich species, equations (8–36) and there-
fore (8–111) no longer hold, and for a star rich in 56Fe we find µe = 2.15.
Now, the Chandrasekhar limiting mass is proportional to µ−2

e , as seen from
(8–116), so that we can draw a number of curves of mass against central den-
sity — as in Fig. 8.17. In these curves we assume the lowest possible tempera-
ture and we show plots for stars of various chemical compositions. Correspond-
ing to each chemical composition we have a different Fermi energy EF for the
electrons at the center of the star — a direct consequence of the star’s changed
central density. As the central density increases, for a given composition, the
electron Fermi energy always increases up to the point where inverse beta de-
cay takes place and drives the electrons into the nuclei. This is what produces
the increasingly neutron-rich elements cited in Table 8.4. The symbolic reaction
is

P + e→ N + ν. (8-122)

The reverse reaction cannot take place if the Fermi energy is sufficiently high be-
cause all the electron states into which the radioactive nucleus might decay are al-
ready occupied. This gives otherwise unstable nuclei an environmentally induced
stability. The neutrinos diffuse to the star’s surface and escape; the star loses energy.
This process is called neutronization.
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Fig. 8.16. Masses of 17 neutron stars. Stars found in massive X-ray binaries are shown at the
top; radio pulsars and their companions are shown at the bottom (Th93).

Table 8.4. Density and Electron Fermi Energy at Which Inverse Beta Decay Becomes Ener-
getically Favorable (after E. E. Salpeter (Sa67)).a

12C 32S 56Fe 120Sn

log ρ (g cm−3) 10.6 8.2 9.1 11.5
EF (Mev) 13 1.7 3.7 24

aReprinted with permission of the publishers of The American Mathematical Society, from
Lectures in Applied Mathematics, c©1967, Vol. 10, Part 3, “Stellar Structure Leading up to
White Dwarfs and Neutron Stars,” p. 34.

The value of µe, which is an effective nuclear mass per free electron, also in-
creases during contraction. When the Fermi energy reaches 24 MeV, the density is
ρ ∼ 1011.5 g cm−3 and µe ∼ 3.1. At this stage free neutrons become energetically
favorable so that a further increase in density leads to an increased partial density
of neutrons, a practically constant density of ions, and a constant electron Fermi
energy of 24 MeV.

As the density increases, EF increases to the point where reaction (8–122) pro-
ceeds rapidly and the electrons are driven into the nuclei causing the collapse of



8:16 Supernovae, Neutron Stars, and Black Holes 361

Fig. 8.17. Mass of a cold star, as a function of central density. The full curve is for a repre-
sentative initial chemical composition and assumes relativistic hydrostatic equilibrium. The
curves labeled C and Fe assume pure carbon and iron composition. Negative slopes on the
curves indicate regions where there are no hydrostatically stable configurations. The density
is given in units of g cm−3. The dashed portion of the curve near central densities of the order
1018 g cm−3 is very uncertain because the physical state of matter at these densities is uncer-
tain. In addition to white dwarfs and neutron stars, hypothetical strange stars are also shown
(Sa67, G�97). (Reprinted with permission of the publishers of The American Mathematical
Society, from Lectures in Applied Mathematics, c©1967, Vol. 10, Part 3, “Stellar Structure
Leading up to White Dwarfs and Neutron Stars,” p. 33.)

the central core because the electron pressure no longer increases at a sufficient rate
during the contraction.

In Fig. 8.17 the curves for stars containing 12C and 56Fe show a maximum mass
at ρc values where inverse beta decay first sets in and µe increases. To the right, the
curve for free neutrons is shown. It has a maximum just beyond ρc ∼ 1015 g cm−3 .

The reason for this maximum is relatively easy to understand if we compute
the mass expected, respectively, on the basis of a nonrelativistic neutron gas and an
extreme-relativistic gas.

The virial theorem gives the ratio of pressure P to density ρ in terms of stellar
mass as

3
〈
P

ρ

〉
∼ GM

R
∝M2/3〈n1/3〉, (8-123)

where mean values are denoted by brackets, and n is the number density of neutrons.
As can be seen from (8–35), (8–40), and (8–42),

P ∝ n5/3 nonrelativistic, (8-124)
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P ∝ n4/3 extreme relativistic. (8-125)

Similarly, the ratio of mass density to number density is

〈ρ〉/〈n〉 ∼ mN nonrelativistic, (8–126)

〈ρ〉/〈n〉 ∼ EF

c2
extreme relativistic, (8–127)

because in the extreme case, the rest-mass energy can be neglected. But because
EF ∝ n1/3, we then have

〈ρ〉 ∝ 〈n〉4/3 extreme relativistic, (8-128)

and from equation (8–123) we then find

M2/3 ∝ 3
〈
P

ρ

〉
〈n1/3〉−1 ∝

{
〈n1/3〉 nonrelativistic,

〈n1/3〉−1 extreme relativistic.
(8-129)

This means that the mass first increases as 〈n〉1/2 and then decreases as 〈n〉−1/2 as
the density continues to increase.

The masses of neutron stars have been ascertained only from observations of
pulsars in binary systems. Double neutron star binaries appear to have masses of
∼1.4M� (Fig. 8.16), often assumed to also be typical of isolated neutron stars. But
other binaries that include neutron stars yield masses ranging up to ∼2M� (Ni05).
If this higher mass is characteristic of isolated neutron stars, it may be providing
clues about the nature of the collapse that generated these compact objects.

The cores of massive neutron stars may contain baryonic matter that is liquid
or crystalline and contain drops, rods, or slabs, of quarks or hadrons. Quarks are
the constituent particles of nucleons and mesons. Nucleons — protons or neutrons
— contain three quarks; mesons contain two. The term hadron comprises nucleons
or mesons in any of their ground or excited states. Hyperons also play a role in
such models. Hyperons are strange particles that decay into pairs of hadrons —
pions and/or nucleons. The physics of liquid and solid quark, hadronic, or hyperon
structures is not yet understood, making the equations of state of matter difficult
to compute. This makes the rigidity of the cores quite uncertain. An indication of
the complexity of neutron star structures is given in Fig. 8.18. At the high densities
involved, general relativistic effects must also be taken into consideration. This is
the domain that is of greatest interest, because potentially it is in these last stages
that a star can give off by far its greatest amount of energy by converting a large
fraction of its mass into radiation, neutrinos, and perhaps gravitational waves. The
star then turns into a black hole.

The neutrino pressures resulting from the collapse of a massive star are believed
responsible for exploding away the star’s outer layers in a supernova explosion.
Computation of the various stages in this hydrodynamic process are difficult, and
we do not know just how such explosions take place. Nevertheless, a central factor
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Fig. 8.18. Density and structure of white dwarf and neutron stars. The diagram on the left
is a white dwarf model. The shell structure on the right represents a neutron star. Note that
the white dwarf radius is 6400 km and that of the neutron star is only 10.5 km. The neu-
tron star contains an inner sphere of pure quark matter surrounded by a crystalline region
of mixed quark and hadronic matter. Various kinds of phases are shown for h(adronic) and
q(uark) matter. Only the dominant constituent is given in the labels. Particles in these regions
include quarks, nucleons (N), hyperons (Y), and leptons. A liquid of neutron star matter, con-
taining nucleons and leptons surrounds these mixed phases. A thin outer crust of heavy ions
provides the star’s surface composition (after Ruderman (Ru71) and Glendenning (G�97).
Reprinted with permission from Ruderman, “Solid Stars,” c©1971 by Scientific American,
Inc. All rights reserved.

in the collapse to the neutron star and black hole stages is the liberation of gravita-
tional energy and the formation of neutrinos, many of which escape into space. A
glance at Table 1.6 shows that the energy of neutrinos emitted in stellar core collapse
actually exceeds the total radiant, or electromagnetic radiation released in stars. Al-
though neutron stars and black holes are rare, accounting for only ∼5% of the stellar
population, by mass, the gravitational energy that can go into neutrino production
during the final stages of stellar collapse is extremely high. In the spirit of (8–1) it
amounts to 3MnG/5rn ∼ 1.2×1020 erg g−1 for a neutron star mass Mn = 1.4M�
and radius rn = 15 km. This contrasts to 6 × 1018 erg g−1 released in hydrogen
burning.

This ultimate form of stellar death is made particularly complex by a number
of important considerations that we have so far neglected to mention. Not only is
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it essential to know whether neutrons, quarks, hadrons, or hyperons are present at
any particular depth in the star, we also need to consider whether these particles
will arrange themselves as fluids or superfluids, crystals of various kinds, or phases
that have no analogue in the laboratory. These will have to be understood more
thoroughly before we can claim to understand the structure of neutron stars.

We also do not know much about the formation of black holes. We believe that
a neutron star that is sufficiently massive undergoes further collapse to from a black
hole where, as discussed in Chapter 5, it no longer can emit any radiation that will be
received outside the star. But what happens to the magnetic field when a black hole
is formed, and to the electric charge? How can we talk about conservation of baryons
in the Universe when all these particles disappear without a trace, giving off only
photons or gravitational radiation and neutrinos as the collapse takes place? What
are the correct dynamic equations in such a collapse? Are they, as we tend to assume,
the equations of general relativity? Again a thorough discussion is needed of this
problem, which already has a long and distinguished history (Op39a), (Op39b),
(G�97).

8:17 Pulsars, Magnetars, and Plerions

We know that an ordinary star which suddenly collapses has to rotate rapidly if
angular momentum is to be conserved. The most rapidly spinning neutron star dis-
covered todate rotates 716 times per second (He06). However, most neutron stars
exhibit spin periods ranging from 1/60 to 8.5 s. In a rapidly rotating neutron star,
the co-rotating magnetic field of order 1012 gauss can accelerate charged particles
to cosmic-ray energies. Relativistic charged particles intensely radiate electromag-
netic waves, most often radio waves, directed along the magnetic poles. As the star
rotates about its spin axis, which generally is not aligned with the magnetic poles,
this radiation can be directed toward Earth, once per rotation, and appears pulsed:
hence the name pulsar. In time, the loss of angular momentum carried away by the
radiation and cosmic-ray particles slows down the rotation, and after ∼107 yr the
spin rate diminishes to the point where relativistic particles no longer are created.

Some of the most rapidly rotating pulsars may have also received an initial kick
from the supernova explosion that gave them birth. The kick makes itself appar-
ent through the high velocities, about 1000 km s−1, with which certain pulsars are
seen streaming through the Galaxy — speeds exceeding the escape velocity from
the Galaxy’s gravitational pull. Some neutron stars have magnetic fields ranging to

∼>1014 − 1015 gauss. Their strong magnetic fields have led to the name magnetar.
The strengths of the magnetic fields spin the stars down on time scales of ∼105 yr.
A few of these also exhibit γ-ray and X-ray emission, respectively, the soft-γ-ray
repeaters (SGRs) and the anomalous X-ray pulsars (AXPs) (Ka03).

SGRs are observed to periodically emit a burst of X-ray and low-energy gamma
rays. The burst may be due to the release of internally trapped magnetic fields as
they break through the solid crust of the neutron star. For SGR 1806-20 the emit-
ted X-rays showed a spectral absorption feature at hν ∼ 5 keV ∼ 8 × 10−9 erg
corresponding to a spectral frequency ν ∼ 1.2 × 1018 s−1 suggestive of the cy-
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clotron frequency νc = ωc/2π = eB/2π/mpc to be expected from a proton in a
field B ∼ 1015 gauss (Ib03).

AXPs, whose slow rotation period, like those of SGRs are in the 6–12 s range,
appear to emit considerably more X-ray energy than can be accounted for by the
star’s spin-down rate. This suggests that the particles emitting the X-rays are accel-
erated by the strong electric fields generated as the star’s magnetic field decays and
equation (6-16) comes into play. AXPs and SGRs may be closely related types of
magnetars. None of the observed AXPs show any sign of being binary stars. This
is in contrast to binary X-ray pulsars. These emit X-rays as material from a close
binary companion falls directly onto a compact star’s surface or onto its orbiting
compact accretion disk. The accreting star is spun up to a high rotational speed
through absorption of angular momentum from material falling onto its surface, and
has spin periods measured in milliseconds.

A few pulsars appear embedded in an expanding bubble of relativistic parti-
cles and magnetic fields powered by the pulsar. These bubbles, called plerions cool
through synchrotron emission and adiabatic expansion, as surmised from their radio
and X-ray spectra. They appear to be found only within the youngest Galactic su-
pernova remnants, and therefore probably do not survive more than a few thousand
years.

8:18 Hypernovae and Gamma-Ray Bursts

Gamma-ray bursts (GRBs) reaching Earth from remote sources last anywhere from
0.01 to 100 s and during this period are the brightest γ-ray sources in the sky. For
more than two decades after the first report of their discovery (K�73), there was
no indication of their nature or origin. Then, in the late 1990s, it became clear that
GRBs with durations exceeding 2 s appear to originate in hypernova explosions in
distant galaxies.

Hypernovae are extremely energetic supernovae. In contrast to more common
supernovae that eject material at a few thousand kilometers per second, hypernovae
explosively eject matter at initial velocities in excess of 30,000 km s−1. A current
model for long-duration GRBs and hypernova explosions postulates that they result
from the core collapse of an isolated massive star — a core collapse supernova
or collapsar. As the star collapses a black hole embedded in an accretion disk is
formed in its center. Neutrinos emitted from the accretion disk exert an outward
pressure on the collapsing star, through absorption, scattering, and the formation of
electron/positron pairs and photons in neutrino–antineutrino annihilation. Neutrino
annihilation occurs mainly in the innermost regions of the disk, above and below
the black hole, and along the rotation axis of the disk (Fr03).

The neutrino scattering and absorption opacities, κsc and κabs, respectively, are

κsc ∼ 5α2 + 1
24

〈ε2ν〉σ0

(mec2)2
ρ

mu
(Yn + Yp) and (8-130)
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κabs =
3α2 + 1

4
〈ε2ν〉σ0

(mec2)2
ρ

mu
(Yn + Yp) . (8-131)

Here, α = −1.26 is a coupling constant, εν is the neutrino energy,
σ0 = 1.76 × 10−44 cm2, ρ0 is the density of stellar material along the rota-
tion axis above the disk, mu = 1.67 × 10−24 g is the atomic mass unit, and
Yn ≡ (nn/nb) ∼ 0.5 and Yp ≡ np/nb ∼ 0.5 are the number fractions of neu-
trons and protons, with respect to the total number density of baryons nb.

The neutrinos in the disk are largely produced through capture of degenerate
electrons and inverse beta decay (8–92), as high electron-degeneracy-pressures, pro-
duced in the collapse drive electrons into nuclei. However, antineutrinos can also be
produced. The mutual annihilation produces electron–positron pairs and photons
which are readily absorbed by the surrounding medium. Onset of the explosion
along the rotation axis occurs when the inward-directed gravitational acceleration
of the black hole on matter in the collapsing star ag = −MBHG/r

2 is exceeded by
the outward-directed acceleration due to neutrino scattering, absorption, and anni-
hilation, ag + aν,sc + aν,abs + aν,ν > 0.

For a star with an initial mass in the range ∼40 to 60M�, the rate at which the
central black hole accretes mass has been estimated to be between ∼0.5−1M� s−1,
and the mass of the final black hole is thought to be around 14 to 23 M� (Fr03).
The accretion energy released as mass from the disk spirals into the black hole,
is converted into the explosive energy of a bi-lobed, highly-relativistic jet beamed
along the star’s poles. As would be expected from the discussion of Section 5:9, the
high Lorentz factor Γ (υ) ≡ [(1 − (υ/c)2]−1/2 ∼ 100 of the ejected jet accounts
for a confined angle within which the γ-emission appears particularly strong. More
important, the high value of Γ (υ) accounts for two other factors — the high energy
of the individual highly Doppler-shifted γ-photons received, and the short duration
of the GRB. The Doppler shift (5–44) tells us that the energy of the photons arriving
at Earth will be Doppler shifted by a factor Γ (υ). And, as equations (6–149) and
(6–150) tell us, if the duration of emission in the rest-frame of the jet is ∆trest,
the duration of the γ-emission for an observer at whom the jet is directed will be
∆tobs ∼ (1 − υ/c)∆trest ∼ (1/2)Γ (υ)−2∆trest. With a Lorentz factor as high
as Γ (υ) ∼ 100, γ-rays emitted by the jet in the course of two days would arrive
at Earth within an interval of 10s. However, for distant GRBs the cosmic red shift
z increases this duration by a factor of z + 1. GRB 050904 with red shift z=6.295
had a duration of 225 s (Ka06). As we will see in Chapter 11, such a high red shift
indicates that stars sufficiently massive to explode as hypernovae already existed
when the Universe was merely 1 Gyr old.

More recently, GRBs lasting less than ∼0.1 s in the higher energy 100-400 keV
range have been identified as due to the merger of neutron-star-, black-hole-, or
mixed neutron-star/black-hole-binaries to form a single black hole (Ge05, Vi05).
Such mergers provide a way in which the vast amounts of energy liberated in a
GRB can be produced in such short bursts. GRB 050509 and 050709, respectively
observed on May 9 and July 9, 2005, were bursts emanating from galaxies at red
shifts z = 0.225 and 0.16, with explosive energies in the 1048 − 1050 erg range, if
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their emission was isotropic. The emission, however, is likely to be strongly beamed.
The total emitted energy released in such mergers could potentially be as high as
of order M�c2 ∼ 1055 erg if the radiation efficiency were high, though current
expectations are that this efficiency is likely to be low. Further observations will
undoubtedly clarify all these questions.

8:19 Microquasars

Microquasars are black holes of stellar mass. On a far smaller scale, they mimic
quasars, which are black holes with masses ranging up to ∼109M�; but because
microquasars can be locally found in the Galaxy they can be studied more readily.
Microquasars are believed to be spinning black holes with masses of order 10M�,
surrounded by an accretion disk roughly 103 km across. The accretion disk contin-
ues to be fed mass from a close binary companion star. As discussed in Problem
5–15, X-rays are emitted as matter is tidally stripped from the star and crashes onto
the disk. Along the accretion disk axis, jets of relativistic particles stream out at
velocities that appear to exceed the speed of light. These superluminal velocities,
however, are only apparent as we saw in Section 5:12 (Mi98).

8:20 Vibration and Rotation of Stars

We know from the virial theorem for nonrelativistic systems that the absolute value
of the potential equals twice the kinetic energy per unit mass. In a star this kinetic
energy is represented by the thermal motions of the atomic particles whose speeds
are of order of the speed of sound υs. We can therefore write

GM

R
∼ υ2

s , (8-132)

where G is the gravitational constant, M is the mass, and R is the radius of the
star. We can now estimate a very rough order of magnitude of the stellar vibration
frequency, by noting that the period Pvib should be comparable to the time it takes
to transmit information about pressure changes across the entire dimension of the
star. This time equals 2R/υs, and we can write

P−1
vib = νvib ∼ υs

2R
∼
√
GM

4R3
∼
√
Gρ, (8-133)

where ρ is the density of the stellar material.
Accordingly, the vibrational periods for neutron stars ought to be about one-

tenth of a millisecond, and the vibration period for white dwarfs should be of the
order of a second. These stars can have a wide range of densities, and only represen-
tative periods are given in Table 8.5. These can vary by over an order of magnitude.
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The maximum rotational frequency is determined by the equilibrium between
centrifugal and gravitational forces, since at higher frequencies the star would be
torn apart:

Rν2
rot, max =

GM

(2πR)2
(8-134)

and

... P−1
rot, min ∼ 1

π

√
Gρ. (8-135)

Table 8.5. Approximate Relation Between Stellar Density, Vibrational Period, and Minimum
Rotational Period.

Star Density ρ Pvib Prot,min

Neutron star 1015 g cm−3 10−4 s 3 × 10−4 s
White dwarf 107 1 3
Central core of Sun 150 102.5 103

Brown dwarf 10 103 103.5

RR Lyrae star 10−2 104.5 105

Cepheid variable 10−6 106.5 107

When the Crab Nebula pulsar was discovered to have a period of only 33 ms,
it became clear that white dwarfs could not be considered to play a role in the pul-
sar phenomenon because the vibration frequencies of white dwarfs would be too
low. On the other hand, the rotational period of a neutron star could well be several
milliseconds. The discovery that the period of the Crab Nebula pulsar is increas-
ing, so that it could have been closer to the minimum expected rotational period of
a neutron star shortly after the supernova explosion in the year 1054 AD, further
supported the theory that pulsars are rapidly rotating neutron stars that are losing
angular momentum and slowing down as time goes on. Because magnetic pressures
would tend to disrupt rapidly rotating neutron stars, the actual minimum rotation
period will be somewhat greater than shown in Table 8.5.

Table 8.5 also shows that RR Lyrae variables and Cepheid variables have peri-
ods consistent with the very simple vibration picture discussed in the present sec-
tion. Such stars are indeed pulsating. This can be judged by the periodic Doppler
line shifts and color temperature changes. The observed periodicity is the pulsation
period. The nova remnant DQ Her (Nova Herculis, 1934) has a 71 s period, and
periodic behavior has been seen in some white dwarfs, although these periods are
too long to represent fundamental pulsations. For the Sun the vibrational period ob-
served in solar oscillations fits nicely into Table 8.5. The rotation period, ∼106 s in
the interior is well above the minimum.

In recent years, an increasing volume of information on the Sun has become
available through helioseismology, the study of the Sun’s vibrations. Section 6:25
taught us to think of the waves permeating a medium in terms of a superposition
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of spherical harmonics. In the Sun the waves are acoustic and have both surface
components like those sketched in Fig. 6.18 and radial components, respectively
corresponding, very roughly, to the functions Y and R in Section 6:25. The func-
tionR, however, becomes more complex, taking account of the Sun’s gravitational
potential, density, and pressure at each radial distance from the center. Other factors
enter as well. We will deal more quantitatively with such waves in Section 13:8,
where we shall be concerned with acoustic waves in primordial density fluctuations
in the early Universe.

By conducting careful studies of brightness variations across the solar surface,
over a wide range of both spatial and temporal scales, it has become possible to
determine the magnitudes of many of the harmonics constituting the Sun’s oscilla-
tions. These yield information on the density profile of the Sun, the rotation in its
interior, the structure of the convective zone, and many other characteristics. Much
of the knowledge previously gained through studies of stellar nucleosynthetic mod-
els alone has now been independently analyzed, partly confirmed, and partly revised
and enriched. Efforts to bring the tools of helioseismology to bear on observations
of other stars are still quite preliminary. Stellar seismology is difficult, because sur-
face features on stars cannot be resolved with nearly the same resolution with which
solar features are studied.

8:21 Solar Neutrino Observations

Thus far we have described the currently expected sequence of nuclear processes
that may be taking place in the interior of stars, and have identified these with phases
in the life of a star as it journeys through the Hertzsprung–Russell diagram. Because
the sequence of events, the variety of possible reactions, and the number of assump-
tions required are so numerous, direct verification of the postulated nuclear reactions
would be highly desirable.

The most promising observations that can be made in this respect are measure-
ments on neutrinos emitted in the nuclear reactions. As already indicated neutrinos
carry off somewhere around 2 to 6% of the hydrogen-to-helium conversion energy,
depending on whether the proton–proton reaction or the CN cycle predominates.
The neutrinos can escape from a star, virtually without hindrance, because in a
1 cm2 column, one stellar radius deep, the neutrino would typically encounter only
ρR/mH ∼ 1035 nuclei, where ρ ∼ 1 g cm−3, R ∼ 1011 cm, and mH ∼ 10−24 g.
Because the neutrino interaction cross-section with nuclei normally is of order
10−45 cm2, only one neutrino in 1010 would be intercepted on its way out of the
star.

Early attempts to directly observe neutrinos from the Sun were carried out by
Raymond Davis, Jr. and co-workers at the Brookhaven National Laboratory (Da68).
Their experiment was based on the large absorption cross-section for neutrinos ex-
hibited by the chlorine isotope 37Cl in the reaction

37Cl + ν → 37Ar + e−. (8-136)
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This reaction requires a minimum neutrino energy of 0.81 MeV. The argon isotope
37Ar is radioactive and makes itself evident through a 34-day half-life, 2.8 keV
Auger (X-ray) transition which can be recorded. The reaction cross- section for this
process is only large for high-energy neutrinos, however, and so not all of the neu-
trinos emitted by the Sun could be counted in this way. The experimenters figured
they would only be able to observe the neutrinos from the decay of the boron isotope
8B, which is formed in very small quantities according to the predictions of nuclear
theory. The neutrino given off in that decay can have energies as high as 14 MeV.
The scheme, which first gives rise to boron, is shown in Fig. 8.19, together with the

Fig. 8.19. (A) Nuclear reactions in the Sun, showing relative probabilities for the different
reactions and the energy of neutrinos produced. The branching ratios are temperature de-
pendent. The ratios shown are expected at temperatures of ∼1.5 × 107 K at concentrations
X = 0.726, Y = 0.26, Z = 0.014 (Ba72). (B) Neutrino spectrum expected from the Sun in
the absence of neutrino oscillations (Ra95). Reprinted with permission from Science c©1995
American Association for the Advancement of Science.

probability for the occurrence of competing reactions. This pioneering experiment
consistently measured neutrino fluxes that were roughly one-quarter of the flux pre-
dicted by solar models, and constituted a major puzzle for several decades, until the
possibility that neutrinos might have rest–mass came to be taken seriously.

Neutrinos come in three varieties called flavors, νe, νµ, and ντ , respectively as-
sociated with electrons, muons, and τ leptons. Neutrinos with mass oscillate among
themselves, meaning that an electron neutrino can convert itself into a muon- or
tau-neutrino on its way out from the Sun, and before arrival at Earth, through the so-
called Mikheyev–Smirnov–Wolfenstein (MSW) effect (Ra95). Because the chlorine
detectors were set up to detect solely electron neutrinos, they were detecting only a
fraction of the electron neutrinos actually emitted.

By now, several different types of neutrino observatories designed to detect neu-
trinos in different energy ranges are in operation. Referring to the three channels
shown in Fig. 8.19(a), the results from these observatories confirm a proton–proton
solar neutrino flux 1.01± 0.02 times the theoretical predictions; a 7Be neutrino flux
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measured at 0.97+0.28
−0.54 the predicted level; and a 8B flux at 1.01 ± 0.06 times that

predicted by theory (Ba03).
Experiments conducted with antineutrinos traveling of the order of 200 km from

nuclear power reactors to an antineutrino detector in the Kamioka mines, near Tokyo
in Japan, have shown that roughly 60% of the generated antineutrinos fail to ar-
rive (Eg03). Oscillations are favored when the mass differences between the dif-
ferent antineutrino (or equivalently the different neutrino) flavors are small. The
best estimates of the differences in masses of any two flavors, say i and j are
∆mij ≡ |m2

i − m2
j | ∼ 7 × 10 − 5 eV2. The absolute masses of the neutrinos

are still unknown. Upper limits based on cosmological observations discussed in
Section 13:18 are mν ∼< 0.23 eV ∼ 4 × 10−34 g.

PROBLEM 8–6. A supernova exploded in the Large Magellanic Cloud on February
23, 1987. After traversing the distance of 50 kpc, nine neutrinos were detected at
Earth within an interval lasting 12.5 s. Their energies ranged from ∼35 MeV to
∼6 MeV (Hi87). What is the upper limit to the neutrino mass?

Additional Problems

The following set of problems uses greatly simplified stellar models, mainly to show
that we can obtain reasonable, order-of-magnitude estimates for stellar luminosities
and lifetimes even without using sophisticated computing methods.

Reaction rates for the proton–proton reaction and the carbon cycle have the form
given in equation (8–90). Schwarzschild (Sc58b) gives the energy generated per unit
time and unit mass of matter for the proton–proton reaction as

Epp = 2.5× 106ρX2

(
106

T

)2/3

exp

[
−33.8

(
106

T

)1/3
]

erg g−1 s−1 , (8-137)

and Clayton (C�68) gives a similar expression for the CN cycle as:

ECN = 8 × 1027ρXXCN

(
106

T

)2/3

f exp

[
−152.3

(
106

T

)1/3
]

erg g−1 s−1 ,

(8-138)
where f is an electron screening factor, f ∼ 1.

For Problems 8–7 to 8–9, consider an initial concentrationXCN = 0.005X and
Y = 0.24.

8–7. Consider the following model of a B1 star, that is, a massive young star. Its
mass isM = 10M� and its radiusR = 3.6R�. Its central density is 10 g cm−3 and
the bulk of energy generation takes place within a radial distance 0.15R. Assume
constant density for this region and a temperature 2.7 × 107 K. Determine the rate
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of energy generation by the star and its surface temperature assuming that the star
radiates like a blackbody at its given radius. How long can the star exist in its present
state without being appreciably changed by nuclear burning; that is, how soon will
it use up the hydrogen in its central core at the present rate?

8–8. Repeat this for a star like the Sun when it first starts life on the main sequence.
In this zero-age main sequence ZAMS phase assume that it is burning hydrogen in
the central region out to 0.22R. Take a central density of ∼75 g cm−3 and a central
temperature 107 K. Assume that the star’s radius at that epoch is onlyR = 0.87R�
– 87% of the Sun’s current radius (B�99).

8–9. At present the concentration of hydrogen, by mass, at the center of the Sun is
about 70% throughout a central region out to roughly 0.122R. The density is about
155 g cm−3 in the center. Take the mean temperature throughout the region to be
1.1× 107 K and recalculate the parameters for this solar model (B�99).

8–10. A red-giant star whose radius is 100R� is in an evolutionary state where
the inner hydrogen has all been exhausted but helium burning has not yet set in.
The main energy source is hydrogen burning that takes place in a shell surrounding
the inert helium core (Figs. 8.8, 8.9). Let hydrogen burning take place at a radial
distance ranging from 1.8 to 2 × 109 cm. The mean density in this layer is about
50 g cm−3. The temperature is 5 × 107 K. Calculate the above parameters. Take
XCN = 10−3X, X ∼ 0.5.

8–11. A star composed of hydrogen alone is limited to a maximum brightness.
When its luminosity-to-mass ratio exceeds 4 × 104L�/M�, its surface layers are
blown off. This Eddington limit is exceeded in the ejection of planetary nebula en-
velopes. (a) Show that this occurs when the radiative repulsion of electrons exceeds
the star’s gravitational attraction for hydrogen atoms so that ionized hydrogen no
longer is gravitationally bound. (b) Show that for a star predominantly composed of
4He, 12C, 16O, or 28Si the luminosity-to-mass ratio can be as high as 8×104L�/M�
before an outer envelope is blown off.

8–12. A white dwarf star is thought to shine by virtue of its stored thermal energy.
Assuming its mass to be 0.45M�, its radius 0.016R�, and its density roughly uni-
form throughout (however, see Fig. 8.18), calculate how long the star could radiate
at its present rate if its luminosity is 10−3L�.

8–13. For a star in which radiative transfer dominates, the energy density at each
point is very nearly the blackbody radiation density (at all frequencies ν) even
though the radiant flux F (r) is predominantly outward-directed from the center of
the star. Show how closely the radiation density ρ really equals the blackbody radi-
ation density for a given opacity value κ(ν), by considering the higher-order terms
in equation (8–50).

8–14. In Section 8:2 we argued that the Sun’s energy must be nuclear, because
equation (8–1) did not provide enough potential energy to account for the total solar
luminosity over the past æons. Show that this argument could be refuted, by work-
ing out the potential energy of a structure in which roughly half the Sun’s mass is
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uniformly distributed throughout a sphere of radius R� and half the mass is con-
centrated in a core of radius 10 km. Although the observed oscillations of the Sun
rule out such a model, it is possible that some evolved stars have a dense, degenerate
neutron core. Such stars are known as Thorne–Żytkow stars (Th75).

8–15. The X-ray source Sco X-1 is believed to be a neutron star . A plasma with
electron density ∼1016 cm−3 radiates at an apparent temperature of 5× 107 K from
a volume of radius 109 cm that encompasses the star’s surface and accretion disk.
Matter is tidally stripped from a companion star to fall onto the disk from which it
spirals onto the surface of the neutron star, giving up potential energy at each step
as it approaches the star. To account for the fast accretion rate of matter and the high
radiation intensity it produces, this matter would have to be rapidly siphoned off the
binary companion. Compute the infall rate required, and convince yourself that the
energies produced are of the right order of magnitude by comparing gravitational to
thermal energies (Ka97).

8–16. Figure 8.16 indicates that neutron stars appear to have masses of order
Mns = 1.4M�, as judged by the gravitational potential they exert in a binary sys-
tem. Assuming that such a star consists entirely of neutrons, show that the number
of neutrons in the star appreciably exceeds Mns/mN , wheremn is the neutron rest–
mass, i.e., that the baryonic mass of the star appreciably exceeds its gravitational
mass because the potential energy of the star is substantial (A�04). Following this
argument to its extreme, why does the gravitational mass of a black hole not vanish
entirely?

Answers to Problems

8–1. (a) P = nkT

P

(
R

2

)
∼ 1015 dyn cm−2, n =

ρ

mH
=

1
1.67× 10−24

cm−3 ,

T

(
R

2

)
=

1015 × 1.67× 10−24

1.38× 10−16
∼ 107 K.

(b) The gravitational potential energy at the planet’s surface is

GMpm

R
≤ |Ec| ,

where m is the mass of an atom, m = AmH . For domination by Coulomb forces

Mp ∼<
|Ec|R
GAmH

.

But Mp ∼ ρR3

... M2/3
p ∼<

|Ec|
GAρ1/3mH

, Mp ∼<
( |Ec|
GAmH

)3/2 1
ρ1/2

.
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(c) Ec ∼ 10−11 erg, RJ = 7.1 × 109 cm,
MJ = 2 × 1030 g,

}
see Table 1.4.

Assuming a constant density throughout, this yields ρJ ∼ 1.344 g cm−3, and
from (8–22) a central pressure P ∼ 1.3 × 1013 dyn cm−2. If the main con-
stituent at the planet’s center were atomic hydrogen, the ideal gas law would require
kT = PmH/ρ ∼ 1.6× 10−11 erg, high compared to the dissociation energy of H2

and comparable to the ionizing energy for hydrogen atoms.

8–2.

F (r) = −
∫ ∞

0

κρe−κρl dl

∫ π

0

a

(
T − dT

dr
l cos θ

)4
c

2
cos θ d(cos θ) .

Expanding, we have to first order in dT/dr,

� 4acκρ
3

dT

dr
T 3

∫ ∞

0

e−κρll dl .

And using (8–26) and (8–51) we have

L(r) =
16πacr2

3κρ
T 3dT

dr
.

8–3. dP ∝ ρ
M(r) dr
r2

(8–7),

P = nkT so that, for roughly constant ρ(r), dP ∝ ρ dT ,

...
dT

dr
∝M(r)/r2 and T (r) ∝M(r)/r ,

L(R) ∝ R2T 3

ρ

dT

dr

]
r=R

∝ M4

ρR3
∝M3 .

8–4. The number of particles incident on a hypothetical surface in unit time and
solid angle is

n(θ, φ, p)υ cos θ dΩ .

From (4–27), the pressure then is

P =
∫ p0

0

∫ 2π

0

∫ π/2

0

2 · p · cos θ · υ cos θ · n(θ, φ, p) dΩ dp .

If the gas is isotropic,

n(θ, φ, p) =
n(p)
4π

, P =
1
3

∫ p0

0

pυn(p) dp ,

where n(p) is given by (4–65) since all states are filled. Equation (5–30) tells us that
p = mυγ(υ) which can be solved for υ:
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υ =
p

m
√

1 + p2/m2c2
,

... P =
8π

3mh3

∫ p0

0

p4√
1 + p2/m2c2

dp .

If p/mc = sinhu, dp/du = mc coshu, so that

P =
8πm4c5

3h3

∫ u0

0

sinh4 u du .

8–5. Equations (8–112) and (8–110), respectively, read

f(x) =
1
8

[
x(2x2 − 3)(x2 + 1)1/2 + 3 sinh−1 x

]
, x =

p0

mec
.

If x 1, sinh−1 x = x− x3

6
+

3
40
x5 − · · ·.

On expanding

8f(x) ≈ x(2x2 − 3)
(

1 +
x2

2
− x4

8

)
+ 3x− x3

2
+

9
40
x5 − · · ·

≈ 8
5
x5, for x 1 .

Substitution of f(x) and (8–111) into (8–109) then gives (8–41) .
If x� 1, sinhx ∼ ex/2, and sinh−1 x = ln(2x) .

... f(x) ∼ x4

4
, x � 1 ;

substitution in (8–109) leads to (8–43).

8–6. Let the energies of arriving neutrinos range from

E1 =
mνc

2

(1 − (υ2
1/c

2))1/2
to E2 =

mνc
2

(1 − (υ2
2/c

2))1/2
.

Then

m2
νc

6

∣∣∣∣ 1
E2
1

− 1
E2
2

∣∣∣∣ = |υ2
2 − υ2

1 | ∼ 2c∆υ ,

where ∆υ ≡ |υ2 − υ1|. This velocity difference is related to the neutrino arrival
times by ∆υ = (D/t2 −D/t1) = [(t1 − t2)/t2]D = c2∆t/D.

... m2
νc

4

∣∣∣∣ 1
E2
1

− 1
E2
2

∣∣∣∣ = 2c∆t
D

.

For E2 � E1 = 6 MeV, D = 50 kpc, and ∆t = 12.5 s, we then have
mν ∼ E1(2∆t/Dc3)1/2 ∼ 13.5eV ∼ 2.4 × 10−32 g. This is an upper limit be-
cause the period over which neutrinos are emitted could last several seconds.
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8–7. We use a temperature 2.7 × 107 K and density ρ = 10 g cm−3 in equations
(8–137) and (8–138):
This gives

Epp = 20 erg g−1s−1, ECN ∼ 2.3× 103 erg g−1s−1.

... The total energy generated is (4π/3)ρECN (0.54R�)3 ∼ 5 × 1036 erg s−1.
The total surface area of the star 4π(3.6R�)2 ∼ 8 × 1023 cm2 . Hence the flux
crossing unit area is 6.4 × 1012 erg cm−2 s−1 and, using the blackbody law, T 4σ
equals flux across unit area, T ∼ 18, 000 K.

The total available energy per hydrogen atom is about 10−5 erg with
n ∼ 6 × 1024 cm−3 s−1. Hence the total energy available per cubic centimeter is
about 6 × 1019 erg. The total time during which the star’s core can supply energy,
therefore, is about 9 × 107 yr.

8–8. With a central temperature 107 K, density 75 g cm−3, and hydrogen burning out
to 0.22× 0.87R�, we find that the proton–proton reaction predominates and yields
260 erg cm−3 . This leads to a surface temperature of about 5600 K, obtained by
dividing the star’s luminosity by its surface area and the Stefan–Boltzmann constant,
and taking the fourth root.

8–9. Using X = 0.7 and a central density ρc = 155 g cm−3 with
Tc = 1.1 × 107 K, we again find that the proton–proton reaction predominates,
yielding ∼ 1500 erg cm−3 s−1. The total energy generated is ∼3.8 × 1033 erg s−1.
This gives a surface temperature of T = [(4π/3)ρc(0.122R�)3Epp/(S�σ)]1/4 ∼
5800K, where σ is the Stefan–Boltzmann constant and S� is the surface area 4πR2�.

8–10. At 5 × 107 K the carbon cycle predominates. If we assume burning in a thin
shell ranging from 1.8×109 to 2×109 cm, we obtain a carbon-cycle energy genera-
tion rate of 4×108 erg cm−3 s−1 throughout a volume of 1028 cm−3. The luminosity
therefore is ∼4×1036 erg ∼ 103L� and the surface temperature at R = 7×1012 cm
is T = (L/4πR2σ)1/4 = 3200 K.

8–11. The radiative repulsion of an electron at distanceR from a star isLσe/4πR2c,
where σe is the Thomson cross-section (6–103). The gravitational attraction for a
hydrogen atom is mH(MG/R2). For the Sun, this ratio of repulsion to attraction is

σeL�
4πcM�GmH

∼ 3 × 10−5 .

For a star with L/M ∼ 3× 104 greater than the Sun, electrons are repelled and pull
the protons along. For 4He, 12C, and other fully stripped heavy ions, each electron
pulls along a proton plus a neutron, and twice this luminosity-to-mass ratio is needed
to exceed the Eddington limit.

8–12. A white dwarf can only radiate away the kinetic energy of its ions. Because
the electrons are degenerate, they cannot lose energy and provide the main support
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against hydrostatic pressures. Just before electron degenerate pressures start pre-
dominating, the kinetic energy of the ions is about one-tenth of the white dwarf’s
potential energy. The virial theorem would predict that half of the energy should
be kinetic energy, but there will be two electrons or more for each ion present, and
the electrons will have higher energies because of the onset of partial degeneracy.
The total available ion energy therefore is of order 0.1M2G/R, and the lifetime
∼0.1M2G/RL. It may still be worth stating how the luminosity can be derived.
The nondegenerate outer layers of the white dwarf permit radiative transfer. Using
equation (8–52) with T ∼ 0.1MGmi/kR and dT/dr ∼ T/R, we obtain the lu-
minosity if the opacity is known. The opacity can be computed from the Kramers’
expressions, although a look at Fig. 8.4 shows that at high densities the opacity is
nearly independent of density and has a very approximate value ∼108/T in the tem-
perature range of interest. The cooling time can therefore be expressed solely as a
function of the star’s mass, radius, and chemical composition (ion mass). If the lu-
minosity for a star of mass 0.45M� is ∼10−3L�, and its radius is 1.1 × 109 cm,
τ ∼ 0.1M2G/RL ∼ 1.2 × 1018 s, and the cooling time is of the order of 40 Gyr.
This problem is discussed more rigorously in (Sc58b).

8–13. In Problem 8–2 we derived the expression equivalent to

F (r) =
4ac
3κρ

T 3 dT

dr

by neglecting higher-order terms, justified since (dT/dr)x  1. The next order
term in the expansion is

4acκρ
5

∫ ∞

0

e−κρlT

(
dT

dr

)3

l3 dl

=
4ac

(κρ)3
T

5

(
dT

dr

)3 ∫ ∞

0

e−yy3 dy =
24Tac
5(κρ)3

(
dT

dr

)3

.

Integrating this over all radii r gives the additional energy increment

ρ(ν) =
∫ r

0

4aT
(
dT

dr

)3 18
5(κρ)2

dr .

This is the departure from blackbody energy density in a star. Hence

dρ

dr
= 4a

[
T 3 dT

dr
+ T

(
dT

dr

)3 18
5

1
(κρ)2

]

=
dρ(ν)
dr

+
dρ∗(ν)
dr

.

8–14. For a uniformly dense, spherical central core, the potential energy is given by
(8–1):
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V =
3
5
GM2

R
∼ 4 × 1052 erg for R = 106 cm, M = 1033 g .

Such a star could have been shining since the first stars formed ∼1.3 × 1010 yr ago
with a luminosity of 1035 erg s−1 ∼ 25L� without running out of gravitational
energy.

8–15. The energy of a proton freely falling onto a neutron star’s accretion disk is
mMG/R ∼ 10−7 erg for R ∼ 109 cm. This is ∼105 eV and X-rays up to this
energy can therefore be given off by the protons. The observed X-ray energy at
5× 107 K is 5× 103 eV. If the gas were to fall directly onto the neutron star, whose
radius is only of order 106 cm, it could radiate at higher temperatures. However,
the material slowly spirals in, giving up energy more gradually. When the hydrogen
eventually reaches the neutron star surface, it builds up a layer that progressively
thickens to about one meter before undergoing a thermonuclear flash, observable as
a huge outburst of X-rays.

8–16. The gravitational mass of a neutron star containing Nn neutrons is

Mns = Nnmn + ε/c2 ,

where ε is the sum of the star’s (negative) potential energy, internal energy, and
rotational energy. Among these, the potential energy tends to dominate. To lowest
order, given by the nonrelativistic equation for a star of uniform density, (8–1), it
is of order −3(Nnmn)2G/5Rns. Since the neutron star radius Rns exceeds the
Schwarzschild radius rs = 2NnmnG/c

2 by only a factor of order 2, we see that
ε/c2 ∼ −0.3Nnmn. The internal energy for a degenerate neutron star is roughly
determined by the mean volume occupied by each neutron, which yields the Fermi
energy EF . For radii of order 2rs, EF is a small fraction of the rest–mass. Even the
most rapidly rotating neutron stars do not have rotational energies coming close to
the potential energy. The gravitational mass of the star may therefore be no more
than ∼70% of the rest–mass of the contributing nuclei, meaning that a neutron star
with mass ∼1.4M� may contain Nm ∼ 2M�/mn neutrons. Without an equation
of state for neutron star matter, one cannot say much more. A high central density
leads to a rapid increase in internal energy, or equivalently P/ρ, which reduces
the absolute value of ε but also brings the star closer to gravitational collapse, as
indicated by equations (8–124) to (8–129).

Black holes differ from cold neutron stars in that the constituents are not at rest
and need not have given up any potential energy. In principle, a black hole could be
formed through a spherically symmetric collapse of photons with a total energy E
into a volume of radius r < 2GE/c4. Though the photons would have given up no
potential energy in this adiabatic advection, they would be irreversibly trapped by
their mutual gravitational pull.
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The Milky Way may contain as many as a hundred billion stars. Yet we have only
the most incomplete notions of how all these stars formed. Within the past decade,
we have also become aware of the many planetary systems orbiting all these stars.
But we are still uncertain even about how our own system of planets condensed.
In this chapter we examine the formation of stars and planetary systems, establish
some of the mechanisms that appear to be at work, and describe ways in which
further insight may be gained.

10:1 Star Formation

Three primary steps are required for a star to form: (1) a protostellar cloud of gas
and dust has to radiate away energy to become increasingly compact; (2) it must
reduce its angular momentum from the high values seen in diffuse hydrogen clouds
to the low values observed in stars; and (3) it must dissipate its magnetic field, iden-
tified by Faraday rotation and Zeeman splitting, to yield the relatively low values
observed in stars. To these three requirements we may add one more that apparently
is met rather easily: (4) subjected to rapid compression — often induced by super-
nova explosions or the rapid expansion and intense radiation pressures of ambient
ionized hydrogen regions — a cloud’s contraction must be sufficiently inelastic, and
accompanied by sufficiently rapid cooling and energy loss, to prevent expansion
back to an appreciable fraction of the cloud’s initial size.

Shocks around HII regions can rapidly compress cool clouds as we saw in Sec-
tion 9:4. The shocked clouds continue to contract through radiative cooling via grain
emission or radiation by H2, H2O vapor, CO, atomic oxygen, or singly ionized car-
bon, depending on the temperature, density, and ionization fraction of the gas. Cri-
teria (1) and (4) therefore appear to be met. The shedding of angular momentum (2)
and dissipation of magnetic fields (3), however, still pose unsolved problems. We
will only be able to see one or two possible ways out of these difficulties.

Let us consider the angular momentum problem first. Differential rotation about
the center of a galaxy induces a velocity shear in an interstellar cloud. This has
an associated angular momentum about the cloud center. Contraction of the cloud
preserves this angular momentum.

One way in which a cloud might contract, and still keep the angular momentum
due to differential rotation low, might be to preferentially gather material with low
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angular momentum about the protostellar cloud center. For gas in circular motion
about a galaxy’s center this could be material gathered from a ring at some fixed
radius Rc from the center. As equation (3–44) tells us, the angular momentum per
unit mass about the center is

√
MGRc, where M is the mass of the galaxy enclosed

within radius Rc. If contraction of the cloud brings equal amounts of mass from
regions at (Rc −∆) and (Rc +∆) to the cloud center at Rc a net amount of angular
momentum per unit mass

L =
(

1
2

) ∣∣∣∣∣
√
MG(Rc −∆) +

√
MG(Rc +∆)

∣∣∣∣∣ ∼ 1
8

(
∆

Rc

)2√
MGRc (10-1)

would accrue. At the Sun’s distance from the Galactic center, Rc ∼ 8 kpc, and for
M ∼ 2 × 1044 g and ∆/Rc ∼ 1.5 × 10−6, or ∆ ∼ 3.6 × 1016 cm, this amounts
to L ∼ 1.5 × 1017 cm2 s−1 per unit mass, roughly comparable to the angular
momentum per unit mass of the Solar System. The ring can therefore only have a
total width W ∼ 3∆ ∼ 1017 cm, before the average angular momentum of the
contracting cloud becomes excessive. Now, the areal mass density in the Galactic
plane, i.e., the mass contained in a column perpendicular to the Galactic plane, is
of order σ ∼ 10−4 g cm−2 . To gather a solar mass of 2 × 1033 g, the length � of
the circular segment from which the star forms would need to be � ∼ M�/Wσ
∼ 2 × 1020 cm or ∼70 pc along an arc of radius Rc ∼ 8 kpc.

Whether such a contraction could occur along an arc two thousand times longer
than it is wide is doubtful. Although the main star-forming region in the Orion com-
plex does exhibit long tubular structures of dense material at low relative veloci-
ties (Wi96), gravitational contraction is most effectively sustained if the contracting
volume is roughly spherical (Eb55). For then a small compression in volume can
amount to a relatively large change in potential energy, and rapid loss of energy
through cooling will assure that the region remains collapsed — resistant to disrup-
tion by external turbulence. But this requires an efficient means for shedding angular
momentum. While turbulence could introduce sufficient viscosity to transport away
angular momentum, we know too little about turbulent transport to reliably estimate
this effect.

Problems caused by the compression of embedded magnetic fields also remain
unresolved in a contraction of the kind just described. If the magnetic field lines
were largely normal to the radius vector Rc — which might be favored by shear
produced through differential rotation — then contraction along the magnetic field
would not be resisted by the field, but contraction perpendicular to the field direction
would still necessitate compression of field lines. For a typical galactic magnetic
field B ∼ 10−6 G, compression from a cross-section HW ∼ 1036 cm2 , where H
is the scale height of the column of gas above and below the galactic plane, down
to Solar System dimensions ∼1030 cm2 would produce a field of the order of one
gauss. Further compression of the material into an object the size of the Sun would
result in a field of order 108 G. This magnetic field would have to be dissipated
before a star like the Sun could form with a field of 1 G.
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We will discuss these questions in greater detail in this chapter, but will find that
the answers to many questions remain poorly understood.

10:2 Gravitational Condensation of Matter

Let us first consider the contraction of an isolated cloud unburdened by angular mo-
mentum or embedded magnetic fields. Initially it is neither expanding nor contract-
ing; but if it is sufficiently cool it will begin to collapse under its own gravitational
attraction. Consider the density of the cloud to be uniform throughout a sphere of
radius r0. Then the forces on matter at the surface of the sphere will produce an
acceleration

r̈ = −GM
r2

. (10-2)

Integration with respect to time yields

ṙ2

2
=

4π
3
r20ρ0G

(r0
r

− 1
)
, (10-3)

where ρ0 is the initial density.

PROBLEM 10–1. Show that this equation can be integrated a second time, for
example, through a substitution of a new variable u given by r = r0 sin2 u, to give
the free-fall collapse time

tff =
√

3π
32Gρ0

. (10-4)

Note that this expression is independent of the size of the cloud. A second point of
interest is that the free-fall expression is unaffected by any spherical distribution of
matter that lies outside the cloud. This can be seen by viewing the potential within
a spherical shell of radius R due to a mass distribution whose surface density is
M/4πR2 everywhere on the sphere.

PROBLEM 10–2. Show that the potential anywhere within this sphere is

V = −MG

R
, (10-5)

and further show that the potential due to any spherical distribution of matter outside
an empty sphere has a value that is constant throughout the sphere.

For any spherically symmetric distribution of matter in spherically symmetric
motion, the dynamics within a central sphere always remain unaffected by the dis-
tribution outside. This result, which is also valid in general relativity and has the
most wide-ranging consequences, is attributed to George Birkhoff, who first showed
its generality in what has come to be known as Birkhoff ’s theorem (Bi23). We will
discuss this theorem further in the context of galaxy formation in Chapter 13.
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10:3 Jeans Criterion

Let us recall the acoustic waves discussed in Section 9:3. When a gas cloud is subject
to its own gravitational potential φ1, not only the pressure but also gravitational
gradients have to be taken into account since the gas is accelerated by both. Equation
(9–21), the Euler equation, then becomes

∂v1

∂t
+ v1 · ∇v1 = − 1

ρ0
∇P1 −∇φ1 . (10-6)

The potential φ1 is given by the Poisson equation (4–151)

∇2φ1 = 4πGρ1. (10-7)

Using (9–22) and (9–25) we now write (10–6) as

∂v1

∂t
+ v1 · ∇v1 = −c

2
s∇ρ1

ρ0
−∇φ1 . (10-8)

Taking the divergence of both sides of this equation and neglecting second-order
terms, we obtain the analogue of (9–23)

∂2ρ1

∂t2
= 4πGρ1ρ0 + c2s∇2ρ1 , (10-9)

where we have used Poisson’s equation to substitute for ∇2φ1. This yields a density
wave of form

ρ1 = Ag exp[i(2πx/λ− ωt)] (RP), (10-10)

where only the real part is considered. The angular frequency of the wave is

ω2 =
(

2πcs
λ

)2

− 4πGρ0 (10-11)

and the propagation velocity is

cg =
λω

2π
=
(
c2s −

Gλ2ρ0

π

)1/2

= cs

(
1 − Gλ2ρ0

πc2s

)1/2

. (10-12)

From this we see that, whenever the wavelength exceeds

λJ = cs

(
π

Gρ0

)1/2

, (10-13)

the disturbance no longer propagates as a wave but grows exponentially as substitu-
tion into equation (10–11) shows.

The Jeans length λJ is named for James Jeans, who first noted the tendency
for a self-gravitating cloud to collapse under its own weight when perturbed at suf-
ficiently long wavelengths. Shorter wavelengths are propagated away at the speed
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of sound. The Jeans instability is believed to play a role in the contraction of cool
gaseous clouds to form new stars. In order to contract, the cloud has to be large,
dense, and cool, to maximize λ2ρ0/c

2
s.

One note may still be of interest: at several places in this book we have encoun-
tered similarities in the behavior of gases subjected to Coulomb forces as compared
to Newtonian gravitational forces. These similarities arose in the scattering of parti-
cles (Section 3:13), in the behavior of ionized gases and assemblies of stars (Section
4:23), as well as in the absorption of radiation in a medium (Section 6:18). Here we
have considered the evolution of a disturbance in a neutral cloud in which only
gravitational forces are at play. A comparison shows that results already derived in
Section 6:18 can be directly adopted. We recall that we were concerned there with
a wave propagating through an ionized medium. By analogy, we consider here a
neutral medium in which small density perturbations have arisen. The perturbations
δρ can have either a positive or a negative sign. A region of higher density than the
average is attracted toward a massive center, while a region of low density is buoy-
antly repelled. In equation (4–147) we pointed out that gravitational behavior could
be derived from electrostatic analogues if we replace the product of charges Q1Q2

by −Gm1m2, where G is the gravitational constant and m1 and m2 are interacting
masses. In this spirit we turn to Section 6:11 and ask how a somewhat perturbed
medium acts under its own gravitational influence. We then find that a density per-
turbation of the form (6–52), f = f0 cos(kx± ωt), in a medium of mean density ρ
obeys a dispersion relation — relation between frequency and wave number — of
the form of (6–54) which, with the help of (4–147), becomes

ω2 = k2c2s − 4πGρ0. (10-14)

Here ω is imaginary for wave numbers k below a critical value

kJ =
(

4πGρ0

c2s

)1/2

=
2π
λJ

. (10-15)

This is the same result as (10–13).
The negative sign of the gravitational term in equation (10–11) implies an expo-

nential growth of the disturbance with an e-folding time

τ =
2π
iω

=
2π

cs(k2
J − k2)1/2

for |k| < kJ . (10-16)

The Jeans mass, the mass enclosed in a sphere of radius λJ/2, is

MJ =
4π
3
ρ0

(
λJ

2

)3

=
π5/2c3s

6G3/2ρ
1/2
0

. (10-17)

We note that expression (8–1) can give us the total potential energy within a
sphere of radius λJ/2. When this is divided by the total kinetic energy for the gas
we obtain from equation (10–17)
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potential energy
kinetic energy

∼ (3/5)M2
JG/(λJ/2)

MJ(3c2s/2γ)
∼ 2π2γ

15
≥ 1, (10-18)

where γ is the ratio of heat capacities
Very roughly, the Jeans criterion tells us that contraction can occur when the po-

tential energy due to self-gravitation exceeds the kinetic energy of random thermal
motion in the gas.

10:4 Hydrostatics of Gaseous Clouds

From a somewhat different perspective, we may assume that the formation of stars
takes place in clouds of gas that somehow have condensed, as galaxies have formed.
The formation of stars then takes place in substantially denser, usually cooler re-
gions where the density ρ is high and the speed of sound cs is low. Instead of talking
of the Jeans criterion, we may then return to the concept of hydrostatic equilibrium.
Here, we return to equation (8–7) and note that a spherical cloud will contract if the
pressure at its center is not sufficiently high to withstand compression from mat-
ter gravitationally bearing down on it from larger radial distances. For a cloud of
uniform density, the pressure at the center is obtained by integrating (8–7):

dP = −
{
ρGM(r)

r2

}
dr = −

[
4πρ2Gr

3

]
dr (10-19)

and the cloud will collapse unless the central gas pressure ρkT/m exceeds the value

P =
ρkT

m
>
ρGM

2R
, (10-20)

where M is the mass contained within radius R, and m is the mass of a hydrogen
atom or molecule. If the temperature of a molecular cloud is 20 K, collapse would
require R ∼ 1018 cm for M = 2 × 1034 g. However, while the temperatures in
molecular clouds often appear to reach such low values and hence would appear
to promise that stars of several solar masses could easily form, thermal velocities
rarely predominate. At 20 K, the velocities of typical molecules are [3kT/m]1/2

which, for m = 3.2 × 10−24 g, are about 0.5 km s−1, whereas observed turbulent
velocities in such clouds often exceed a few kilometers per second. These random
bulk velocities, as well as rotational velocities that could be of the same order, keep
the cloud from collapsing.

Note that if we use (9–25) to approximate P by c2sρ/γ in (10–20), with γ ∼ 5
3 ,

and set M = (4π/3)ρR3, equation (10–13) leads to the requirement for collapse,
R ∼> (18/5)1/2 (λJ/2π) — showing the relationship between pressure equilibrium
and the Jeans criterion.

10:5 Magnetic Reconnection

Let us now return to the need for shedding magnetic fields if a protostellar cloud
is to collapse. Oppositely directed magnetic fields threading partially or fully ion-
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Fig. 10.1. Schematic diagram of magnetic reconnection in a partially ionized medium. The
tranverse magnetic pressures in two regions of opposite magnetic polarity drive the gas at
their interface into a reconnection layer of width ∆ separating the two regions. The magnetic
fields are imagined to be roughly horizontal but, as the ordinary arrow heads indicate, along
opposite directions in the upper and lower halves of the figure. Where the sheets of oppositely
directed fields meet they annihilate. To the left and right of the annihilation region, the mag-
netic field lines curve apart. The energy dissipated in the annihilation of the fields accelerates
the ionized plasma, channeling it out of the annihilation region, parallel to the confining field
lines, as indicated by hollow arrow heads. Because neutral gas can cross the field lines it
diffuses in and out of the annihilation layer and is dragged along primarily through collisions
with ions. This produces a thicker layer Ln, marked with thin lines, in which neutral gas is
propelled out of the annihilation region. Courtesy Ethan Vishniac (Vi99).

ized gases can rapidly annihilate wherever they come into contact. This is amply
demonstrated by observations of magnetic field annihilation on the surface of the
Sun. Magnetohydrodynamic theories, however, still have difficulties explaining the
extreme speed of the observed annihilation.

Figure 10.1 sketches how magnetic field annihilation is believed to take place.
Along the vertical line of symmetry in the figure, where the horizontal coordinate
takes on the value x = 0, the sum of magnetic and gas pressures, B2/8π + P , is
approximately constant. In the mid-plane of the figure, where we set the vertical
coordinate y = 0, the magnetic field vanishes and, for an incompressible fluid, the
total pressure ρυ2

x + P is also approximately constant. Let the horizontal outflow
velocity be vx = 0 at the center of symmetry, (x, y) = (0, 0), where the flow
divides — part of it going to the right and part to the left. Let us further suppose that
the gas pressure drops to zero at the extreme right and left of Fig. 10.1, at points
(±Lx, 0), where the magnetic field lines curve away from the central plane because
the magnetized fluid there is not being driven toward the plane. Then the outflow
velocity where the gas pressure drops to zero, becomes

υx ∼ B/
√

8πρ = υA/
√

2 , where υA ≡ B/
√

4πρ . (10-21)
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υA is the Alfvén velocity, previously mentioned in Section 9:4. Continuity requires
that the mass influx into the reconnection region, 2ρLxυy be balanced by mass
outflow 2ρυx∆. The mean inflow velocity is then given by

υy ∼ (∆/Lx)υA/
√

2. (10-22)

So far, we have neglected any Ohm’s law dissipation. We can incorporate this
through use of (9–57). Since there is no applied electric field, the current is not
affected by the term ∂D/∂t. However, the motion of the plasma with respect to the
magnetic field, leads to an effective electric field component v ∧ B that adds on to
the field component associated with the current j, so that

E =
(

j
σ
− v ∧ B

c

)
. (10-23)

which leads to (9–60)

∂B
∂t

= −c∇ ∧
(

j
σ
− v ∧ B

c

)
=
(

c2

4πµσ

)
∇2B + ∇ ∧ (v ∧ B) . (10-24)

For υy = 0, (10–24) has the form of a diffusion equation. The quantity
η ≡ c2/(4πµσ) is correspondingly called the ohmic diffusion constant.

For the flow in Fig. 10.1 we are primarily interested in the rate at which the
magnetic field can annihilate, i.e., the velocity υy at which the field Bx is driven
into the recombination zone.

∂Bx

∂t
= η

∂2Bx

∂y2
− ∂υyBx

∂y
. (10-25)

In a steady state, ∂Bx/∂t = 0, and so the velocity of the magnetic field must be
of order υy ∼ η/∆. Substituting this into (10–22) and neglecting the factor

√
2, this

leads to a reconnection speed

Vr ∼ υy ∼
(
ηυA

Lx

)1/2

∼ υA

(
η

υALx

)1/2

≡ υA

R1/2
B

, (10-26)

often named the Sweet–Parker recombination rate after P. A. Sweet and E. N.
Parker, who first proposed it (Sw58), (Pa57). RB is called the magnetic Reynolds
number. Because RB >> 1 in most astrophysical settings, the reconnection speed
should usually be orders of magnitude slower than the Alfvén speed, which tends
to be of the order of turbulent velocities. On the other hand, observations of mag-
netic fields in the solar corona and chromosphere appear to imply reconnection at
speeds of order ∼0.1υA, and it is not clear how the theory can permit such high
speeds. Magnetohydrodynamics is a complex field that still awaits full development
(Vi99)*.
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Fig. 10.2. Magnetic field gradients and ambipolar diffusion. Regions in which magnetic field
lines are highly compressed tend to expand into domains where the magnetic field strength
and pressure are lower. Ions circling the field lines are pulled along by the expansion, and
drift through the neutral gas. Their drift velocity is determined by a balance between magnetic
pressure gradients and resistive drag due to collisions with neutral atoms and molecules.

10:6 Ambipolar Diffusion

While reconnection is one process that permits a region to shed its magnetic fields,
another process that operates in weakly ionized interstellar clouds is ambipolar dif-
fusion, a drift of ions with respect to neutrals.

A gradient in the magnetic field strength exerts a force on electrons and ions;
neutral atoms are affected only through their collisions with these charged parti-
cles. The magnetic fields and ions that circle the field lines can, therefore, drift
through the neutral gas. For an interstellar cloud of radius R, whose central field
strengthB tapers off to zero at the cloud’s surface, the transverse pressure gradient is
∼ B2/8πR (Section 6:10). This gradient causes the ions and field lines to drift at
a velocity v through the ambient neutral gas (Fig. 10.2). The magnetic field moves
with the ions, beause the ions are confined to stay within a Larmor radius from a
given line of force. The drift velocity causes the ions to collide with neutral atoms or
molecules and give up their drift momentum to them. Let the collision cross-section
for momentum loss be σc, the number density of neutrals be nn, and the ion mass
and number density bemi and ni. Then the friction force per unit volume of ionized
material due to the drift is given by the mass of the ions in that volume nimi, and
the rate at which they lose their drift momentum, nimiv, due to collisions.

Each ion suffers a momentum-transferring collision in a distance (σcnn)−1,
which is covered in a time (vσcnn)−1. The frictional force per unit volume, there-
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fore, is nnnimiv
2σc, and the drift velocity in equilibrium is

v ∼
(
B2/8πR
nnnimiσc

)1/2

. (10-27)

In a typical molecular cloud with radius R ∼ 1018 cm, we might find
B ∼ 4 × 10−6 G, nn ∼ 106 cm−3, ni/nn ∼ 10−6, mi ∼ 1.6 × 10−24 g, and
σc ∼ 10−16 cm2. This yields a drift velocity ∼60 cm s−1. At that rate, expulsion of
the field from the cloud would take approximately 5 × 108 yr. Such long diffusion
times constitute a difficulty that does not appear to be reduced by turbulent motions
that might occasionally bring regions permeated by intense magnetic fields closer
to the periphery of the cloud, thus shortening the path across which the fields would
have to drift.

For a given degree of ionization the drift velocity is inversely proportional to
density. For a more tenuous cloud with nn ∼ 104 cm−3 and ni/nn ∼ 10−6 the
drift velocity is 6000 cm s−1 and the time for a magnetic field of 4µG to drift out
of a cloud with R = 1018 cm would only be 5 × 106 yr. Ambipolar diffusion may
therefore be active during the initial stages of contraction in star formation. It could
continue to produce appreciable drifts only if the magnetic fields grew substantially
as the density increased. Although observations tend to rule out fields greater than a
few microgauss in most dense molecular clouds, important exceptions can be found.
The Sagittarius B2 region near the Galaxy’s center has fields of the order of 1 mG,
and a circumnuclear disk at the Galaxy’s center has fields as high as ∼2 mG (De97).
In these regions the magnetic diffusion times could be as short as a million years
even for dense clouds nn ∼ 106 cm−3 of radius 1018 cm. Ambipolar diffusion,
therefore, appears to be a promising way of ridding protostellar material of magnetic
fields.

10:7 Triggered Collapse

We now ask what kind of trigger might initiate the collapse of a protostellar cloud.
If random bulk motions prevent collapse, then some process must be found that
initiates contraction. For star formation in ordinary spiral galaxies the distribution
of young stars along spiral arms provides one hint. Another comes from luminous
galaxies in which star formation appears to be particularly active; those galaxies
generally also appear disturbed and exhibit high-velocity gas flows. These factors
all point to shock compression as a trigger initiating the collapse of a cloud. In
the neighborhood of young stars, compression can occur at the edge of expanding
ionization fronts or at shocks preceding an ionization front into a dark cloud. In
regions where a burst of star formation has already taken place, explosions from
supernovae evolving from young stars also may be providing the required shock-
compression that triggers the formation of a next generation of stars.

PROBLEM 10–3. In equation (9–34) we defined a compression ratio Ψ = ρo/ρi

corresponding to the increased density of gas flowing out of a shock relative to the
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inflow density. Show that, even when extremely high shock velocities are invoked,
the compression ratio in an adiabatic shock will not exceed

Ψ =
γo + 1
γo − 1

, (10-28)

where γo is the ratio of heat capacities in the outflowing gas. When the flow is not
adiabatic and an amount of heat −Q per unit mass is used in exciting or dissociating
the gas, show that the compression becomes

Ψ =
γo ± {2(1 − γ2

o)Q/υ2
i + 1}1/2

(2Q/υ2
i + 1)(γo − 1)

. (10-29)

For molecular hydrogen at very low temperatures the ratio of heat capacities is
γ = 5

3 . At temperatures between 100 K and 300 K, as rotationally excited states
of the molecules become populated (see Problem 7–5), γ drops from 5

3 to 7
5 as fur-

ther internal degrees of freedom add to the heat capacity of the gas. At even higher
temperatures, vibrational degrees of freedom become invoked and the ratio of heat
capacities can drop toward 9

7 where, as Section 4:22 indicates, instability can set
in. However, for cool post-shock gases, γ = 5

3 , and the compression attained in an
adiabatic shock cannot exceed Ψ = 4. The compression rises to Ψ = 6 as rotational
states become increasingly populated. But as vibrational states become excited and
dissociation tends to set in, the flow no longer is adiabatic because Q is no longer
zero and we then need to use the more general expression (10–29). We can see that
the compression then becomes large, provided −Q ∼ υ2

i /2. This, however, occurs
only at rather high shock velocities, at several tens of kilometers per second. As
already indicated in Section 9:4, all these conditions are appreciably altered by the
presence of magnetic fields. The hydrodynamics then are fairly involved, though the
general approach taken here still leads to useful insights.

10:8 Energy Dissipation

The compressive shocks just described can trigger collapse, but they do not guaran-
tee permanent compression. Unless a compressed cloud can also dissipate energy,
it will rebound elastically. In order for the cloud to remain compressed it must cool
itself on a time scale comparable to the compression time. Energy must be radi-
ated away, preferably altogether beyond the borders of the cloud. This is often a
two-step process: an atom or molecule is first collisionally excited; in a second step
it then radiates the excitation energy away. If this process is repeated sufficiently
often, the energy drain on the cloud is appreciable, and it cools even as it is com-
pressed. For excitation to take place the translational energy of the gas constituents
in a shock must approach or exceed the excitation energy for low-lying atomic or
molecular levels. Once this threshold is exceeded, the collisional excitation cross-
sections, for virtually all atoms or molecules found in galactic clouds, tend to be of
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order 10−16 cm2 . In that respect there is rather little difference between the various
atomic and molecular constituents.

The efficiency with which these constituents radiate, however, varies enor-
mously. Neither atomic nor molecular hydrogen radiates efficiently below 1000 K.
At these temperatures, the only available atomic hydrogen transition is the 21 cm,
hyperfine transition corresponding to an energy jump of merely 6 × 10−6 eV. Be-
cause the Einstein spontaneous decay coefficient for this transition is only
A = 2.87×10−15 s−1, the cooling rate through 21 cm emission could maximally be
of the order of 1 K in a hundred million years. In contrast, cloud collapse is believed
to occur during tens of thousands of years and involves temperatures of hundreds of
degrees Kelvin. Similarly, molecular hydrogen, a symmetric dipole molecule, can
radiate only through quadrupole emission which, as discussed in Section 6:13, is
an inefficient process. Where other coolants are entirely absent, as in the early Uni-
verse, before carbon, oxygen, and other heavy elements were synthesized in stars,
or in regions where other molecular species are largely absent, molecular hydrogen
can dominate cooling. But in low-temperature molecular clouds, we find that cool-
ing largely depends on impurity constituents, such as CO and H2O which, though
low in abundance, are readily excited through collisions and rapidly radiate this en-
ergy away only to be collisionally excited again to repeat the cycle.

While collisions largely excite these molecules into rotational states, they elevate
atomic impurities such as oxygen, O, carbon, C, or singly ionized carbon, C+, to
low-lying fine-structure levels within their ground electronic states. A fine-structure
transition involves a change in electron-spin angular momentum relative to orbital
angular momentum.

To obtain a quantitative estimate of cooling rates, we consider a cloud with den-
sity n and an impurity concentration X of a species of atom or molecule with a
low-lying level that can be collisionally excited by hydrogen molecules of mass m.
The excitation cross- section is σ. If the Einstein coefficient for spontaneous emis-
sion of a photon with energy ε is A and the gas temperature is T , then the cooling
rate per unit volume is

L = Xn2

(
3kT
m

)1/2

σε , (10-30)

provided the collisional excitation rate is far slower than the spontaneous emission
rate

n

(
3kT
m

)1/2

σ  A . (10-31)

Otherwise collisional excitation can be followed by de-exciting collisions and radia-
tion becomes less efficient. Equation (10–30) can be rewritten, in terms of frequently
encountered cloud parameters, as

L = 1.5× 10−18

(
X

10−4

)( n

106 cm−3

)2
(

T

70 K

)1/2

(10–32)

×
( σ

10−16 cm2

)( ε

10−3 eV

)
erg cm−3 s−1 ,



10:8 Energy Dissipation 453

which we note is independent ofA. In employing this format for writing an equation,
we are stating effectively that X ∼ 10−4, n ∼ 106 cm−3, and so on, are typical
values for impurity concentrations, hydrogen density, and other parameters, and that
L scales in proportion to X, to n2, and so forth.

The cooling rate L should still be compared to the heat content per unit volume,
H ,

H ∼ nkT = 10−8
( n

106 cm−3

)( T

70 K

)
erg cm−3 . (10-33)

The ratio of these two quantities gives the cooling time

tcool ∼ H

L
= 6.7 × 109

(
10−4

X

)(
106 cm−3

n

)(
T

70 K

)1/2

(10–34)

×
(

10−16 cm2

σ

)(
10−3 eV

ε

)
s .

This cooling time is roughly 200 yr for the parameters assumed and corre-
sponds to the time required by a shock at speed 15 km s−1 to cross a distance of
1016 cm. This suggests that turbulent motions at supersonic velocities should be
rapidly damped and cannot long persist in a cloud. We may still compare the cool-
ing time to the free-fall time for a spherical cloud given by equation (10–4),

tff ∼
(

3π
32ρG

)1/2

∼ 40, 000
(

106

n

)1/2

yr . (10-35)

The collapsing cloud can cool itself far more rapidly than free fall. Infrared ob-
servations at wavelengths of several microns have revealed tantalizing protostellar
candidates deep inside dusty clouds. These are understandably rare because the col-
lapse phase is so fleeting. The free-fall time is a hundred times shorter than the main
sequence lifetime of the most massive, shortest-lived stars. For other stars, it repre-
sents an even smaller fraction of the total lifetime. In contrast to the total number of
stars, very few protostars exist at any given epoch.

The restriction (10–31) on the Einstein coefficient can be rewritten as

A� 10−5
( n

106 cm−3

)( T

70 K

)1/2 ( σ

10−16 cm2

)
s−1. (10-36)

This needs to be compared to the Einstein A values for potential coolants. For CO
the Jth rotational state has a coefficient AJ ∼ 1.118×10−7 J3 s−1. The wavelengths
for these transitions lie at λJ ∼ (2600/J) µm equivalent to a temperature for state
J, TJ = hc/2kλ1J(J + 1) ∼ 2.77 J(J + 1) K1. Atomic oxygen has a fine-structure
transition at 63µm withA = 9×10−5 s−1. We see that both CO at J> 7 and atomic
oxygen meet the requirements of (10–36). Water vapor also has a large number of
lines with highA values. The relative cooling capacities of CO and H2O depend on
density and temperature (Fig. 10.3).

1 1µm ≡ 1 micron ≡ 1 micrometer = 10−6 meters
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Fig. 10.3. The fractional cooling rate due to radiation emitted by different coolants in a
molecular cloud as a function of temperature T and molecular hydrogen density n(H2). The
coolants shown are H2O, CO, H2, neutral atomic oxygen (OI), hydrides other than H2O,
and other molecules. The radiated energy is proportional to the abundance of each species,
determined by the chemical equilibrium at each temperature. Blank areas correspond to a
fractional cooling power of < 0.2, hatched areas to 0.2–0.5, cross hatched areas to 0.5–0.7,
and black areas to > 0.7 of the total cooling rate (from Neufeld, Lepp, and Melnick (Ne95)).

The cooling rates derived, assume that the optical depth of the cloud is low. If the
column density rises to the point where self-absorption dominates, radiative cooling
by atoms and molecules becomes progressively less efficient. A typical value for
the Einstein absorption coefficient within the spectral line envelope is B(ν) at line
frequency ν ,

B(ν) =
c2

8πν2

A

∆ν
, (10-37)

where ∆ν is the Doppler width. The column density NX of an atomic or molecular
species X cannot exceed

NX = [B(ν)]−1 (10-38)

without appreciable line trapping within the cloud and diminished cooling. We see
this for a photodissociation region, PDR, interleaved between a circumstellar HII

region and an adjacent cold gas cloud (Fig. 10.4).
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Fig. 10.4. Cooling and heating rates in a photodissociation region, PDR, as a function of vi-
sual extinction, AV , on penetrating a cloud. The photon flux is 1.6 erg cm−2 s−1; atomic den-
sities are 103 cm−3. (a) The curve labeled CII refers to fine-structure-line cooling at 158 µm
by singly ionized carbon atoms; CI represents fine-structure-line cooling at 370 and 609 µm
by neutral carbon atoms; OI represents similar cooling by oxygen atoms at 63 µm. H2 and
CO are the cooling rates due to rotational and vibrational transitions of these molecules. (b)
Here “Photoelectric” stands for photoelectric heating by grains (Section 9:12); “Dust” means
heating of the gas through collisions with warm dust; “Cosmic Ray” stands for cosmic-ray
heating; H2* and OI refer to collisional de-excitation, respectively, of radiatively pumped H2

and oxygen atoms; H2 and CI indicate heating through photodissociation of H2 and photoion-
ization of carbon atoms (Ho91).

10:9 Cooling of Dense Clouds by Grain Radiation

Once an interstellar cloud becomes sufficiently dense to absorb spectral line radia-
tion emitted by its principal atomic and molecular constituents, grain emission may
begin to dominate cooling. However, grains can cool the gas only as rapidly as atoms
or molecules transfer their energy to the dust. If the grains are taken to be roughly
spherical with radius a, the rate of heat transfer to a grain is

dQgr

dt
= n2πa

2

(
3kT2

m2

)1/2 (T2 − Tgr)
T2

α

(
cvT2

N
)
. (10-39)

Here, the expression on the left is the heat dQgr transferred to a grain in time dt, and
we see that this is proportional to the number of hydrogen molecules per unit vol-
ume, n2, assuming H2 to be the dominant gas constituent; the grain collision cross-
section for gas impact, πa2; the speed (3kT2/m2)1/2 with which the molecules of
mass m2 travel at the gas temperature T2; the fractional difference in gas and grain
temperature (T2 − Tgr)/T2, indicating the fraction of the molecular energy that can
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be transferred; an efficiency factor α denoting the efficiency with which impacts
transfer energy from a molecule to a grain; and, finally, the energy the molecule has
that it could transfer, cvT2/N , where N is Avogadro’s number and cv is the heat
capacity per mole of gas. The notation used here is the same as in Section 4:19.

The number density of grains ngr is determined by the fraction by mass Xgr of
matter in the form of grains and by the mass density ρgr of the grain material. Per
unit volume in space we then have

ngr =
n2Xgrm2

ρgr(4πa3/3)
= 3.8× 10−9

( n2

104 cm−3

)( Xgr

10−3

)
(10–40)

×
(

2 g cm−3

ρgr

)(
10−5 cm

a

)3

cm−3,

where the numerator of the intermediate expression gives the mass of grains in unit
volume of space, and the denominator is the mass per grain. The expression on the
right exhibits representative values for typical parameters characterizing molecular
clouds. We can now multiply the expressions for dQgr/dt and ngr to obtain the
cooling rate per unit volume of space Lgr,

Lgr =
3
4
n2

2Xgr(3m2k)1/2(T2 − Tgr)αcυT
1/2
2 (Nρgra)−1

= 2 × 10−24
( n2

104 cm−3

)2
(
Xgr

10−3

)(
α

1/3

)(
2 g cm−3

ρgr

)(
10−5 cm

a

)

×
(
cυ/Nk

3/2

)(
T2

50 K

)3/2(
T2 − Tgr

30 K

)
erg

cm3 s
. (10-41)

This cooling rate must be compared to the radiative cooling rate for grains at tem-
perature Tgr radiating with efficiency η,

Lrad = 4πa2ngrσT
4
grη =

3n2Xgrm2σT
4
grη

ρgra

= 4.4× 10−21
( n2

104 cm−3

)( Xgr

10−3

)(
Tgr

20 K

)4 ( η

10−4

)

×
(

10−5 cm
a

)(
2 g cm−3

ρgr

)
erg

cm3 s
. (10-42)

Here σ is the Stefan–Boltzmann constant and η has been chosen as 10−4, roughly
corresponding to a radiation efficiency comparable to the ratio of grain radius to
wavelength, a/λ, for grains radiating at wavelengths just short of one millimeter.
Even when this efficiency is an order of magnitude lower, η ∼ 10−5, the grains can
still radiate rapidly enough to keep the gas temperature below 50 K, and we would
have Lrad > Lgr, meaning that the rate of radiation by grains is at least as rapid as
the rate at which the gas can heat the grains.
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As the cooling cloud contracts, the density rises and Lgr increases as the square
of the density, while Lrad only grows linearly with density. With the above param-
eters we would have equality of grain heating and cooling, Lgr ∼ Lrad, at densities
n2 ∼ 5 × 105 cm−3; but that number depends quite critically on the difference be-
tween gas and grain temperatures. As the density increases, the temperature differ-
ence between gas and grains tends to decline. If the grains become hotter they begin
emitting at shorter wavelengths where their efficiency η ∼ a/λ increases roughly in
proportion to Tgr, since a thermally emitting body shifts its peak emission frequency
in proportion to T , as is evident from (4–72), so that η ∝ Tgr ∝ λ−1. As a result
Lgr rises roughly in proportion to T 5

gr.
Grains play a major role in the cooling of a contracting cloud that radiates away

energy gained as gravitational potential energy is released. The predominance of
grains in cooling is due to the broad wavelength range over which they emit and
is not greatly affected by their low efficiency in radiating. This lack of efficiency
implies that energy radiated by a given grain in the cloud will not be readily absorbed
by another grain and will therefore escape. Per unit volume the opacity is

κgr = πa2ngrη =
3n2Xgrm2η

4ρgra
= 1.2 × 10−22 cm−1 (10-43)

for the same parameters used in equation (10–42). Since the opacity can only change
in response to an increase in density or radiating efficiency, and since η is unlikely
to exceed 10−3 at temperatures characteristic of protostellar clouds, n2 can rise
to a value of 109 cm−3 and still leave the opacity as low as ∼10−16 cm−1. At those
densities a sphere of radius 1016 cm would just barely have unit opacity, but the total
mass encompassed would exceed 1M�. Once the cloud becomes opaque, perhaps at
the time its radius is of order of a few hundred astronomical units, it can at best only
emit as a blackbody. In thermal equilibrium, rapid contraction requires an increase
in temperature to make up for the decreasing surface area available for radiation.

Finally, we may want to examine the relationship, at this late stage of col-
lapse, between the cooling time and the free-fall time. The temperature at the sur-
face of the nebula can be estimated from the virial theorem (3–85), by setting
3kT = miMG/R, where mi is the prevalent atomic or molecular mass. At uni-
form density the potential energy of the cloud is given by equation (8–1). The cool-
ing time is therefore

tcool ∼ 3M2G

5R

(
1

4πR2σT 4

)
=

243k4R

20πm4
iM

2G3σ
, (10-44)

where k is Boltzmann’s constant. Taking mi = mH , we find the cooling time to be
roughly one year. In contrast, the free-fall time is (3π/32Gn2m2)1/2 as seen from
equation (10–4); for a protostellar nebula of constant density this would amount to
about 3000 yr. The nebula can cool itself faster than it would collapse through free
fall, unless excessive angular momentum that cannot be shed or excessive internal
magnetic pressures halt the contraction.

Gas swirling around a star generally has a net angular momentum that prevents
it from falling directly toward the star. It gathers into a disk that orbits the star in
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differential rotation; the outer parts of the disk have an angular velocity lower than
the inner portions. A number of different types of accretion disks are significant.
Protostellar gas clouds contracting to form a star form a disk around the gravitating
center. These disks can remain even after the star forms. T Tauri stars are embedded
in the disks. Later, as the star evolves, such disks may give rise to planetary systems
that maintain the disk’s original angular momentum but allow the cooling gas to
form planetary bodies.

When planet formation has progressed to a point where much of the disk ma-
terial has aggregated into planets or asteroids, destructive collisions between these
bodies can result in the production of enormous amounts of debris. The debris disk,
heated by starlight, tends to prominently radiate at infrared wavelengths. Generally,
such a disk persists for less than a hundred million years. During this time the debris
is partly swept up and captured by the larger planets and partly dragged into the star
by the Poynting–Robertson effect.

Protostellar gas normally has an embedded magnetic field, and as the gas con-
tracts toward the star, it preferentially follows the field lines. This leads to the low-
est compaction of the field lines and avoids the buildup of magnetic pressures that
would resist further contraction.

Magnetic field lines anchored in the rotating star may extend out into the accre-
tion disk, and wind up until magnetic pressures become too high. Twisted magnetic
loops are then thought to break out of the disk with current sheets developing where
oppositely directed magnetic fields annihilate, as in Fig. 10.1.

Plasma becomes sufficiently hot to emit X-rays and a large X-ray flare results.
Protostars still embedded in the cloud of gas and dust from which they formed
frequently flare up in X-ray emission (Ne97).

Once the new star is fully formed and begins burning nuclear energy, it starts
to shed its outer envelope in a stellar wind. This begins to blow away some of the
accretion disk, but much of the escaping gas is initially funneled out, escaping along
the system’s polar axis.

Figure 10.5 shows the complexity of interplay between evolving stars and the
interstellar medium. It indicates why the question of star formation has no single
easy resolution: the formation of stars may proceed along varieties of different lines.

10:10 Condensation in the Early Solar Nebula

We now turn to another source of information on star formation — remnants from
the earliest phases of the protosolar nebula, left over from a time when the Sun and
the planets were just forming. These remnants are the earliest-formed meteorites. In
order to decipher the message they have preserved and brought down to us over the
æons, we must first go back to a number of thermodynamic considerations. We do
this now and return to the meteoritic data in Section 10:11.

Let us ask how gases in the early Solar Nebula may have condensed into the
solids that ultimately went into the formation of planetary bodies. Clearly, the first
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Fig. 10.5. The complex interplay between evolving stars and the interstellar medium (Sa97a).

law of thermodynamics — energy conservation — must hold. We start with equa-
tion (4–119)

−dQ = dU + P dV (10-45)

and note that the second law requires

T dS ≥−dQ , (10-46)

meaning that entropy S either increases or, at best, remains constant in any physi-
cal process as long as we deal with the entire system, generally the entire volume
within which the process takes place. Equality in this relation holds only when the
process occurs reversibly. Relatively few genuinely reversible processes exist, but
sublimation and condensation are among them. Typically, a closed vessel kept at
constant temperature and pressure near the sublimation point of a substance will see
the growth of some crystals at the expense of others, while the vapor pressure in
the vessel remains constant. No net work is done in this equilibrium state since the
pressure and volume remain constant, but heat is transferred from growing crystals
to sublimating crystals. This is the latent heat of evaporation per mole of substance,
λ. We, therefore, see the entropy change for a mole of condensing material to be

∆S = − λ

T
. (10-47)
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The latent heat λ depends on both the pressure and temperature, but the equilib-
rium vapor pressure rapidly rises near one particular temperature — the sublima-
tion temperature. Below this narrow temperature range one finds the bulk material
largely equilibrated in the condensed phase; above this range it is almost exclusively
gaseous.

We now turn to another thermodynamic function — the Gibbs free energy named
after the nineteenth-century American thermodynamicist J. Willard Gibbs. It is de-
fined as

G ≡ U + PV − TS . (10-48)

This is a function that describes the state of the system without regard to the ways
in which it originated. G can be differentiated exactly and we write

dG = dU + P dV + V dP − S dT − T dS . (10-49)

Applying equations (10–45) and (10–46) we obtain

dG ≤ V dP − S dT . (10-50)

For changes occurring at constant temperature and pressure, dG ≤ 0, and the free
energy either decreases or remains constant. A constant free energy requires a re-
versible process such as the condensation or sublimation just discussed.

Let us consider two phases designated by υ for vapor and s for solid. In equilib-
rium we have

Vs dP − Ss dT = Vυ dP − Sυ dT (10-51)

or
dP

dT
=
Ss − Sυ

Vs − Vυ
=
∆S

∆V
=

−λ
T∆V

. (10-52)

For condensation, Vs  Vυ and ∆V = −Vυ = −RT/P , where R is the gas
constant defined in Section 4:6. Hence

dP

dT
=

Pλ

RT 2
, (10-53)

from which we obtain

lnP =
−λ
RT

+ constant . (10-54)

This reciprocal relationship between the logarithm of the vapor pressure and the
temperature is shown by the straight lines of Fig. 10.6. Its plot shows the rapid drop
in vapor pressure for elements of interest in the condensation of the early Solar Neb-
ula. Table 10.1 shows the condensation temperatures of a number of pure elements
as well as compounds at two different total pressures in the early Solar Nebula,
respectively, 1 and 6.6× 10−3 atm (1 atm = 760 torr = 1.01× 10

6
dyn cm−2).

We notice first that the elements which are most volatile — those with the high-
est vapor pressure at a given temperature — tend to be clustered in the right half of
the periodic table, as shown in Fig. 10.7.
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Table 10.1. Condensation Temperatures for Compounds and Elements in the Early Solar
Nebula, at Two Different Total (Hydrogen) Gas Pressures, Pτ . (Reprinted with permission
from Larimer (La67).)

Pτ = 1 atm Pτ = 6.6× 10−3 atm

Compound or Element T (◦K) Compound or Element T (◦K)

MgAl2O4 2050 CaTiO3 1740
CaTiO3 2010 MgAl2O4 1680
Al2SiO5 1920 Al2SiO5 1650
Ca2SiO4 1900 Fe 1620
CaAl2Si2O8 1900 CaAl2Si2O8 1620
CaSiO3 1860 Ca2SiO4 1600
Fe 1790 CaSiO3 1580
CaMgSi2O6 1770 CaMgSi2O6 1560
KAlSi3O8 1720 KAlSi3O8 1470
Ni 1690 MgSiO3 1470
MgSiO3 1670∗ SiO2 1450
SiO2 1650 Ni 1440
Mg2SiO4 1620∗ Mg2SiO4 1420
NaAlSi3O8 1550 NaAlSi3O8 1320
MnSiO3 1410 MnSiO3 1240
Na2SiO3 1350 MnS 1160
K2SiO3 1320 Na2SiO3 1160
MnS 1300 K2SiO3 1120
Cu 1260 Cu 1090
Ge 1150 Ge 970
Au 1100 Au 920
Ga 1015 Ga 880
Sn 940 Zn2SiO4 820
Zn2SiO4 930 Sn 806
Ag 880 Ag 788
ZnS 790 ZnS 730
FeS 680 Fes 680
Pb 655 Pb 570
CdS 625 CdS 570
Bi 620 PbCl2 535
PbCl2 570 Bi 530
Tl 540 Tl 475
In 400 Fe3O4 400
Fe3O4 400 In 360
H2O 260 H2O 210
Hg 196 Hg 181

∗ The condensation temperatures for MgSiO3 and Mg2SiO4 are somewhat uncertain.
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Fig. 10.6. Vapor pressures of elements found in meteorites. (Reprinted with permission from
Larimer (La67).)

If the early Solar Nebula had cooled down slowly, we would expect that the first
condensates would have contained only refractory materials, materials that evap-
orate at high temperatures. As the nebula cooled, more volatile substances would
have condensed out. The condensation sequence with declining temperature would
then have followed the order indicated in Table 10.1.

10:11 The Evidence Provided by Meteorites

At least some types of meteorites are believed to be remnants of the earliest stages
of evolution of the Solar Nebula. They are thought to have condensed well before
the first planets formed. Meteorites generally are classed either as iron or stony.
The iron meteorites are metallic and rich in iron. The stony meteorites can take on
different forms. Of particular interest to studies of the formation of the Solar Sys-
tem are chondrites, stony meteorites containing chondrules. Chondrules, in turn,
are millimeter-sized silicate spherules that look as though they might have been
droplets frozen from a melt. They consist largely of olivine, a mineral whose chem-
ical makeup is (Mg, Fe)2SiO4, pyroxine (Mg, Fe)SiO3, and plagioclase feldspar,
which is a solid solution of CaAl2Si2O8 and NaAlSi3O8. Table 10.1 shows that
all of these minerals condense out at temperatures ≥ 1240 K in the pressure range
shown. The chondrules are embedded in a matrix, a more finely ground mass, gen-
erally of the same composition. In the matrix we also find millimeter-sized particles
of nickel–iron with a nickel content ranging from about 5 to 60%. Troilite, whose
chemical composition is FeS, is also present.
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Fig. 10.7. Elements found depleted in most chondritic meteorites, relative to type I carbona-
ceous chondrites. “Normal depletion” corresponds to depletion down to 0.1–0.5, while “ex-
cess depletion” refers to reduction to 0.001–0.1 of abundances in these chondrites. (Reprinted
with permission from Larimer (La67).)

The chondrites can be divided into three groups. Carbonaceous chondrites, des-
ignated by a letter C , are highly oxidized. In particular, their iron content is always
strongly oxidized, meaning that each iron atom donates two or three of its outer
shell electrons to other elements in the chondritic mineral. Carbonaceous chondrites
derive their name from the carbon-rich compounds they contain. In contrast, en-
statites, or E chondrites, are highly reduced, containing iron only in the metallic
form or as troilite. Between these two extremes we find ordinary, or O chondrites.

The carbonaceous chondrites are subdivided into three classes. Type I is virtually
free of chondrules and consists largely of a mineral matrix. Type III consists of 70 to
80% chondrules with very little matrix in between. Type II is intermediate to these.
Chemical analyses show that most chondritic meteorites are quite strongly depleted
in the more volatile elements when compared to type I. This is because the matrix
is richer in volatile elements than are the chondrules.

We now ask why these two chondritic constituents, the chondrules and the ma-
trix, should differ so greatly in their content of volatiles.

The chondrules are thought to have been the first solids to condense out of a So-
lar Nebula which began as a high-temperature, gaseous mass. Were these spherical
inclusions already present in the early Solar Nebula and do they therefore contain
information that could be used to infer primitive conditions? Studies on the X-ray
flaring of T Tauri stars suggest that chondrules may form in T Tauri disks through
flash-heating. Magnetic fields connecting the rotating central star and the surround-
ing disk can suddenly reconnect to release magnetic pressure and energy, and accel-
erate charged particles to high energies. These might heat and melt dust aggregates,
which could then cool and condense as chondrules (Gr97), (Sh97). The most re-
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fractory materials would have condensed out first, forming the chondrules. As Table
10.1 suggests, highly volatile material such as bismuth, Bi, lead, Pb, and indium, In,
would have remained in vapor form and would only have condensed at much lower
temperatures. Those chondrites rich in chondrules, therefore, contain largely those
refractory constituents which condensed out first.

Actual depletion for ordinary chondrites relative to a cosmic abundance distribu-
tion of elements is shown in Fig. 10.8. We see that bismuth and indium are depleted

Fig. 10.8. Abundance of the various elements in ordinary chondrites, relative to the cosmic
abundance given in Table 1.1 (after Anders (An72)).

by two to three orders of magnitude.
Two possible condensation sequences showing the nebular temperatures at

which different compounds condensed are shown in Fig. 10.9. The actual conden-
sation temperatures depend to some extent on whether the nebula cools slowly or
rapidly. The slower cooling assumes that complete diffusion can take place with the
formation of alloys and solutions to the limit of solubility of all the substances in-
volved. This permits the condensation temperatures for minor elements to be higher
and also widens their condensation ranges.

A fairly detailed picture of the evolution of the early Solar Nebula is emerging.
The nebula started at temperatures in excess of perhaps 1800 K, and cooled to below
400 K before the planets formed. Evidence for this lower temperature comes from
the long chain hydrocarbons in the carbonaceous chondrites which can only form at
low temperatures in reactions of the type

20CO + 41H2 ⇔ C20H42 + 20H2O (10-55)

through the interaction of residual carbon monoxide, CO, with hydrogen. These
reactions, however, only take place in the temperature range between 300 K and
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Fig. 10.9. Condensation sequence of gas whose initial composition corresponds to the cosmic
abundance of elements. For grains of radius 10−5 cm the upper sequence applies for times of
minutes or hours, while the lower sequencecorresponds to cooling times of years or centuries.
The shaded areas show condensation or chemical transformation of major constituents (after
Anders (An72)).

400 K for pressures likely to prevail. At temperatures above 450 K, these gases react
differently, giving

CO + 3H2 ⇔ CH4 + H2O. (10-56)

The double arrows in these two reactions show that they can go in either direction,
but the hydrocarbons at the right are favored toward lower temperatures and the
higher CO content seen on the left side of the equations is favored at higher tem-
peratures (Fig. 10.10). CO, of course, is a constituent of interstellar clouds and is
expected to be present in the early nebula. The production of hydrocarbons from CO
and H2 proceeds in the laboratory through the Fischer–Tropsch reaction, which is
just the reaction (10–55) catalyzed by iron or cobalt in industrial syntheses. That this
reaction is responsible for the carbon compounds found in meteorites is indicated
by Fig. 10.11, which shows that, among about 104 possible hydrocarbon molecules
that can be formed using 16 carbon atoms and an arbitrary amount of hydrogen,
only six are present in appreciable abundance in the meteorite analyzed. Five of
these, all underlined in the figure, are common to both samples. Acenaphthene, not
detectable in the synthetic example, has been seen in other products prepared by the
Fischer–Tropsch method at higher temperatures.

All this still leaves uncertain the cooling rate of the Solar Nebula. This depends
on whether the nebula was self-shielding, in that the inner parts prevented solar
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Fig. 10.10. Equilibrium between CO and H2 at different temperatures and pressures. If equi-
librium is maintained on cooling, CO is largely converted into CH4 before more complex
molecules can be formed at lower temperatures. However, this reaction is slow, and some CO
may survive to lower temperatures where complex organic molecules can form, particularly if
Fe3O4 (iron rust) and hydrated silicates such as serpentine, Mg3Si2O5(OH)4, form at 380 to
400 K. Both of these are effective catalysts for the Fischer–Tropsch reaction (see text) (after
Anders (An72)).

Fig. 10.11. Gas chromatogram of hydrocarbons in the range containing 15–16 carbon atoms.
The synthetic product was made by a Fischer–Tropsch reaction (see text) (after Anders
(An72)).
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heating of the outer parts, or whether solar heating played an important role. The
cooling rates under these two conditions are shown in Fig. 10.12. Either way, the

Fig. 10.12. Cooling curves for the Solar Nebula with and without heating by the protosun
while still on the highly luminous Hayashi track. Presumably the initial cooling follows
curves IA, IB, and IC at 2.2, 2.8, and 3.9 AU, respectively, from the Sun. Later on, curves
IIA, lIB, and IIC are more likely to be germane. Accretion temperatures of different types of
chondrites are indicated by symbols and are inferred from the condensation temperatures of
Pb, Bi, In, Tl, and H2O, as well as the threshold of the Fe → Fe3O4 reaction. A time scale for
accretion of chondritic material of 104−105 yr is implied. The precise distances at which the
various chondrites form is uncertain. (Reprinted with permission from Larimer and Anders
(La67a).)

early Solar Nebula cooled in a remarkably short time, perhaps 104 to 105 yr, a mere
instant when compared to the Sun’s lifetime as a main sequence star ∼5 × 109 yr.

10:12 Nascent Planetary Disks

The gas in a nascent planetary disk is bound by gravity. Consider two parallel disks
with identical surface mass density, respectively located in the planes z = −zi and
z = zi. Then, for disks with radii R � 2z0 the results of Problem 9–11 tell us that
a mass placed anywhere on axis between the planes will experience no net force.
Accordingly, if the gas in a nascent disk has a vertical number-density distribution
n(z) symmetrically placed above and below a central plane, then a particle of mass
M at some height z above the plane will feel a net force solely due to matter dis-
tributed between distances −zi and zi from the central plane, and this force will
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be proportional to the surface density σ(zi) of material between these two planes,
F = −2πGσ(zi). For a predominantly gaseous disk with atoms or molecules of
mass m,

σ(z) = mN(z) ≡ m

∫ +z

−z

n(z)dz , (10-57)

where N(z) is the column density viewed perpendicular to the symmetry plane.
The increment of pressure dP contributed by an element of thickness dz at height z
above the plane is

dP = −2πGn(z)mσ(z)dz . (10-58)

For an isothermal ideal gas at temperature T , this pressure gradient amounts to a
density gradient

1
n(z)

dn(z)
dz

=
d lnn(z)
dz

= − (2πGm2/kT
)
N(z) . (10-59)

Differentiating this, and restricting ourselves to the space z ≥ 0 above the plane, we
obtain

d2 lnn
dz2

=
n̈(z)
n(z)

−
[
ṅ(z)
n(z)

]2
= −4πGm2

kT
n(z) , (10-60)

where dots indicate differentiation with respect to z. For a number density n0 in the
central plane, this yields, respectively, a density n(z) and column densityN(z),

n(z) =
n0[

1 + (2πn0Gm2/kT )1/2 |z|
]2 , (10-61)

N(z) =
2n0

(
kT/2πn0Gm

2
)1/2[

1 + (2πn0Gm2/kT )1/2 |z|
] . (10-62)

The scale height |H |, above and below the symmetry plane, where the number den-
sity drops to n0/2 is

|H | = (kT/2πn0Gm
2
)1/2

. (10-63)

The surface density of the disk is

σ = 2
∫ ∞

0

mn(z)dz = (n0kT/2πG)1/2 . (10-64)

Note that this appears to depend only on n0 and T , but does indirectly depend on
the atomic or molecular mass m of the ideal gas constituents, by virtue of the as-
sumption that the disk is gravitationally bound.

An important limitation of this model is that it does not accurately depict a proto-
solar disk rotating about a central Sun. The gravitational field of that configuration
is dominated by the Sun, and the rotational motion provides a measure of stability.
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In contrast, thin disks supported solely by their own gravitational fields invariably
are unstable.

PROBLEM 10–4. Consider an early Solar Nebula consisting largely of H2 at
2000 K orbiting a central Sun. If the nebular mass is 1M�, and the projected density
of matter onto a central plane of this rotating disk is constant out to a distance of
about 1014 cm, roughly 7 AU, derive the scale height H and show that the expected
nebular pressure is ∼2 × 10−3 atm. If the surface density increases nearer the Sun,
the gas pressures found in the realm of Mercury, Venus, Earth, and Mars, should
correspondingly increase, falling within the range covered in Table 10.1.

10:13 Formation of Primitive Condensates in the Early Solar
Nebula

Given that the early Solar Nebula had a very high temperature, and that much of the
interstellar dust would have evaporated, we can ask how rapidly new grains would
grow as the nebula cooled.

Once condensation temperatures are reached, grain growth is quite rapid. We
imagine a seed grain, perhaps an interstellar grain that has survived, a grain that
might be entering the cooling nebula from a surrounding region which had not par-
ticipated in the collapse, or perhaps a seed spontaneously formed from the vapors.
Consider that the seed has radius a and is located in the plane of the nebular disk.
We know that all the freely orbiting material will pass through the disk twice per or-
bital period P . At the Earth’s distance from the Sun, this means that material passes
through this plane twice yearly. In the answer to Problem 10–4 we saw that the areal
density of this matter was σ = 6.4 × 104 g cm−2. If a fraction, say f = 10−4, of
this mass condenses at a particular temperature, the seed will grow at a rate

da

dt
=

πa2σf

4πa2ρgr

(
2
P

)
=

σf

2ρgrP
. (10-65)

For a grain density ρgr = 3 g cm−3 , we then obtain a growth rate at the Earth’s
distance from the Sun of roughly 1 cm yr−1. However, since there is only fσ ∼ 6 g
cm−2 of condensable material in the disk, we see that the sweep-up will only take
a few years, even if relatively few seed particles are initially present. Nucleation
of seeds is almost inevitable if only because Galactic cosmic rays which always
abound can produce nucleation in any supersaturated vapor — as they also do in a
Wilson cloud chamber.

10:14 Formation of Planetesimals

Once centimeter-sized particles or at least the observed millimeter-sized chondrules
form in the protoplanetary nebula, their scale height is quite small. The thermal
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velocity of a millimeter-sized particle with mass ∼10−3 g and temperature 103 K is
(3kT/m)1/2 ∼ 2 × 10−5 cm s−1, so that the scale height, obtained as in Problem
9–11, is effectively less than the chondrule size even if we use an areal density due
to condensed matter alone. The layer of condensed particles is therefore exceedingly
thin, and the velocity of sound in the disk — the speed with which sound propagates
through collisions by grains — is extremely low. The one factor that could make the
speed of sound in the disk higher would be if the grains were touching, so that the
bulk speed of sound in the material would become important. That the scale heights
in disks can be very thin is indicated by the rings of Saturn, which are only≤1.5 km
thick, a spread that may be due to perturbations by Saturn’s satellites (Ni96).

Goldreich and Ward (Go73) have considered the stability of such a disk. They
start with a dispersion relation, similar to the Jeans criterion but applicable to rotat-
ing axisymmetric disks in which matter is orbiting along Keplerian trajectories:

ω2 = k2c2s +Ω2 − 2πGσkf . (10-66)

Here Ω is the frequency of the orbital rotation in radians per second, k is the wave
number, k = 2π/λ, and λ is the wavelength of the disturbance, whileω is its angular
frequency. When that frequency goes from a real to an imaginary value, instability
sets in. Because the speed of sound cs is essentially negligible, the criterion for
instability is

2πGσkf > Ω2 . (10-67)

The minimum wavelength that is unstable then becomes

λmin = 4π2GσΩ−2f . (10-68)

The mass contained in such a fragment is fσλ2
min , so that the minimum condensa-

tion mass would be
Mmin = 16π4G2σ3Ω−4f3 , (10-69)

which has a value of order 1018 g, while λmin ∼ 4 × 108 cm. For unit density we
obtain planetesimals roughly 10 km in size.

We note a number of points. First, if equation (10–66) is multiplied by the square
of some wavelength λ and by a local density ρ, we see that the first term on the right
is comparable to the internal energy of the gas; the second term depicts a rotational
kinetic energy; and the third term corresponds to self-gravitational attraction. When
the wavelength is sufficiently large so that the self-gravity exceeds the rotational and
internal energies combined, instability and contraction can set in.

Second, the maximum wave number k = 2π/λmin ∼ 10−8 cm−1 when multi-
plied by a speed of sound derived from grain velocities, is far smaller thanΩ which,
at the distance of the Earth from the Sun, has a value ∼2×10−7 rad s−1. If the speed
of sound were higher in the disk, and the first term on the right became dominant
over the second, the instability criterion would become
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2π
λmin

= kmax <
2πGσf
c2s

, λmin >
c2s
Gσf

, (10-70)

and the minimum wavelength would be ∼ 2.5 × 106c2s cm. The argument for the
formation of planetesimals through gravitational instabilities arising in a disk, there-
fore, depends quite crucially on the speed of sound being low.

Third, the speed with which such bodies form is going to be of order
ω−1 ∼ λmin/2πcs, which even for cs ∼ 2 × 10−5 cm s−1 and λmin ∼ 4 × 108 cm
is only about a hundred thousand years, quite brief compared to the age of the Solar
System. Again, the speed of sound is quite critical in this estimate.

Once planetesimals have formed, further growth of planets may occur through
their gravitational accretion into large bodies. Just how this takes place is not sat-
isfactorily understood. We do not know what determined the distribution of masses
of the planets in our Solar System. Nor do we know why some massive planets seen
in distant stellar systems orbit their parent stars at radii much smaller than Jupiter’s
distance from the Sun.

10:15 Condensation in the Primeval Solar Nebula

In Section 1:10 we presented some current views on the origin of the Solar System.

PROBLEM 10–5. Just after the Sun first formed, it was surrounded by a dense
cloud of gas from which the planets eventually condensed. As a first step, small
grains probably formed. Suppose the mass was evenly distributed throughout the
nebular disk, with a scale height H ∼ 1 AU, that its total mass was twice that
of all planets combined (see Table 1.4), that the radius was R = 10 AU, that the
temperature at each point was in thermal equilibrium with solar irradiation, and
that the initial abundance was similar to the Solar System abundance (Table 1.1).
Making use of Table 10.2, calculate an approximate distance from the Sun at which
iron would have condensed. Do the same for carbon. Would water or ice have been
able to condense within the nebula? Note that the Sun may have been on the Hayashi
track (Fig. 1.5) at that time. Assume its luminosity was ten times greater than now.

PROBLEM 10–6. The action of light pressure may have tended to produce ho-
mogeneity in the Solar Nebula. Consider the outward-directed flux amounting to
αL�/4πr2 at a distance r from the Sun, where α is a factor of order unity. The or-
bital velocities of two grains, both orbiting the Sun at the distance of Jupiter would
then depend on their densities, as well as their interaction with light. Let both grains
have radii s ∼ 10−3 cm, but let one particle have a density 2 g cm−3, while the
other’s is 4 g cm−3. Assume both grains to be spherical and black, absorbing light
with a cross-section πs2. Show how the orbital velocity differs as a function of s,
the difference being greatest for small s. Note that grains with large density and/or



472 10 Formation of Stars and Planetary Systems

Table 10.2. Relation Between Temperature and Vapor Pressure Compiled from (Ro65),
(Du62), and (Le72).a

Vapor Pressure 10−11 10−10 10−9 10−8 10−7 torrb

Atomic carbon at 1695 1765 1845 1930 2030 K
Atomic iron at 1000 1050 1105 1165 1230 K
As seen from equation (10–54), most solid substances obey a vapor-pressure–temperature
relationship of the form log10 P = A − B/T .

At low pressure:
P (in torr):

⎧⎨
⎩

carbon A = 12.73
iron A = 9.44
NaCl A = 7.9

and B = 4.0× 104 K
B = 2.0× 104

B = 8.5× 103

For water the following data are available:

H2O

{
7 × 10−9 3 × 10−10 7.4 × 10−15 14 × 10−22 torr

143.2 133.2 123.2 90.2 K

For hydrogen:

H2

{
3.1 × 10−7 8.8 × 10−9 7.5 × 10−11 4.5× 10−13 torr

4.0 3.5 3.0 2.6 K

a Parts reprinted by special permission from Rosebury, Handbook of Electron Tube and Vac-
uum Techniques, 1965, Addison-Wesley, Reading MA. Other parts reprinted from (Du62)
c©1962, John Wiley and Sons. We note that the inner planets consist primarily of low vapor-

pressure material and that, by and large, the outer planets contain more volatile substances.
b 1 torr = 133 × 103 dyn cm−2 = 1.32× 10−3 atm.

size differences would therefore collide more frequently and be destroyed, whereas
grains with nearly identical properties would tend to survive longer.

PROBLEM 10–7. After small particles and chunks were formed through conden-
sation, a second stage of condensation seems to have taken place in which gravita-
tional attraction played a dominant role. Before this time, particles presumably had
acquired almost identical low eccentricity, low inclination orbits at any given dis-
tance from the Sun, and the relative velocities of these grains must have been small.
This would have come about because high- or low-velocity grains would be elimi-
nated preferentially through more frequent destructive collisions with other bodies.

(a) At what size would a body whose density ρ is 3 g cm−3 have a gravitational
capture cross-section that is twice as large as its geometric cross-section? Assume a
relative velocity V0 for particles to be captured. The result of Problem 3–11 may be
useful.

(b) Derive the growth rate of a body with ρ = 3 g cm−3 moving through a nebula
whose density is ρ0 = 3×10−12 g cm−3 . Let its relative velocity be V0 = 1 km s−1

and start at a time when its gravitational capture cross-section is twice its geometric
cross-section.
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(c) Show that the mass growth for a spherical gravitating body, whose capture
cross-section is much greater than its geometric cross-section and whose density
ρ = 3M/4πR3 has a fixed value, is proportional to M4/3 or R4. More massive
bodies therefore have a higher mass capture rate than lower mass bodies whose geo-
metric capture cross-section only allows them to capture mass at a rate proportional
toR2.

PROBLEM 10–8. Suppose that a grain stays spherical as it grows through capture
of matter. It moves through the Solar Nebula at V0 = 1 km s−1, escapes destructive
collisions by chance, and grows from a radius of ∼10−8 cm — one molecule — up
to 10 km. If the nebular density is 3 × 10−12 g cm−3, of which a 1% nonvolatile
fraction can be captured, and the particle’s density is 2.5 g cm−3 , show that the
growth time is roughly 108 yr.

Answers to Problems

10–1. Substitute a new variable, u, given by r = r0 sin2 u, so that
dr = 2r0 sinu cosu du, which gives the desired result through the integral∫ 0

π/2

sin2 u du = −π
4
.

10–2. Set the surface mass density on the sphere equal to σ = M/4πR2 and con-
sider a point at some off-center distance a. The potential at that point is

V = −
∫ π

0

2πσGR2 sinΘ dΘ√
(R cosΘ − a)2 + R2 sin2Θ

,

where normal polar coordinates have been used. Integration leads to

V = −2πσGR
a

(R2 − 2aR cosΘ + a2)1/2

]π
0

= −4πσGR .

Furthermore, because any spherical distribution can be built up from a continu-
ous distribution of spherical shells, the potential anywhere within an empty central
sphere will be constant throughout.

10–3. To work out this problem, it may be best to derive equation (10–29) first,
since equation (10–28) then follows from settingQ = 0. To derive (10–29) we may
start with equation (9–31) and substitute for the outflow parameters υo, ρo, and Po in
terms of the corresponding inflow parameters by means of equations (9–26), (9–34),
and (9–35). Then, for extremely high velocities, assume that γiPi/ρi = c2i  υ2

i is
negligibly small.
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10–4. For a uniform disk of mass M� and radius R = 1014 cm, the surface density
σ = M�/πR2 = 6.4 × 104 g cm−2, which by (10–64) equals (n0kT/2piG)1/2.
This gives n0 ∼ 6 × 1015 cm−3 . The scale height then is obtained from (10–63),
H ∼ 3 × 1012 cm. We also obtain the pressure P0 = n0kT ∼ 2 × 103 dyn
cm−2 ∼ 2 × 10−3 atm.

10–5. (a) The volume of the nebula is V = πR2H ∼ 1042 cm3 . Its mass is M ∼
5 × 1030 g. The density at each point then is ρ ∼ 5 × 10−12 g cm−3 . From Table
1.2, the abundance of iron is ρFe/ρtot ∼ 1.3 × 10−3; this makes the density of
iron ρFe ∼ 6.5 × 10−15 g cm−3 , and the pressure, if in the form of vapor, PFe =
(ρFe/mFe)kT ∼ 10−8T dyn cm−2 = 7 × 10−12T torr.

According to the vapor pressure formula given in Table 10.2, the vapor pressure
of iron at T = 1140 is ∼8 × 10−9 torr, which corresponds to the vapor pressure of
iron in the nebula at this temperature. If the early Sun had a luminosity ten times
higher than the solar luminosity today, equation (4–81) tells us that iron could have
condensed at distances greater than

R ∼
(

10L�
16πσT 4

)1/2

∼ 3 × 1012 cm ∼ 0.2 AU .

(b) An identical calculation for carbon gives a vapor pressure of ∼1.7 × 10−7

at a temperature of 2050 K, indicating that carbon will condense approximately at
R = 1012 cm.

(c) Under the circumstances described the temperature out to 10 AU everywhere
exceeds T ∼ 158 K, and PH2O ∼ 2 × 10−10T torr exceeds ∼3 × 10−8 torr ev-
erywhere. Extrapolating the H2O data in Table 10.2, we see that at temperatures
∼150 K, the equilibrium vapor pressure of water ice substantially exceeds
10−8 torr. Pure water is, therefore, precluded from condensing in this nebula. How-
ever, the presence of other substances such as ammonia, NH3, can lower the vapor
pressure of H2, which might permit water to condense out in solution, at the colder
edges of the nebula.

10–6. For grains in circular orbits:

rω2 =
3

4πρs3

(
4πMρs3G

3r2
− αL�πs2

4πcr2

)
,

velocity = ωr =
[
1
r

(
MG− 3αL�

16πρsc

)]1/2

.

The velocity difference for the grains with respective densities ρ = 2 and 4 g cm−3,
and s = 10−3 cm is ∆υ ∼ 104α cm s−1.

10–7. (a) From Problem 3–11 we see that a body with radius R and density ρ has a
total capture cross-section equal to twice its geometric cross-section if

4π
3

2G
V 2

o

ρR2 = 1 .
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(b) For an impact parameter s,

dM

dt
= 4πρR2 dR

dt
= ρoVoπs

2 = ρoVoπ

[
R2 +

2MGR

V 2
o

]
,

∫
4ρ
ρoVo

[
1 +

8π
3
GR2ρ

V 2
o

]−1

dR =
∫

dt = τ .

Initially, dM/dt = 2ρoVoπR
2 = (3ρo/4ρ)(V 3

o /G) ∼ 1010 g s−1 .

(c) For large bodies dM/dt ∝ R4 or M4/3, because M ∝ R3 .

10–8. Initially, for a particle radius s,
dM

dt
∼ 4πs2

ds

dt
ρ = 10−2πρoVos

2,

s = 10−2 ρoVo

4ρ
t .

From Problem 10–7(a) we see that gravitation takes over when s ∼ [3V 2
o /8πρG]1/2 ∼

108 cm, so that gravitation can be neglected for a body with s ∼< 106 cm = 10 km.
The growth time then is

t ∼ 106

3 × 10−10
∼ 3 × 1015 s ∼ 108 yr .



9 Cosmic Gas and Dust

The word astrophysics implies a study of stars. But the past decade has clearly
brought out that most of the baryonic — i.e., atomic — matter in the Universe is
gaseous, permeating the vast spaces between galaxies. Within galaxies, gas clouds
are less prevalent by mass but they, and the dust grains swept along by them play a
crucial role in the formation of stars and planets.

In this chapter we establish a common framework within which processes in
clouds of gas and dust can be understood. We start with a brief phenomenological
description that makes use of many of the properties of radiation and matter derived
in Chapters 6 and 7. With this depiction in hand, we develop the dynamics governing
the evolution of gaseous bodies, in order to prepare ourselves for later chapters in
which we will examine how stars and planetary systems form and how galaxies
originated early in the evolution of the Universe.

9:1 Observations

(a) The Intergalactic Medium

(i) Radiation

Some of the most carefully conducted observations in hand tell us that the early Uni-
verse was hot and completely ionized. Matter and radiation were in thermal equi-
librium. As the Cosmos expanded, it eventually cooled to 4000 K; electrons and
protons combined to form neutral hydrogen atoms. Thermal radiation that had been
intimately coupled to matter through Thomson scattering became free to traverse
the Universe. The continuing expansion progressively shifted radiation to longer
wavelengths. Persuasive evidence for this history is recorded in the blackbody mi-
crowave background radiation permeating the Universe today at a temperature of
2.725 ± 0.001 K (Fi02). The radiation field is isotropic, but a direction-dependent
Doppler shift in its spectrum tells us that the Sun is moving through the radiation
with a velocity of 371 ± 1 km s−1 in a direction marked by Galactic coordinates
(l, b) = (263.85 ◦ ± 0.1, 48.25 ◦ ± 0.04). In this coordinate system the Galactic
center lies at (l, b) = (0, 0) and the Galactic plane is the plane b = 0. Fluctuations
of the radiation temperature at a level of one part in ∼105 mapped across the sky tell
us how matter was distributed at early times, and how it gravitationally collapsed to
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form the clusters of galaxies ubiquitous today. We will pursue this history in greater
detail in Chapter 13. For now, we merely note it as the setting within which all other
processes need to be viewed.

(ii) Hydrogen

The Thomson scattering optical depth through which the microwave background
has passed on its way to Earth is estimated from the polarization that scattering
produces, and is found to be τ = 0.17± 0.04. The scattering originates in gas that
became at least partially reionized once the first massive stars were formed when
the Universe was about 100 million years old (Be03). Another ∼109 yr later , after
the first quasars were born, the intense ionizing quasar emission fully reionized
intergalactic space. We know this, because we see no traces of spectral absorption
features due to atomic hydrogen anywhere along the line of sight toward the most
distant quasars, except in the immediate environs of the quasars themselves, or in
isolated Lyman-α absorbing clouds, at least some of which lie in galaxies along the
line of sight. The lack of any indication of absorption — the absence of this so-
called Gunn–Peterson effect to be discussed in Section 13:28 — sets an upper limit
of order 10−12 neutral hydrogen atoms per cubic centimeter in intergalactic space
today (Gu65, So95).

(iii) Helium

In contrast to neutral hydrogen, singly ionized intergalactic helium does give rise
to absorption. He+ has a spectrum similar to that of atomic hydrogen but shifted to
roughly four times shorter wavelengths (Section 7:3). The He+ line corresponding
to Ly-α lies at 304 Å; it gives rise to an absorption dip shortward of a wavelength
of 304(z + 1) Å, where z is the red shift of the quasar against which the absorption
is observed (Da96). Whether this1 HeII is diffusely spread throughout intergalactic
space or clumped in gaseous clouds is still uncertain, but the optical depth appears
to be of order unity at red shifts z = 3. The oscillator strength for this helium line
is f ∼ 0.55 corresponding to a total absorption cross-section σ ∼ 0.01 cm2 over
unit frequency interval (see Section 7:9). The line frequency is ∼1016 Hz, so that
the column density of singly ionized helium in intergalactic space must be of order
∼1018 cm−2. Because the distances traversed by radiation reaching us from distant
quasars is o(1028) cm the HeII number density appears to be of order 10−9 cm−3 at
z = 3, and a factor (z+ 1)3 ∼ 64 lower today. At these densities the recombination
time would far exceed the age of the Universe, and we conclude that the intergalactic
HeII density must be of order 10−11 cm−3 today. This low abundance makes it
likely that the bulk of the helium is doubly ionized and resides in the Warm-to-Hot
Intergalactic Medium (WHIM) discussed below.

(iv) Magnetic Fields

Upper limits on the extragalactic magnetic field can be derived from Faraday rota-
tion measures. However, these assume a uniformly directed field (Section 6:12). If

1 In this notation, neutral helium is denoted by HeI, singly ionized helium by HeII, and
doubly ionized helium by HeIII. Ionized states of other atoms follow the same convention.
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the field is randomly oriented over short distances, its strength could be substantially
higher. A coarse upper limit — probably far too high — for a randomly directed field
is B ∼< 10−6 G, though fields of this strength may actually exist in the dense cen-
tral regions of clusters of galaxies. For a field that might be systematically aligned
over large cosmological distances the upper limit is far more stringent, ∼<10−9 G for
fields stretching over regions of the order of a few megaparsec (Kr94).

(b) Intracluster Gas and the Warm-to-Hot Intergalactic Medium, WHIM

The intergalactic medium is not homogeneous. We observe massive, hot, X-ray-
emitting gaseous clouds trapped in the gravitational potential wells of large clusters
of galaxies. Their free–free emission, Sunyaev–Zel’dovich effect (Section 6:23) and
X-ray spectra tell us that their temperatures lie in the 107–108 K range, and their
iron abundances, relative to hydrogen, are roughly one third as high as seen in the
Sun. The intracluster gas, however, appears to constitute only a small portion of the
entire extragalactic gaseous component. Ten times more prevalent is the WHIM.

Absorption by six-times-ionized oxygen OVII observed in the X-ray domain
indicates the existence of massive, filamentary intergalactic clouds at temperatures
of ∼106 K, a warm-to-hot intergalactic medium stretching over distances of the
order of megaparsecs. The observed spectral features indicate that these filaments
have a fractional oxygen abundance, relative to hydrogen, about a factor of 30 lower
than in the Sun (Ni05). These filaments, if ubiquitous, embrace a total baryonic mass
exceeding that of all stars in the Universe by about an order of magnitude (Fu04).
They indicate that the ionized hydrogen density averaged over all intergalactic space
amounts to nP = ne ∼ 2.5× 10−7 cm−3 today, or ∼4 × 10−31 g cm−3. Given the
highly ionized state of oxygen, we must conclude that most of the helium is fully
ionized, unable to exhibit spectral lines.

(c) Lyman-α Absorbers

Optical spectra obtained along the line of sight to distant quasars show an abundance
of red-shifted Lyman-α absorption lines, often referred to as the Lyman-α forest.
The inferred column densities of hydrogen atoms derived from the depth of the
absorption lines range from ∼<1012 to 1022 cm−2 per absorbing cloud. The number
of high-density clouds observed declines roughly in proportion to column density
(So95). The clouds are appreciably more abundant at high red shifts than in our
local vicinity and may be protogalactic or represent early galaxies. They can exhibit
strong MgII and SiII absorption. Absorption by deuterium atoms has been observed
in clouds red-shifted to z ∼ 3. Their abundances relative to hydrogen range from
2× 10−5 to 2 × 10−4 (Sc96), (We97).

(d) Quasars, Blazars, and Active Galactic Nuclei, AGN

Quasi-Stellar Objects, QSOs — quasars and BL Lacertae objects — are highly
luminous, compact, extragalactic sources. Quasars exhibit strong optical emission
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lines whereas BL Lacertae sources have a bland continuum spectrum. The quasar
optical-line emission comes from highly excited ions in nebulosity with an electron
density of order 3×106 cm−3 and a radius of the order of 1 pc. Although all quasars
appear to be associated with host galaxies, the quasar emission is so luminous that
the relatively faint host galaxies are detected with difficulty. A quasar’s radio emis-
sion can be strong, suggesting synchrotron radiation by relativistic particles in a core
with high magnetic field strength (Section 6:21). A number of galaxies, such as the
Seyfert galaxy NGC 4151, the radio source Centaurus A, the BL Lac object 3C 279,
and the quasar 3C 273, all are powerful sources of X-ray emission (Fig. 9.1). So

Fig. 9.1. Spectral energy distributions for active galactic nuclei, AGNs. The Seyfert galaxy
NGC 4151, the powerful radio galaxy Cen A, the quasar 3C 273, and the blazar 3C 279,
all have active galactic nuclei, AGNs (De95). The ordinate gives the deduced luminosity per
natural logarithmic energy interval; the abscissa indicates the spectral frequency observed.

also is the elliptical galaxy M87, the first X-ray galaxy to be discovered. The X-ray
flux from NGC 4151 amounts to ∼1043 erg s−1, and 3C 273 emits 1.5 × 1046 erg
s−1, while 3C 279 can emit ∼>3 × 1047 erg s−1 at X-ray frequencies and, like NGC
4151, is highly variable. These objects emit as much energy at X-ray frequencies as
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at all others combined, and the flux from NGC 4151 is comparable to the visible flux
emitted by normal spirals in the form of starlight. Many quasars and Seyfert galaxies
are also powerful emitters of infrared radiation. Their primary radiation appears to
be absorbed by dense ambient dust clouds and re-emitted at infrared wavelengths.

These galaxies and quasi-stellar objects, all of which have active nuclei ap-
parently housing a massive black hole, are complex sources that may radiate by
means of a variety of different mechanisms. Figure 9.1 shows representative spectra.
Whether a given component of their radiation is due to thermal emission (Section
6:19), inverse Compton scattering (Section 6:22), synchrotron radiation (Sections
6:20 and 6:21), or some other mechanism, can be difficult to determine. Some of
the sources show significant variability on a time scale of hours. Others vary little,
or less rapidly. As discussed in Section 6:21 some mechanisms of emission have
intrinsically faster onset or decay times than others, and the fluctuation rate may
therefore permit us to decide which spectral ranges of emission are connected by
one and the same emission mechanism and what that mechanism might be.

(e, f) Galaxy Spiral Arms and the Interarm Medium

In the Galaxy and in some extragalactic objects, neutral hydrogen can be observed
through absorption or emission of atomic hydrogen at a wavelength of 21 cm. We
can also observe Ly-α absorption in light emitted by O and B stars. These two
types of data do not always agree, but the indications are that neutral hydrogen
number densities in our part of the Galaxy are of order 0.1 to 0.7 cm−3. Between the
spiral arms, the density is lower (Je70), (Ke65). Molecular hydrogen is most readily
detected in shocked regions, where temperatures are sufficiently high for molecules
to be collisionally excited into higher rotational and vibrational states, from which
they return to the ground state by emitting radiation at well-defined infrared spectral
wavelengths (Section 7:5). In colder molecular clouds these molecules cannot be
excited; their presence is inferred from carbon monoxide emission. The J = 1
rotational state of CO is collisionally excited at temperatures only a few degrees
Kelvin above absolute zero, and can serve as a tracer of molecular hydrogen on the
assumption that the two gases are everywhere mixed in roughly constant abundance
ratios.

The electron number density is determined from the dispersion measures (6–58)
of pulsar radiation. The electron density thus obtained is ∼0.03 cm−3 averaged over
the arm and interarm domains in our locale of the Galactic disk.

(g, h) HII Regions and Planetary Nebulae

In fully ionized gases the electron temperatures and densities are readily determined.
Free–free emission observed in the radio domain provides us with the tempera-
ture and (density)2 integrated along the line of sight (Section 6:18). Visual and ra-
dio recombination-line data provide complementing information. The recombina-
tion rate can be computed using the bound–free absorption coefficient, αbf (7–75).
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The recombination cross-section for an electron at temperature T is then written as
Qn(T ) where n is the principal quantum number of the final state in the hydrogen-
like ion.

Consider an idealized thermal equilibrium in which the number of ionizations to
the nth level equal the number of recombinations. In velocity range dυ, the recombi-
nation rate per electron is proportional to the electron’s velocity υ ∼ (3kT/m)1/2,
to the cross-sectionQn(υ), and to the number densities ne(υ) of electrons and nr+1

of ionized atoms. The ionization rate is proportional to the speed of light c, to αbf ,
to the number density of atoms in the lower ionization state nr, and to the number
density of photons at a frequency ν sufficiently high to produce both ionization and
an electron ejection velocity υ. If χr is the ionizing energy,

ν =
1
h

(m
2
υ2 + χr

)
. (9-1)

We can then write the equilibrium condition between ionization and recombination,
very roughly, as

ne(υ)nr+1υQn(υ) dυ = c · nr · 8π
c3

ν2αbf(ν)
(ehν/kT − 1)

dν, (9-2)

by making use of the blackbody spectrum (4–72) for the number density of photons
ρ(ν)/hν . Use of the Saha equation (4–107) and the absorption coefficient given by
expression (7–75) then leads to the relation

gr+1ge

gr

[2πmkT ]3/2

h3
e−χr/kTQn(υ)υ dυ =

8π
c3

64π4me10Z4

3
√

3h6n5
gbf

dν

ν [ehν/kT − 1]
.

(9-3)
Using the relationship between variables υ and ν in (9–1) and knowing that
gr ∝ n2 (see Problem 7–1) we obtain a relation for the recombination rate αn

for unit electron and ion density:

αn =
∫ ∞

0

υQn(υ) dυ (9-4)

=
gr

gegr+1

∫ ∞

0

29e10π5Z4meχr/kT

c3h3n5[6πmkT ]3/2[e(χr+mυ2/2)/kT − 1]
d
(
mυ2/2

)
(mυ2/2 + χr)

,

where the fraction outside the integral is ∼ n2 (see Section 8:8).
For visible radiation equation (9–4) is considerably simplified since kT is small

compared to χr so that the exponential dependence on χr can be neglected. The
integral can then be expressed in approximate form (Za54):

αn =
2.08× 10−11

T 1/2
φ(T ) cm3 s−1 , (9-5)

where φ(T ) does not rapidly change with temperature. It has a value of 3.16 at
1, 580 K and 1.26 at 7.9× 104 K.
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Although the thermal velocities of ions already lead to broadening of spectral
lines, we can still determine bulk velocities of turbulent motion when these are high
enough to lead to an actual split appearance of spectral lines, or if the thermal broad-
ening contribution can be computed from independent temperature data.

Dust densities in such clouds can be determined by measuring the continuum
radiation from the cloud in the visible or infrared part of the spectrum. Much of this
radiation is likely to be starlight respectively scattered or absorbed and re-emitted
by dust. Some assumption about particle size must then still be made, and ideally
we should also know the chemical composition and physical structure of the grains.
Judging from their spectra, likely candidates for grain composition are silicates,
iron-containing minerals, or graphite grains.

(i) Supernova Remnants

The diameters of these remnants can stretch across many tens of parsecs and often
display a circular arc structure. Doppler velocities indicating high expansion rates
can be measured by spectral observations. For the Crab Nebula an actual expansion
can be observed by a comparison of present-day and decades-old images. The ex-
pansion velocity for the Crab is of the order of 108 cm s−1. Its radiation is strongly
polarized along a direction perpendicular to the length of the continuum emitting
wisps. Assuming that this comes from synchrotron radiation emitted by highly rel-
ativistic electrons spiraling magnetic field lines that run the length of the wisps, we
can make an estimate of the magnetic field strength, ∼10−4 G. Lower temperature
plasma emits the Hα spectral line clearly apparent in the red part of the visual spec-
trum.

(j, k) Galactic Molecular and Atomic Clouds

Atomic and molecular clouds in the Galaxy are largely confined to an extremely thin
disk. Although consisting primarily of H2, the molecular clouds are more readily
observed through their carbon monoxide (CO) absorption or emission, and through
the presence of other molecular lines. Although CO is orders of magnitude less
abundant than H2 its dipole emission is far stronger than the rotational quadrupole
emission of H2 expected from cold molecular clouds, many of which exhibit tem-
peratures in the 10–20 K range. Molecular clouds appear to have a fractal structure,
i.e.. a structure that has significant components on all logarithmic scales. Judging
from the Doppler shifts of their spectral lines, the clouds exhibit turbulent velocity
components restricted to a few kilometers per second. These low velocities keep
the clouds from rising appreciable distances above or below the Galaxy’s central
plane. Maximum heights reached are of order 50 pc before the gravitational tug of
the central plane pulls them back.

Atomic hydrogen clouds are most readily detected through their 21 cm line ab-
sorption or emission. Atomic sodium and singly ionized carbon, silicon, and other
abundant atomic species embedded in these clouds also are readily observed through
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their spectral features. Like molecular clouds the atomic clouds remain closely con-
fined to the Galactic plane.

(l, m) Stellar Winds

The stellar wind in O and B stars can be detected by observing the Doppler-shifted
lines of highly excited ions. These can be observed in the ultraviolet part of the spec-
trum through observations from space. Doppler shifts indicate outflow velocities of
order 100 km s−1. Assuming that solar abundances also characterize the surface
matter in these stars, one can interpret the observed line strengths to obtain the mass
of ejected matter. Typically, a massive O star ejects matter at a rate of a solar mass
in 105 to 106 yr. During the star’s lifetime, this amounts to an appreciable fraction
of the star’s total mass.

Fig. 9.2. A model of the protoplanetary nebula CRL 2688, evolving from the asymptotic giant
branch, AGB, phase on its way to becoming a planetary nebula. The structure is rotationally
symmetric about its polar axis. Four regions of the molecular envelope are labeled with letters.
Region A is the equatorial disk. Region B represents expanding shells elongated along the
polar directions. Regions C are produced by winds emanating from the star. Region D is a
cold expanding envelope. The arrows show the presumed radial outflow of molecular gas.
Regions enclosed by dashed lines are optical reflection nebulae (Ka87).

When a massive star reaches the asymptotic giant branch (AGB) stage it ejects
dense dusty clouds of molecular hydrogen. Spectral observations of H2O, CO, and
other molecular constituents show the gas to be streaming out at velocities of tens of
kilometers per second, apparently accelerated by the star’s light pressure propelling
the grains outward. Judging by the strengths of the observed spectral lines and the
ejection velocities, the mass loss rates can be as high as 10−4M� yr−1. This phase
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evidently can last no more than ∼105 yr before the star exhausts its ejectable mass.
Once a star has evolved through the AGB phase it can enter a protoplanetary nebula
stage, that ultimately leads to it becoming a planetary nebula. Figure 9.2 depicts the
star CRL 2688 undergoing this transition.

(n) Solar Wind

The solar-wind density, velocity, and variability is sampled by interplanetary probes
placed at distances where the Earth’s magnetosphere no longer interferes with ob-
servations. Magnetic fields are measured by magnetometers carried on these space-
craft. Considerable wind variations between quiet and active periods on the Sun
are observed. At quiet times only a few electrons and protons are detected per cu-
bic centimeter, and the velocity does not vary greatly from a mean value around
400 km s−1. Following a solar flare the density can rise by an order of magnitude
and wind velocities reach values of ∼1000 km s−1. This fast stream of gas coming
from the Sun interacts with the Earth’s magnetosphere to give rise to a wide variety
of effects, ranging from the colorful aurora borealis to the nuisance of poor radio
wave propagation in the broadcast band. The solar wind also sweeps cometary ions
into a comet’s long straight tail extending into the antisolar direction.

(o) Comets

Comets have three distinct parts: a roughly spherical head, a long straight tail, and
a shorter curved tail. The head, frequently of order 1010 cm in diameter, contains
H2O, C2, C3, CN, NH, CH, OH, and NH2 among other molecules and radicals,
as well as such ions as OH+, CH+, and CO+. Typical molecular densities range
around 104 cm−3 . An extended H2O and atomic hydrogen envelope around the head
has also been discovered through observations from spacecraft. The velocities of
the molecules in the head can be measured by Doppler shifts and broadening and
amount to a few km s−1. The head also includes a solid nucleus that may be a few
to a few tens of kilometers in diameter, usually too small to be directly resolved,
except from fly-by spacecraft.

The long straight tails seen in comets sometimes stretch over a distance larger
than an astronomical unit. They are the most extended objects in the Solar System
but their densities are low and the total mass contained is minute. Solely ions —
no neutral molecules — are seen in these tails. The number density of the ions is
deduced from the intensity of the molecular lines. The f values for excitation are
known from computations, so that the observed brightness of the emission lines can
be related to the rate at which the ions are excited by sunlight and thus to the number
of molecular ions along the line of sight.

The shorter curved tails in comets reflect sunlight and exhibit its Fraunhofer
(absorption) line spectrum. Because the solar lines do not appear broadened in
this reflection, the scattering particles must be slowly moving dust and cannot be
electrons, whose Thomson-scattered radiation would exhibit thermal broadening of
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Table 9.1. Rough Characterization of Gas and Dust Aggregates.

Density of Electron
Representative Hydrogen Density Dimensions

Object nH , np, n(H2) ne (cm)
(cm−3) (cm−3)

a. Intergalactic Medium np ∼ 10−7 ∼ 10−7

b. WHIM filaments np ∼ 10−5 ∼ 10−5 1024

c. Ly-α Absorbers 1012 < NH < 1022 cm−2
∼< 1023

d. AGNs Quasar 3C 273 3 × 106 3 × 1018

e. Spiral Galaxy Arm: Galaxy 0.1 to 0.7 0.03 3 × 1020 thick;

f. Interarm Medium: ∼< 0.05

⎫⎬
⎭ disk span 1023

⎫⎬
⎭

g. HII Region Orion Nebula 104 5 × 1018

h. Planetary Nebula NGC 6543 6 × 103 1017

i. Supernova Remnant Crab Nebula 40 5 × 1018

j. HI Cloud Heiles Cloud I 40 to 125 ∼ 0.3 1019

k. Molecular Clouds n(H2) ∼ 1018 − 1019

104 to 108

⎫⎬
⎭

l. Hot Cloud Cores Orion IRc 2 n(H2) ∼> 106
∼>1017

m. Hot Stellar Wind O star δ Ori 0.14 108

(1 AU from star)
n. AGB Wind NML Cyg n(H2) ∼ 108

(100 AU from star)

⎫⎬
⎭

o. Solar Wind 2

(1 AU from Sun)

⎫⎬
⎭

p. Comet Head Halley nmolecules 1010 cm

∼ 104

⎫⎬
⎭

q. Comet Dust Tail Halley 1012 length

r. Comet Ionized Tail Halley nion ∼ 2 5 × 1012 length

(at 1011 cm)

⎫⎬
⎭

a. ne and T inferred from He+ absorption.

b. Warm-Hot Intergalactic Medium (Ni05). The densities are averaged over all space.

d. Active Galactic Nuclei, AGNs: Quasars, Blazars, Seyfert Galaxies.

Velocities from multiple absorption spectra.

e. Ly-α and 21 cm nH data differ (Je70, Ke65).

i. (Co70), (Wo57).

j. (He69), (He68).
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Table 9.1. Rough Characterization of Gas and Dust Aggregates (cont.)

Turbulent Number Densities
Magnetic or Bulk Temperature and Radii of Grains

Field Velocity ng ag Remarks
(G) (cm s−1) (K) (cm−3) (cm)

∼<10−9? >2 × 104 <10−15 at 10−5? a.

∼106 b.
c.

∼105? 108 to 109 17,000 d.

∼10−5 106 10−13 ∼10−5 e.
f.

4 × 106 104 10−9 ∼10−5 g.
8400 ∼3 × 10−10 ∼10−5 h.

3 × 10−4 108 <17, 000 i.

∼<10−5 104 to 106 ∼102 ∼10−9 ∼10−5 j.
k.

106 100 ∼>10−5 ∼10−5 l.

1.4 × 108 104 m.

2 × 106 300 10−9 ∼10−5 n.

(100 AU from star)

⎫⎬
⎭ (100 AU from star)

⎫⎬
⎭

3 × 10−5 4 × 107 104 to 105 ∼10−13 5 × 10−5 o.

(1 AU from Sun)

⎫⎬
⎭

2 × 105 p.

106 ∼10−7 5 × 10−5 q.

∼3 × 10−5 107 r.

l. (Pa01).

m. (Mo67).

n. Asymptotic Giant Branch (AGB) Stars, (Zu04).

o. Wind terminates at ∼100 AU; grains orbit the Sun and do not move with the wind.

p. Atoms and radicals are: H, C, O, . . . , CN, C2 , C3, CH, OH, NH, . . . ,

Ions: OH+ , CH+ , CO+ , H2O+, . . . .

r. Mainly CO+ ions, CO+
2 , N+

2 , OH+ , . . . .
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∼108 cm s−1. The prevalence of dust is also corroborated by the shape of the lagging
tail. It is curved because the repulsion of the dust by sunlight and the requirement
for constant orbital angular momentum about the Sun produces an increasing lag
for the repelled grains. The sizes of the dust grains can be roughly determined by
the rate at which solar radiation pressure pushes them away from the head of the
comet. Grains of assorted sizes follow different paths because the radiative repul-
sion varies, and it is possible to derive rough estimates of grain sizes at different
locations across the width of the tail. The smallest grains lie closest to the radius
vector pointing away from the Sun. The largest grains are most distant from this
axis. From a rough estimate of grain sizes, we can compute the number density of
grains as judged from the total scattered sunlight.

Table 9.1 summarizes some of the information on individual diffuse objects in
the Solar System, in the Galaxy, and beyond. Within each class, variations in size,
density, and other characteristics amounting to orders of magnitude are not uncom-
mon. We have to be careful not to assume that different members of a class have
identical properties.

9:2 Strömgren Spheres

In 1939, Bengt Strömgren considered the interaction of a very young star with
the interstellar medium (St39). To make matters simple he made two assumptions.
First, that the star lights up rapidly to full strength; and second, that the surround-
ing medium is homogeneous throughout. These two assumptions permitted him to
draw a simple picture of the development of ionized hydrogen regions around mas-
sive stars emitting ultraviolet radiation.

If the star emits a number of photons dNi capable of ionizing the surrounding
gas, the number of electrons that are stripped off the atoms over the same time in-
terval will also be dNi if equilibrium is maintained. In practical cases this assertion
is always true because the cross-section for ionization by energetic photons is of the
order σ ∼ 10−17 cm2 and typical gas densities in the vicinity of young stars might
be of order nH ∼ 103 cm−3 . At these densities a photon can only travel a distance
of order (nHσ)−1 ∼ 1014 cm through the neutral medium before it ionizes an atom.
But this is only ∼6 AU, a distance small compared to the radii of ionized regions,
which range from ∼1016 to 1020 cm. Hence, practically no ionizing photons can
escape through the gas without becoming absorbed.

Although an energetic photon can travel only a short distance in the neutral
medium, its path through the ionized gas is very long. It is occasionally scattered;
but the scattering cross-section is relatively small — the Thomson cross-section is
only ∼6.7× 10−25 cm2 (6–103). We can assume that the ionizing photons proceed
undisturbed through the ionized gas immediately surrounding the star until they hit
the boundary region where the neutral gas commences. The thickness of the inter-
face between ionized and neutral domains is of the order of the mean free ionizing
path:

δ = (nHσ)−1. (9-6)
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Neutral clouds are called HI regions, ionized clouds, HII regions.
We picture an ionizing star as embedded in an HII region, which is separated

from a surrounding HI domain by a thin layer δ shown in Fig. 9.3. If the gas is

Fig. 9.3. Schematic diagram of a Strömgren sphere. HII is the ionized gas, HI is the neutral
region, and δ is the thickness of the separating layer.

homogeneous, the separating boundaries are spherical, and the sphere containing
the ionized gas is called the Strömgren sphere.

We now ask ourselves how quickly the sphere becomes established. To do this,
we note that the number of atomic particles in a shell of radius R and thickness dR
is 4πR2nH dR. When the star emits dNi ionizing photons, the radius of the region
grows by an amount dR given by

dNi

dt
= 4πR2nH

dR

dt
. (9-7)

Here we have gone through the additional step of formally dividing both sides by
dt, to obtain the rate of development.

Equation (9–7), however, is only applicable during the initial stages of growth. It
neglects the competing recombination of ions and electrons in the Strömgren sphere.
For, if an electron and ion recombine to form an atom, a new ionizing photon will be
required to separate the two particles. This new photon never reaches the boundary
R and will therefore not contribute to the growth of the region. The recombination
rate per unit volume is proportional to the product neni, since each electron has a
probability of colliding that is proportional to the number of ions it encounters. In
addition, the effective recombination rate per unit volume is also proportional to the
recombination factor αeff ∼ 3 × 10−13 cm3 s−1. This depends, through (9–5), on
the temperature of the ionized gas, normally ∼<104 K, and represents the sum over
recombination factors leading to all states n > 1 (see column 5 of Table 9.2).

Direct recombination to n = 1 produces a photon capable of ionizing another
hydrogen atom and does not contribute to αeff . The full equation satisfied by the gas
is therefore
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Table 9.2. Absorption and Recombination Coefficients for Hydrogen and Helium.a

αn Qn

Atom Term aν0 f 10,000 K

10−18 10−14 10−22

cm2 cm3 s−1 cm2

HI 1s 6.3 0.436 15.8 32
2s 15 0.362 2.3 4.7
2p 14 0.196 5.3 11
3s 26 0.293 0.8 1.6
3p 26 0.217 2.0 4.1
3d 18 0.100 2.0 4.1
4s 38 0.248 0.4 0.7
4p 40 0.214 1.0 2.0
4d 39 0.149 1.0 2.0
4f 15 0.057 0.6 1.2

Total 43 88
HeI 1s2 1S 7.6 1.50 15.9 33

1s2s 3S 2.8 0.25 1.4 3
1s2s 1S 10.5 0.40 0.6 1

Total 43 88
HeII 1s 1.7 0.42 70 140

aaν0 is the absorption cross-section at the ionization limit; the oscillator strength f is defined
in Section 7:9; the recombination coefficients αn and Qn are defined by (9–4). (After Allen
(A�73). With the permission of Athlone Press of the University of London, 3rd ed. c© C. W.
Allen 1973.)

dNi

dt
= 4πR2nH

dR

dt
+

4π
3
R3nineαeff . (9-8)

During the late developmental stages this simple model would predict that
dR/dt eventually becomes zero as the sphere grows so large that the star emits
photons only just fast enough to keep up with the total number of recombinations.
This will happen at an equilibrium radius

R3
s =

3
4πnineαeff

dNi

dt
. (9-9)

Equations (9–7) and (9–9) are the extreme cases covered by equation (9–8). They
describe the initial growth and final equilibrium value of the radius of the Strömgren
sphere as long as the simplest assumptions are retained.

A number of comments are needed.
(1) Equation (9–8) has to be used in conjunction with some model for ultravi-

olet emission by stars. If the star’s luminosity and temperature are known, then we
can readily estimate Ni from the Planck blackbody relation (4–72). Actually, the
ultraviolet spectrum of a very hot star does not closely approximate a blackbody
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because absorption by the star’s outer atmosphere changes the spectrum of the es-
caping radiation. This is called the blanketing effect. Despite this effect, however,
the blackbody approximation gives roughly the correct magnitude for the number
of ionizing photons to be inserted in equation (9–8).

Table 9.2 gives the ionization cross-section of hydrogen in its ground state as
aν0 ∼ 6.3 × 10−18 cm2 at the ionization limit, λ = 912 Å, ν0 = 3.29 × 1015 Hz.
This cross-section declines as ν−3 at higher spectral frequencies. As a result, pho-
tons with energies much higher than ν0 can penetrate great distances through a cir-
cumstellar cloud, while wavelengths just short of 912Å are strongly absorbed.

(2) As already stated, the recombination of an electron with an ion can yield a
photon that is still capable of ionizing another atom. Even atoms recombining to
n ≥ 2 may be quickly reionized by intense Balmer, Paschen, Brackett, or higher-
level continuum radiation (see Section 7:3). For this reason the second term on
the right side of equation (9–8) is an upper limit on the loss of ionizing pho-
tons through recombination. Similarly the radius Rs of equation (9–9) is a lower
limit for an equilibrium value. The effect turns out to be more important in very
dense regions than in tenuous gases surrounding a star. For very dense regions the
true Rs value may be more than ten times greater than that given by (9–9). For
values of nH around 104 to 105 cm−3 , typical of the denser ionized regions nor-
mally encountered, the radius Rs is a factor of 2 to 3 higher than predicted by
(9–9).

(3) A quick consideration shows that equations (9–8) and (9–9) cannot be com-
pletely correct because they neglect the problem of pressure equilibrium. This is
readily seen. The ionized region must have at least twice as many particles per unit
volume as the neutral surrounding region because it contains at least one ion and one
electron for each ionized atom. This means, according to the ideal gas law (4–37),
that the pressure on the inner side of the boundary separating ionized from neutral
regions would be at least twice as great as the pressure on the outside, and that, only
if the temperature were the same on both sides. In practice, the temperature of the
HI region is likely to be of order 70 K whereas the temperature of the HII region
normally amounts to ∼7000 K. The total pressure inside the separating boundary is
therefore of order 200 times greater than the pressure outside, and the HII region
must rapidly expand.

(4) If we were to draw the very simplest picture of an expansion, we would pro-
ceed by visualizing the process in terms comparable to the inflation of a balloon. If
the mass of the surrounding HI region is M , the mass per unit area at the separating
surface is M/4πR2. The pressure inside the HII region is 2nikTi. Here Ti is the
temperature of the ionized region, and the factor 2 reflects that the number of ions
ni closely approximates the number of electrons. Neglecting the small gas pressure
on the outside of the sphere, we obtain the outward acceleration of the boundary as

R̈ =
2nikTi

(M/4πR2)
. (9-10)

This can be integrated if we first multiply both sides by Ṙ. Then
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Ṙ2

2
=

8π
3
nikTi

M
R3, (9-11)

which leads to a development time scale of order

t ∼
(

3M
4πnikTiR

)1/2

. (9-12)

If we take M roughly equal to one solar mass M� ∼ 2 × 1033 g, ni ∼ 104 cm−3,
Ti ∼ 104 K, and R ∼ 1017 cm, we find that

Ṙ ∼ 3 × 105 cm s−1, t ∼ 5 × 1011 s. (9-13)

This velocity has to be compared to the random speed of atoms in the cool medium;
this is only ∼(3kT/mH)1/2 ∼ 1.5 × 105 cm s−1 at the low temperature of the
HI region. The correct dynamics, therefore, cannot be described by equations
(9–10) through (9–13) because pressure is normally propagated at the speed of
sound, roughly the random speed of the atoms in HI regions. If the expansion on
the inner edge of the HI region proceeds faster than the speed of sound, the outer
portions of the region will not be aware that a pressure is being exerted at the inner
boundary, and will therefore not move. As a result, the quantity of material actually
accelerated at any given instant will be significantly less than the mass M used in
the subsonic approximation (9–10), and the actual velocity Ṙ will be considerably
higher. The equations of supersonic hydrodynamics must therefore be used. These
will be derived in Section 9:4 below.

(5) Before proceeding to the dynamical treatment of expanding HII regions, it is
interesting to point out that equation (9–7) may still hold well for extremely early
stages of development, because dR/dt is then so high that the ionization front, that
is, the region separating ionized and neutral regions, proceeds into the medium at
velocities that can be orders of magnitude higher than the speed of sound in the
medium. There is then no possibility at all for major instantaneous adjustments of
density in response to pressure differences between ionized and neutral regions. This
will also be discussed in Section 9:4.

(6) The expansion produced by gas pressure reduces the density of ionized ma-
terial in the HII region and therefore decreases the recombination rate per unit vol-
ume. The factor neniαeff of the second term in equation (9–8) decreases as R−6,
because both ni and ne decrease as R−3 when only expansion due to excess pres-
sure (in contrast to expansion through further ionization) is involved. This means
that the second term on the right of (9–8) is always reduced by pressure-induced
expansion, thereby giving rise to a higher value for the expansion velocity Ṙ of the
boundary.

(7) Finally, it is important that our whole concept of the development of a
Strömgren sphere has been based on a picture in which the central star suddenly
brightens and produces ionizing radiation. This, however, does not at all correspond
to the development of massive stars shown in Fig. 1.5. The figure’s caption notes
that a massive O or B star takes some 6 × 104 yr to contract to the main sequence,
and for a good fraction of that time is luminous without emitting much ionizing
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radiation. Davidson (Da70) has argued that during the contraction stage, light pres-
sure pushes gas and dust away from the star. This happens because a dust grain with
radius a, accelerated by light pressure to a velocity υ with respect to the gas, suffers
collisions at a rate nHυπa

2 with the atoms and, hence, suffers a drag (momentum
loss) amounting to a deceleration

υ̇d = −nHmHυ
2πa2

(4π/3)a3ρ
, (9-14)

where ρ is the grain’s density.
For a star of luminosityL, the grain’s radiative acceleration is

υ̇r =
L

4πcR2

πa2

(4π/3)a3ρ
(9-15)

so that equilibrium is established at a velocity

υ ∼
[

L

4πcR2nHmH

]1/2

, (9-16)

which has a value of ∼1.5 × 106 cm s−1 for L ∼ 1038 erg s−1, R ∼ 1017 cm, and
nH ∼ 104 cm−3. This velocity is set up in a time

τ ∼ υ

υ̇
=

(4/3)ρa√
(L/4πcR2)nHmH

. (9-17)

If ρ ∼ 3 g cm−3 and a ∼ 10−5 cm, τ ∼ 2.5 × 109 s. From this we see that grains
reach equilibrium velocity in a matter of a century. In contrast, the contraction of
the star to the main sequence takes tens of thousands of years.

The grains drag the gas out to quite large distances through this process. A ra-
diative pressure (L/cR24π) acting, say, on a column of length R and hence of mass
nHmHR, would produce a mean acceleration of order

υ̇ ∼ L

4πcnHmHR3
(9-18)

and for the same conditions chosen above, but withR ∼ 3×1017 cm, υ̇ ∼ 10−6 cm
s−2. In 3 × 104 yr a distance of order R would be covered. Davidson therefore
argued that when the star begins copious emission of ionizing radiation, most of the
gas already has been pushed to large distances. The ionization of course still occurs,
but it takes place at the edge of the low-density cavity in which the star now finds
itself. What may happen then is that the newly ionized gas flows inward to the star,
rather than outward away from it.

9:3 Pressure Propagation and the Speed of Sound

To understand the dynamics of gaseous regions, let us examine pressure waves that
propagate at the speed of sound.
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Atoms and molecules in a gas collide and transmit pressure. An impulse gener-
ated in the vicinity of a star can propagate across the interstellar medium to compress
a distant region. When the impulse is weak, it generates a small density perturbation
ρ1 that propagates at velocity v1 through the ambient medium with mean density
ρ0. We may consider an infinitesimal volume at rest, through which this inhomoge-
neous gas flows. The rate at which the density in this volume changes is determined
by two factors. The first is the difference in the velocity at which gas enters and
exits the volume across different faces — i.e., the divergent gas velocity across the
volume. The second is the rate at which density gradients are transported into and
out of the volume. Both are spelled out in the continuity equation, which reads

∂ρ

∂t
= −∇ · (ρv) = −(ρ∇ · v + v · ∇ρ) . (9-19)

Here the density at any given point r is ρ(r) = ρ0 + ρ1(r), and similarly
v(r) = v0 + v1(r). We will consider a fluid at rest v0 = 0. Then the continu-
ity equation can be written

∂ρ1

∂t
= −∇ · (ρv1) = −(ρ0∇ · v1 + v1 · ∇ρ1) . (9-20)

In the absence of external forces, the acceleration of an element of the fluid is given
by the pressure gradient across it divided by its density. The pressure P (r) may be
divided into an unperturbed part P0 and a perturbed part P1(r), P (r) = P0 +P1(r).
The accelerated flow through our incremental volume then is

dv
dt

= − 1
ρ0

∇P , or
dv1

dt
≡ v1 · ∇v1 +

∂v1

∂t
= − 1

ρ0
∇P1 . (9-21)

where dv1/dt is an exact differential. This is the Euler equation named after Leon-
hard Euler, who discovered the relation in the eighteenth century and made it the
basis for all subsequent studies of fluid flow. For an ideal gas the pressure gradient
in an adiabatic compression, i.e., a compression at constant entropy S, is then

∇P1 =
∂P

∂ρ

]
S

∇ρ1 =
γP0

ρ0
∇ρ1 , (9-22)

where we have made use of equation (4–129), noting that ρV is constant. Taking the
divergence of the first and third terms, and making use of (9–20) to (9–22), though
with neglect of second-order terms, we obtain

∂2ρ1

∂t2
=
γP0

ρ0
∇2ρ1 . (9-23)

This is a wave equation, similar in form to (6–30) and (6–32) governing the propa-
gation of electromagnetic waves, except that it is longitudinal. The velocity vectors
v1 of an acoustic wave lie along the direction of propagation, whereas, in electro-
magnetic waves the vectors E and H are transverse to the direction of propagation.
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The acoustic density disturbance propagates as a plane wave

ρ1 = A exp[2πi(x/λ− νt)] (RP), (9-24)

where the designation (RP) again indicates that we only take the real part of the
expression. Inserting this solution into the wave equation, we obtain the speed of
propagation, given by the wavelength λ divided by the time ν−1 required to traverse
λ,

cs = λν =
(
∂P

∂ρ

]
S

)1/2

=
(
γP0

ρ0

)1/2

. (9-25)

cs is the speed of sound under adiabatic conditions.
Quite generally 4

3 ∼< γ ∼< 5
3 , as already discussed in Chapter 4; the adiabatic

speed of sound, therefore, always exceeds the root mean square velocity component
along the direction of propagation, vrms ∼ (kT/m)1/2 of the atoms or molecules.
This can be understood by considering an element of mass enclosed in a layer of
thickness ∆x along the direction of propagation of the wave. An area of this layer
having unit cross-section transverse to∆x contains an amount of mass δρ1∆x. The
pressure increase in the acoustic wave, δP1, does an amount of work δP1∆x on this
volume. We now take ∆x to be the range across which the gradients in equation
(9–22) are applied. This equation then tells us that ∂P1/∂ρ1 is greater by a factor
of γ than kT/m, the mean square of the velocity component along the direction
of propagation that would have been set up by an increment of pressure δP under
isothermal conditions described by (9–21). This is just the factor γ by which cs
exceeds the root mean square speed of atoms or molecules along a given direction.

9:4 Shock Fronts and Ionization Fronts

In Section 9:2 we gave one example of supersonic flow in the vicinity of hot stars.
There are many others. Stellar winds, or streams of gas that continuously send stellar
material out into surrounding space, blow at supersonic velocities ranging from a
few thousands of kilometers per second for the hottest O stars down to speeds of the
order of 400 km s−1 for stars like the Sun.

Supersonic phenomena are encountered in stellar eruptions of all kinds, from the
small outbursts that regularly occur in flare stars to the explosion of supernovae and
the explosive ejection of gas from the nuclei of galaxies. They are more the norm
than the exception in astrophysics. In this section, we will be concerned with the
equations that describe the interaction of an HII region with the surrounding neutral
medium; but the treatment is general and can be applied to many other supersonic
phenomena.

Let us assume that a star has suddenly undergone an increase in brightness, that
it rapidly ionizes the surrounding medium, and that a shock front, or an ionization
front, or both, move outward into the cool HI region at supersonic speed.

There are two ways of considering a front — or dividing region — between the
expanding ionized gas and the still unperturbed neutral hydrogen region. We can
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either consider the front as moving out into neutral gas at some velocity υ, or else
we can pretend that the neutral gas is moving into a stationary front at velocity, −υ.
After passing through the front, the gas is compressed and possibly ionized; there
will also be energy changes — mainly heating.

Let us adopt this second point of view — that the front between the two regions
is stationary — and make a number of demands on the gas flowing through the front,
Fig. 9.4.

Fig. 9.4. Conditions on the two sides of a shock or ionization front.

(a) We require that the mass flow into the front equals the mass flowing out. This
is just the continuity condition. If the inflow density and velocity are ρi and υi and
the outflow density and velocity are ρo and υo, this requirement reads

ρiυi = ρoυo ≡ I. (9-26)

Here, I is the mass flow through unit area in unit time.
(b) We can consider the front to be a surface that absorbs inflowing gas and

emits outflowing gas. The pressure of inflowing material would be ρiυ
2
i even if the

inflowing gas had no intrinsic pressure due to random motion of the atoms. The
momentum transferred to the surface per unit area and unit time through absorption
of the inflowing particles is ρiυ

2
i — which is what we mean by pressure. Similarly

the back pressure due to the seemingly emitted outflowing gas would be ρoυ
2
o . Since

(9–26) has to be satisfied and since υo generally differs from υi, these two pressures
will not normally be equal and opposite. We still have the two thermal pressures
due to the random thermal motions of the gas atoms adding to the overall pressure
acting on each side of the front. If the front is not to be accelerated — and we have
assumed that there is a constant inflow and outflow velocity here — then momentum
conservation requires that the overall pressures on the two sides of the front be equal
and oppositely directed

Po + ρoυ
2
o = Pi + ρiυ

2
i . (9-27)

This is the condition of steady flow.
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(c) On passing through the front, the energy content of the gas changes. A num-
ber of different sources contribute to the overall energy. For the inflowing gas there
is:

(i) Kinetic energy due to the bulk flow, υ2
i /2 per unit mass flowing into the

front;
(ii) Internal energy per unit mass Ui (see Section 4:19);
(iii) The work done on unit volume as it flows into the surface. Since we

are picturing the gas as being stopped — absorbed — as it approaches the front.
The work done per unit area and time then involves a volume equal to the veloc-

ity υi,
For unit area : work / time = Piυi . (9-28)

The product on the right of (9–28) is called the enthalpy of the gas. Reduced to unit
volume, the enthalpy numerically just equals the pressure Pi. Reduced to unit inflow
mass, it is Pi/ρi.

As it crosses the front, energy Q per unit mass may be fed into the fluid, so that
the actual energy gain per unit mass of inflowing material is Q.

In unit time, a mass ρiυi of inflowing material crosses the front. This must con-
tain energy equal to the energy contained in the gas flowing out of the front in unit
time except that the outflow energy can be greater by an amount Q. The outflow en-
ergy consists of terms similar to those described under (i), (ii), and (iii). We therefore
have the energy conservation equation

Q+
(
υ2

i

2
+ Ui +

Pi

ρi

)
−
(
υ2

o

2
+ Uo +

Po

ρo

)
= 0, (9-29)

where we have again used subscripts o to denote outflow. Equations (9–26),
(9–27), and (9–29) relating inflow to outflow are sometimes called the jump con-
ditions, because there is a discontinuity, a sudden jump, across the front.

PROBLEM 9–1. Referring to Sections 4:19 and 4:20, show that the internal energy
per unit mass can be written as

U = cυT =
R

γ − 1
P

Rρ
=

P

(γ − 1)ρ
. (9-30)

This leads to[
υ2

i

2
+
(

γi

γi − 1

)
Pi

ρi

]
−
[
υ2

o

2
+
(

γo

γo − 1

)
Po

ρo

]
= −Q . (9-31)

Because gases consisting of neutral atoms and gases containing only electrons and
atomic ions both have γ values of 5

3 , we can finally write (9–31) in the form[
υ2

i

2
+

5
2
Pi

ρi

]
−
[
υ2

o

2
+

5
2
Po

ρo

]
= −Q . (9-32)
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Equations (9–26), (9–27), and (9–32) describe the motion of a front into a monatomic
medium.

Let us first examine the structure of an ionization front. We will assume that
J ionizing photons are incident on the front per unit area in unit time. The mean
energy of these photons is χr > χo where χo is the energy required for ionizing
atoms (Ka54)*. Since J is the number of ionizing photons incident on the front that
divides the ionized from the neutral gas, it follows that J atoms are flowing into the
front in unit time and J ions plus J electrons are streaming out.

By referring to (9–26) we see that the mass flow across the front is related to the
flux of ionizing photons through the relation

I = mJ, (9-33)

where m is the mass of the neutral atoms. For a pure hydrogen cloud m = mH . We
now define the ratio of densities

ρo

ρi
≡ Ψ. (9-34)

Then, by (9–26) and (9–27)

Po = Pi − ρiυ
2
i (1 − Ψ)
Ψ

. (9-35)

From (9–26), (9–32), and (9–35) we then obtain[
5
P

ρ
+ υ2 + 2Q

]
Ψ2 − 5

[
P

ρ
+ υ2

]
Ψ + 4υ2 = 0, (9-36)

where we have dropped all subscripts, but the pressure, density, and velocity all refer
to the inflowing material. We note that the energy supplied at the ionizing front goes
partly into ionization and partly into kinetic energy of the particles. The part that
goes into kinetic energy on average is (χr − χo) per ion pair. Per unit mass of
ionized material this relationship corresponds to a mean square velocity

u2 =
2(χr − χo)

m
= 2Q. (9-37)

Note that Q represents only the heating energy, not the energy needed to overcome
atomic binding. This binding energy has not been specifically included in the for-
malism presented here. We have been able to neglect it by concentrating only on
those photons having χr > χo. For a higher binding energy, fewer photons are
available to ionize material.

We also note that the speed of sound depends on the ratio of heat capacities γ
defined in (4–125),

cs =
[
γP

ρ

]1/2

=
[
5P
3ρ

]1/2

, (9-38)

so that equation (9–36) can now be written entirely in terms of the three velocities
υ, u, and cs, and in terms of the ratio Ψ ,
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[3c2s + υ2 + u2]Ψ2 − [3c2s + 5υ2]Ψ + 4υ2 = 0. (9-39)

This is a quadratic equation in Ψ that can have a pair of coincident roots, two positive
roots, or a pair of complex roots depending on whether

(3c2s + 5υ2)2 <> 16υ2(3c2s + υ2 + u2) (9-40)

or on whether
9(c2s − υ2)2 <> 16υ2u2. (9-41)

There are real roots under two conditions. The first is that

3(c2s − υ2) ≤ −4υu , (9-42)

which means that υ is greater than some critical speed υR:

υ ≥ υR =
1
3

(
2u+

√
4u2 + 9c2s

)
. (9-43)

This requires that the flux of ionizing photons be larger than a critical value JR. By
(9–26) and (9–33),

J ≥ JR =
n

3

(
2u+

√
4u2 + 9c2s

)
, (9-44)

where n is the initial number density of atoms in the neutral medium. The subscript
R stands for rarefied.

The second condition under which real roots exist is if

3(c2s − υ2) ≥ 4υu , (9-45)

which implies velocities of the front less than a critical value υD and an ionizing
flux below JD, where D stands for dense:

υ ≤ υD =
1
3

(
−2u+

√
4u2 + 9c2s

)
, (9-46)

J ≤ JD =
n

3

(
−2u+

√
4u2 + 9c2s

)
. (9-47)

The two critical speeds υR and υD correspond, for a given ionizing flux, to densities

ρR =
I

υR
and ρD =

I

υD
. (9-48)

If the gas ahead of the ionizing front has a density ρR or ρD , only one possible value
of ρo can result, apiece; the density in the ionized medium behind the front then has
a fixed value. Although (9–39) is quadratic in Ψ = ρo/ρ, so that, for ρ < ρR

and also for ρ > ρD , there are two different density ratios that sustain identical
inflow velocities υ, equation (9–36) shows that there is only one positive value of υ
corresponding to any given value of Ψ . The density ratio across the front determines
the sustainable inflow velocity, not vice versa.
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For intermediate values of the initial density, ρR < ρ < ρD , there is no permis-
sible value. This means that the ionization front cannot be in direct contact with the
undisturbed HI region. We therefore have the following development of an ionized
hydrogen region around a star that suddenly flares up and emits ionizing radiation.
Initially, the interface between the ionized and neutral region is very close to the
star; the flux J is still very high and well above the critical value JR. We then have
what is called the R-condition. The rate at which the front moves into the neutral
medium (or vice versa according to the formalism used here) is υ = J/n. This is
just what equation (9–7) stated. However, as the ionization front moves farther from
the star, the value of J decreases and the front slows down until the critical velocity
υR is reached. This velocity has the approximate value

υR ∼ 4
3
u (9-49)

because the mean energy of the photons is so high that the excess energy carried
off by the ionized particles makes them move at velocities much higher than the
speed of sound in the undisturbed neutral medium — the temperature in the ionized
medium is much higher than in the neutral gas. Typical temperatures in ionized
regions of interstellar space are between 5000 and 10, 000 K, whereas HI regions
have temperatures a factor of ∼102 lower.

When the critical velocity υR is reached, the ionization front no longer has di-
rect contact with the undisturbed medium. It is now moving so slowly that a shock
front signaling the impending arrival of the ionized region precedes the ionization
front, and in so doing compresses the medium to a density greater than that of the
undisturbed state.

Essentially, this just means that the ionization heats the gas that then expands
into the neutral medium fast enough so that a compression wave travels into the
neutral gas at a speed exceeding the local speed of sound. A shock front therefore
precedes the ionization front into the neutral medium and modifies the density in
this medium so that the boundary conditions (9–26), (9–27), and (9–29) once again
are satisfied at the ionization front. As the ionization front moves still farther from
the star, the velocity with respect to the undisturbed neutral medium drops below the
lower critical value υD . Here a gradual expansion is going on, no shock is propagat-
ing into the neutral medium, and the ionization front once again is in direct contact
with the undisturbed medium. This is called the D-condition.

The boundary between interstellar space and the Solar System’s sphere of influ-
ence, the heliosphere, is a particularly fascinating region. Because the Solar System
moves supersonically through the ambient interstellar medium, a bow shock similar
to the shock ahead of a supersonic aircraft is expected to develop where the interstel-
lar gas first encounters the heliosheath, an outer region of the heliosphere. But the
interstellar gas does not mingle with the solar wind at this surface; that is expected
to mainly occur further in at the heliopause. Meanwhile, the supersonic solar wind
moving outward from the Sun produces a terminal shock at the interface with the
heliosheath, where the magnetic field strength B suddenly jumps by roughly a fac-
tor of 2, but where the outflow still does not yet mingle with the interstellar medium
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until the heliopause is reached further out in the heliosheath, the region separating
the bow shock from the termination shock. Late in December 2004, after 27 years
of travel, the spacecraft Voyager I launched in 1977 located the anticipated termi-
nation shock at 94 AU from the Sun and crossed into the heliosheath beyond. The
predicted heliopause and bow shock, and details of the physical processes charac-
terizing these surfaces await discovery as Voyager I moves on in its long journey to
leave the Solar System and explore the regions beyond (Fi05).

PROBLEM 9–2. Show that
υD ∼ 3c2s/4u. (9-50)

We should still note three factors:
(a) The conditions at a normal shock front are identical to those across an ion-

ization front except that the ionization energy is not supplied, that is, Q = 0.
(b) When the neutral gas is molecular rather than atomic, a dissociation front

normally precedes the ionization front into the neutral medium. The dissociation
energy of hydrogen molecules is only 4.5 eV, far lower than the ionization energy of
hydrogen atoms, 13.6 eV. Starlight photons with energies 4.5 ∼< hν ∼< 13.6 eV read-
ily pass through the HII region to create a photodissociation region, PDR, ahead of
the ionization front. Such regions are somewhat interchangeably also called photon-
dominated regions designated by the same acronym, PDR. The equations that gov-
ern conditions at the interface between the cool molecular gas and the PDR are
precisely the same as those we derived above for the interface between the neutral
and ionized regions, except that now χo represents the energy required to dissociate
a molecule, and γi has a value of 7

5 appropriate for molecular hydrogen at a temper-
ature sufficiently high to excite rotation. The equations derived here therefore have
a wide range of applications.

(c) Usually a magnetic field is present and the energy balance and pressure con-
ditions must then also include magnetic field contributions. Hydromagnetic shocks
are particularly significant because under conditions where collisions between par-
ticles are rare, the magnetic fields are the main conveyors of pressure throughout the
medium. Pressure equilibrium between gas particles is established through mutual
interaction via magnetic field compression. The speed at which information on pres-
sure differences is conveyed hydromagnetically is called the Alfvén velocity, which
can be shown to be vA ≡ (B2/4πρ)1/2; in magnetized plasmas it replaces the speed
of sound.

In weakly ionized cool clouds, pressure can be transmitted to the ions at speeds
vA that may be much greater than the speed of an approaching collisional shock.
The ions then become accelerated even before the collisional shock arrives. Since
the number density of ions is low, they can only gradually accelerate the ambient
neutral atoms through collisions. Nevertheless, the cold medium may reach appre-
ciable velocities before the collisional shock arrives. Such continuously accelerated
shocked regions are called C-shocks, while shocks that entail the previously derived
jump conditions (9–26), (9–27), and (9–29) are called J-shocks.
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At the interface between HII and HI regions we sometimes see bright rims that
outline the dark, dust-filled regions not yet ionized. The bright rims generally are
located at the edge of the nonionized matter and appear pointed toward the direction
of a relatively distant ionizing star normally of spectral type earlier than O9. It is
possible that these rims occur when ionizing radiation arriving at the HI region
satisfies the D-condition and sets up an ionization front that moves into the neutral
gas without being preceded by a shock wave.

When clouds collide at relativistic speeds, a relativistic shock ensues. The basic
principles of the interaction remain unchanged, but the details of the jump condi-
tions change. Continuity of mass flow into and out of the front, and conservation
of energy, must now be replaced by a continuity of mass–energy flow, because new
particles may be generated or destroyed at the front. We can think of relativistic
shocks as having some of the features of the cosmic-ray air showers discussed in
Sections 5:11 and 6:24, where a highly relativistic particle penetrating a stationary
medium from outside creates large numbers of new particles. The only difference
is that in relativistic shocks entire clouds of particles enter what amounts to a sta-
tionary medium at relativistic speeds. If the medium is magnetized, some of the
entering particles or their secondaries may circle back to hit the approaching shock
front again and again, to be Fermi-accelerated at the front to extreme energies, as
already described in Section 6:6.

9:5 Gamma-Ray Bursts, GRB

In Section 8:18 we discussed core-collapse supernovae. When a collapsar explodes
with an energy of order 1051 erg a high-temperature, optically thick electron–
positron plasma, called a fireball is created. It expands ultrarelativistically into the
ambient medium creating a forward shock in the medium, while, by symmetry, a
reverse shock plows into the fireball. The ultrarelativistically expanding front of the
fireball is often referred to as a blast wave.

A variety of processes spring into action at the shock front, including Fermi-
acceleration of particles, synchrotron radiation by electrons, and inverse Compton
production of high energy γ-rays created as ambient radiation is scattered off high-
energy cosmic-ray electrons. If the shock front moves relativistically in the direction
of the observer, the γ-rays produced at the expanding front are observed to arrive
during a highly contracted period. The effect is identical to that described in Section
6:21 where we discussed superluminal jets. In the case of gamma-ray burst, how-
ever, Lorentz factors may be of order Γ (υ) ∼ 100 − 1000 (To02, Da05). In the
rest-frame of the expanding front, the photons may be created over the course of a
few days, but at the observer, they arrive within a span of seconds.

Gamma-ray bursts are rare events. Most of them are observed to come from
highly red-shifted galaxies. Were it not for their immensely energetic outbursts, and
the narrow beams into which the γ-rays are confined — the cone angle of the emitted
beam may span no more than a few degrees — they would probably be missed. As
the expansion of the fireball slows down, a lower-energy X-ray and optical afterglow
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persists, apparently beamed into a considerably wider angle. A search is afoot to
see how many such afterglows might be found that have not been preceded by an
observable GRB. This would help to define the beam open angle, and thus would
lead to a more accurate estimate of the total energy emitted in the course of the
explosion. Afterglows lacking an observed GRB have come to be known as orphans
(To02).

9:6 Origin of Cosmic Magnetic Fields

Magnetic fields are known to exist in stars and in the interstellar medium. Stars
like the Sun have typical surface magnetic fields of the order of 1 G, but in some A
stars the surface fields can reach ∼40,000 G. The fields in the interstellar medium
are much weaker, typically of the order of 10−5 G. But there are wide variations.
In some regions of the Galaxy no magnetic fields at all have been determined in
measurements that should have detected fields of strength 10−6 G, while at other
locations, quite strong fields exist. In the Crab Nebula supernova remnant, for ex-
ample, the field strength can be as high as 10−4 G, and in compact HII regions and
other clouds with densities as high as n ≥ 107 cm−3 fields reach milligauss levels
over regions that have dimensions ranging from 1013 to 1017 cm (Kr94), (Zw97).

Figure 9.5 shows that the observed Galactic magnetic field direction generally
runs along the local spiral arm though its strength is not constant everywhere.

Where does this field come from? Is its origin primordial, dating back to some
early stages of the Universe? We do not know.

If magnetic fields are not primordial, two alternatives suggest themselves:

(1) Magnetic fields are formed in the interstellar or intergalactic medium and
find their way into stars as stars are formed from interstellar material; or

(2) Magnetic fields are formed in stars, possibly by dynamo mechanisms of the
type discussed in Section 9:7, below, and the field is then introduced into the inter-
stellar medium as mass is ejected from the stars. This might be consistent with the
high strength of the Crab Nebula field. It would also be consistent with the observa-
tion that the solar wind carries along magnetic fields. Whether some portion of this
field becomes detached from the Sun and strays out into the interstellar medium is
not known. But many stars have much more massive winds than the Sun, and the
outflow of magnetic fields may be a customary accompaniment to the outflow of
mass.

Once a magnetic field exists in very weak form, it can be amplified by turbulent
motions of the medium in which the fields are embedded. The net magnetic flux
crossing any given fixed surface cannot be increased in this way, but by folding the
field direction many times, local fields of greatly increased strength can be formed
without an accompanying high net flux (Fig. 9.6). Turbulent motion therefore obvi-
ates the need for strong initial fields. Small, seed magnetic fields can be amplified
by turbulent stretching and folding of the field lines.
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Fig. 9.5. Magnetic field direction at the Sun’s Galactic location. These data actually are mean
line-of-sight magnetic field components for pulsars as judged from their rotation and disper-
sion measures. For fields greater than 0.3 µ G the circle diameter is proportional to the field
strength. When the field has a direction toward the observer (positive rotation measure) the
circles are filled. When they are away from the observer they are empty. The diameter for
1µ G is indicated in the figure. The observations are consistent with a relatively uniform field
of about 3.5 µ G directed along the local spiral arm. Note that the directions of greatest field
strength are toward longitudes ∼60◦ and ∼240◦ , although there are large variations. These
are also roughly the directions of the local spiral arm (Bo71). (From Manchester (Ma72b).
With the permission of the University of Chicago Press.)

Fig. 9.6. Two magnetic field configurations with the same net flux. Configuration (a) has low
field strength everywhere. Configuration (b) has high field strength in some places. In this
figure, the field strength is taken proportional to the number of lines crossing unit length of
the abscissa. This would be representative for field lines embedded in sheets normal to the
plane of the paper.
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Let us see how big this effect could be. If a field B0 initially existed in
some location within the Galaxy, the flow of gas at a velocity υ could have
stretched out field lines maximally at that velocity. Folding the field back on it-
self also could maximally occur at velocity υ, so that the ability of a turbulent
motion to amplify the field is limited by the speed of the motions. The amplifi-
cation of the field through stretching and folding is given by the ratio of the ini-
tial volume V0 containing the seed fields to the final volume Vf that would have
been obtained through stretching the region through a rectilinear motion at veloc-
ity υ

...
Bf

B0
=
Vf

V0
. (9-51)

Here Bf is the final magnetic field strength obtained through stretching and folding
in a constant volume V0.

Within the Galaxy explosive velocities of order 104 km s−1 are observed in su-
pernova ejecta. We can choose this to represent the maximum turbulent velocity. The
initial dimension of the Galaxy is ∼ 30 kpc along a diameter and ∼ 100 pc perpen-
dicular to the disk. If the stretching motion were to go on for 1010 yr at 103 km s−1,
a distance of 10 Mpc would be covered, and a turbulent folding would increase the
magnetic field strength respectively by a factor of 300, or 105 depending on whether
the turbulent motion took place predominantly within the Galactic plane or perpen-
dicular to it.

Since the field in the Galaxy is estimated to have a strength of order 3×10−6 G,
at the present epoch, the initial seed fields must have had strengths at least of the
order of 3 × 10−11 G. There seems no way to escape this conclusion.

A primordial field of this magnitude must therefore have been present initially,
or else some mechanism must have existed for producing this field. A number of
processes have been suggested for setting up such a seed field that later could grow
in strength through turbulent motion.

As illustrated in Fig. 9.7, the Poynting–Robertson effect, which slows down
electrons orbiting a luminous source while leaving protons almost unaffected, can
produce a current to set up a weak magnetic field (Ca66). Some, or perhaps even
most of the energy may, however, end up in some form other than magnetic energy.
A complete analysis of such effects is complicated and depends in detail on the
interaction of the electrons with protons, on the resulting tendency for positive and
negative charges to slightly separate along a radial direction from the light source,
and so on.

This type of effect, which applies different forces to electrons and protons, acts
like a battery and is referred to as a battery effect. Whether battery effects contribute
significantly to the generation of interstellar magnetic fields is uncertain, but the
effect discussed here should serve as an illustration of the type of mechanism that
could perhaps be effective.

We note that the Poynting–Robertson drag on an electron is large because the
Thomson cross-section (see equation (6–103)) is (mP /me)2 ∼ 3×106 times larger
for electrons than for protons. Here me and mP are the electron and proton mass.
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Fig. 9.7. Poynting–Robertson drag on electrons produced by a luminous body acting on an
orbiting plasma. The drag on protons is much weaker; a small net current can therefore be
induced.

The deceleration is even stronger for electrons, being a factor (mP /me)3 times
larger than for protons, because for electrons the drag force acts on a smaller mass.
From (5–47) we see that the orbital angular momentum L, for an electron in a cir-
cular orbit, changes at a rate

1
L

dL

dt
=

Ls

4πR2

σe

mec2
, (9-52)

where Ls is the source luminosity, R is the distance from the source, and σe is the
Thomson cross-section. The work dW/dt done on an electron in unit time is equal
to the force F acting on it multiplied by the distance through which it moves at its
orbital velocity υ,

dW

dt
= Fυ =

(
1
R

dL

dt

)
L

Rme
=

LsσeL
2

4πR4m2
ec

2
. (9-53)

The largest number of electrons that could be slowed down in this way would be
N ∼ 4πR2/σe, because if we had more electrons than this, some would shadow the
others. Hence the maximum total work that can be done on the clouds is

NdW

dt
∼ Ls

R2

L2

m2
ec

2
= Ls

υ2

c2
. (9-54)

This gives the maximum work that can go into building up a magnetic field over
volume V :

NW ∼ V

∫
d

dt

(
B2

8π

)
dt ∼ B2

f

8π
V , (9-55)

where B2/8π (see Section 6:10) is the instantaneous magnetic field energy density.
For the Galaxy, gas is contained in a disk volume V ∼ 3×1066 cm−3 and Bf is the
final magnetic flux density, or field strength, Bf ∼ 3 × 10−6 G.
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... NW =
Lsυ

2

c2
τ ∼ 1054 erg . (9-56)

Let us first see whether the total field could have been produced had the Galaxy
at one time been as bright as a quasar for, say, 3 × 106 yr. Taking typical quasar
internal velocities υ ∼ 108 cm s−1, τ ∼ 3 × 106 yr ∼ 1014 s; we would require
Ls ∼ 1045 erg s−1 at peak efficiency to produce a field of ∼3 × 10−6 G.

This does not seem too unreasonable for producing the entire flux, so that per-
haps we would not even need the subsequent turbulent amplification. However, if
we want to do the same thing in our Galaxy right now, we find that there are so few
electrons that only ∼10−5 of the total flux would be scattered by electrons near the
center where velocities are ∼ 3×107 cm s−1. There Ls ∼< 1043 erg s−1, so that the
overall rate of work done on electrons is decreased by ∼108. In 1014 s a seed field of
∼3×10−10 G could be formed for the Galaxy — in 1010 yr, a field of ∼2×10−8 G.
Some form of battery effect producing a seed field that might subsequently be ampli-
fied by turbulence appears to be one option for accounting for present-day magnetic
fields (Ku97).

We should still note that the battery effect could also act to destroy magnetic
fields. If the orbiting plasma contains an initial magnetic field, the drag acting on
the electrons could be in a direction producing a current that reduces the magnetic
field.

9:7 Dynamo Amplification of Magnetic Fields

Dynamos can be effective in amplifying weak magnetic fields once they exist. If
electric currents can be set up perpendicular to the direction of a seed field, the field
can grow. The question is whether cosmic magnetic fields can grow sufficiently fast
by dynamo action to account for the field strengths observed today (Bh95), (Ch97).

We saw in equation (6–11) that the force on an electron moving in a mag-
netic field is ev ∧ B/c. This force gives rise to a current just as an electric field
would. Equation (6–15) for the current density in the absence of varying displace-
ment fields, therefore, becomes

j = σ

(
E +

v ∧ B
c

)
, E =

(
j
σ
− v ∧ B

c

)
. (9-57)

Inserting this into (6–22) yields

∂B
∂t

=
(
∇ ∧ v ∧ B− c∇ ∧ j

σ

)
. (9-58)

With (6–23) this reduces to

∂B
∂t

=
(
∇ ∧ v ∧ B− c2∇ ∧∇∧ B

4πσµ

)
, (9-59)
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and with (6–24) and the identity (6–28) we finally obtain

∂B
∂t

=
(
∇ ∧ v ∧B +

c2∇2B
4πσµ

)
. (9-60)

From (9–59) we see that the magnetic field grows only if the velocity transverse to
the field is appreciable

v ≥ c2/4πσµL), (9-61)

where L is the dimension over which the magnetic field changes significantly.
To note what this means, we need to evaluate the conductivity σ. The accel-

eration an electron experiences in an electric field E is Ee/me. The acceleration
produces an increase in the current, but only for a time equal to ν−1

c , the reciprocal
of the collision frequency derived in equation (6–134). The mean distance a charge
can travel in this time interval isEe/2meν

2
c , so that the mean velocity isEe/2meνc.

For a charge density ne, the current density then becomes

j = σE =
Ene2

2meνc
, (9-62)

so that

σ =
ne2

2meνc
. (9-63)

For fully ionized hydrogen we obtain νc from equation (6–134), and

σ ∼ 3.5× 107T 3/2

ln(smin/smax)
s−1 . (9-64)

For a region of dimensions L ∼ 1018 cm and a temperature of order 100 K, we then
find that the systematic electron velocity relative to the field needs to be of order
10−8 cm s−1 to make interstellar magnetic fields grow; otherwise they will decay.
This seems like a ridiculously low velocity, and we might expect that magnetic
fields would grow rapidly by means of dynamo processes. However, we do not yet
quantitatively understand the means by which a systematic electron drift could be
produced relative to the magnetic fields, without current-neutralizing protons drift-
ing along as well — though, as we saw in the previous section, radiation pressure
can produce such currents. Consequently, we do not yet know to what extent dy-
namo effects are significant on stellar or interstellar scales. Perhaps, once we better
understand the nature of turbulent magnetohydrodynamic flows, dynamo action will
also become better understood.

9:8 Cosmic-Ray Particles in the Interstellar Medium

Cosmic-ray particles, mainly high-energy electrons and protons, contribute an en-
ergy density of about 10−12 erg cm−3 to the interstellar medium. This compares
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to a mean starlight density of ∼7 × 10−13 erg cm−3 and a kinetic energy of gas
atoms, ions, and electrons ranging from about 10−13 erg cm−3 in the low-density
cool clouds, to roughly 10−9 erg cm−3 in high-density HII regions.

The interaction between the cosmic rays, the gas, and the radiation field is quite
strong. It usually involves an energy loss for cosmic-ray particles. Such losses can
be divided in the following way (Gi64), (Gi69).

(a) Highly relativistic electrons having energies E � mc2, lose energy to the
interstellar medium through a number of different processes that sometimes are
collectively referred to as ionization losses. They comprise: (i) the ionization of
atoms and ions; (ii) the excitation of energetic atomic or ionic states; and (iii) pro-
duction of Cherenkov radiation. These effects are not always separable. Their rel-
ative strengths are determined in part by the electron energy and in part by the
nature of the medium. Neutral and ionized gases give rise to different loss rates.
Table 9.3 gives expressions for these and other cosmic-ray losses discussed be-
low.

(b) Ultrarelativistic electrons can also suffer Bremsstrahlung losses. These occur
when electrons are deflected by other electrons or nuclei. The deflection amounts to
an acceleration that causes the particle to radiate. Again the loss rates differ for
ionized plasma and for a neutral gas.

(c) Synchrotron and Compton losses (see Sections 6:20 to 6:22) are related loss
rates, respectively, proportional to the energy density of the magnetic and radiation
fields. That these two processes can be considered to be similar can be seen from
a simplified argument. Imagine two electromagnetic waves — photons — traveling
in exactly opposing directions in such a way that their magnetic field vectors are
identical in amplitude and frequency and their electric fields are exactly opposite
in amplitude but again at the same frequency. The electric field and the Poynting
vector S both cancel for these two waves at certain times, and we are left with a
pure magnetic field whose energy density is equal to the total energy in the radiation
field. At this point, synchrotron loss should be equivalent to the losses from inverse
Compton scattering off the two photons of equivalent energy.

(d) For cosmic-ray protons and nuclei we have ionization losses again given in
Table 9.3. Synchrotron and Compton losses should be less than those of electrons
by the ratio of masses taken to the fourth power ∼1013. There are also a variety
of interactions between cosmic-ray nuclei and the nuclei of the interstellar gaseous
medium and grains. Table 9.4 gives these interactions for several different groups of
nuclear particles interacting with an interstellar gas composed of 90% hydrogen and
10% helium by number of atoms. The mean free path Λ gives the distance traveled
between nuclear collisions. Essentially, a proton travels until it has passed through
an effective layer thickness containing 72 g of matter per cm2. In a cool cloud with
density of order 10−23 g cm−3 this amounts to a distance of order 2 Mpc. Since
the cosmic-ray particles describe spiral paths in the Galaxy’s magnetic field, they
traverse such a distance in about 6 × 106 yr. The more massive cosmic-ray nuclei
suffer collisions more rapidly. The absorption path length λ = Λ/(1−Pi) (where Pi

is the probability that the collision will again yield a nucleus belonging to the same
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Table 9.4. Cross-Sections, Mean Free Paths Λ, and Absorption Paths λ.a

Cosmic-Ray Cross-Section Λ λ
Particle for Collision Mean Free Paths Absorption Path

P 3× 10−26 cm2 72 g cm−2 — g cm−2

α 11 20 34
Li, Be, B 25 8.7 10
C, N, O, F 31 6.9 7.8
Z ≥ 10 52 4.2 6.1
Fe 78 2.8 2.8

a For cosmic-ray particles in different groups of elements interacting with an interstellar
medium which consists of 90% hydrogen and 10% helium (in number density of atoms)(see
text) (after Ginzburg (Gi69)). Reprinted with the permission of Gordon and Breach Science
Publishers, Inc., New York.

initial cosmic-ray group) is somewhat longer than the mean free path, as shown in
column 4 of Table 9.4.

PROBLEM 9–3. If the energy loss per collision of a cosmic-ray nucleon with a
nucleus of the interstellar medium leads to a loss comparable to the total energy of
the nucleon (

−dE
dt

)
nucl

= cnσE , (9-65)

show with the help of Table 9.4 that this loss dominates the other processes listed
in Table 9.3 for cosmic-ray nuclei. Here σ is the collision cross-section and n is the
number density of interstellar atoms.

PROBLEM 9–4. Using the above loss rate for protons and using the loss rates from
Table 9.3 for cosmic-ray electrons having the spectrum shown in Fig. 9.8, calculate
roughly how fast the electron and the proton cosmic-ray components lose energy,
and estimate how fast the interstellar medium is being heated by cosmic rays if their
energy density is of order 10−12 erg cm−3. This cosmic-ray heating is important in
dense molecular clouds where light does not penetrate.

The observed flux of cosmic-ray protons and alpha particles incident on the
Earth’s atmosphere is shown in Fig. 9.9. Similar data exist for many other elements.
Roughly 90% of the nuclear component of the cosmic-ray flux at the top of the
atmosphere consists of protons. Alpha particles make up ∼9%, and the remaining
particles are heavier nuclei. Curiously, there is a great excess of Li, Be, B, and
3He, despite their low overall cosmic abundance. All these constituents are easily
destroyed at temperatures existing at the center of stars (Section 8:12). We can ac-
count for the presence of these elements if they are produced through collisions of
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Fig. 9.8. Cosmic-ray electron spectrum at the Earth. Compiled from various sources by P.
Meyer (Me69). Electron and positron abundances are comparable. 1 GeV ≡ 109 eV.

carbon, nitrogen, and oxygen cosmic-ray particles with hydrogen nuclei in the in-
terstellar medium. The lighter elements are then the spallation products of the more
massive parent particles. To obtain the amount of these low mass elements observed
and also to obtain the correct 3He/4He ratio, cosmic-ray particles with energies in
excess of 1 GeV would have had to pass through∼3 g cm−2 of matter (Re68c). This
suggests an age of about 2 × 106 yr if the particles have been spiraling within the
Galaxy all this time, and may represent the mean time taken for cosmic-ray particles
to be lost from — potentially diffuse out of — the Galactic disk.

We also find that the heavy elements are represented far more abundantly in
the cosmic-ray flux than in meteorites or in the solar atmosphere. This suggests
that these highly energetic particles originate in supernova explosions, pulsars, or
white dwarfs, where high concentrations of heavy elements will have been produced
during advanced stages of stellar evolution (Co71b).

The cosmic-ray flux in the Galaxy appears to be quite steady. Meteorites and
lunar surface samples have been analyzed for tracks left by heavy nucleons. The
total flux, as well as the relative abundance of heavy nuclei, cannot have changed
drastically over the past 5 × 107 yr.
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Fig. 9.9. Proton and alpha particle cosmic-ray flux at the Earth. At any given energy the
proton flux is about one hundred times as intense as the electron flux. (Compiled from various
sources by P. Meyer (Me69). Reprinted with permission from Annual Review of Astronomy
and Astrophysics, Vol. 7, c©1969 by Annual Reviews, Inc.) (Error bars have been omitted.)
At higher energies the flux J continues to drop, obeying a power law dJ/dE ∝ E−γ with
γ ∼ 3 to energies of order 1020 eV.

Electrons and the somewhat less abundant positrons have fluxes which, at any
given energy, amount to about 1% of the proton flux shown in Fig. 9.9. The spectrum
of the diffuse X-ray flux arriving at the Earth (Fig. 9.10) is roughly similar to that
of the cosmic-ray electrons. This suggests that the X-rays and γ-rays are formed by
inverse Compton scattering in active galactic nuclei, AGNs.

9:9 Formation of Molecules and Grains

Interstellar grain material appears to be quite varied. Large organic molecules, and
graphite and silicate grains are prominent constituents. The graphite grains appear to
originate in the dense atmospheres of carbon stars. Water and other volatiles freeze
out on these grains in the cold interior of dense clouds, where the grains are shielded
from heating by star light (see Fig. 9.11).
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Fig. 9.10. Diffuse extragalactic electromagnetic radiation (̇a) X-ray spectrum observed from
above the Earth’s atmosphere. Compiled from various sources by A.S. Webster and M.S.
Longair (We71). With the permission of the Officers and Council of the Royal Astronom-
ical Society. (b) Diffuse extragalactic gamma-ray spectrum. Compiled by Sreekumar et al.
Courtesy Stanley D. Hunter (Sr98). Both diffuse components may be due to the cumulative
emission from distant active galactic nuclei, AGNs

Densities in interstellar space are so low that grain formation appears impossible
there. To see this, consider the growth rate of a grain. Let its radius at time t be a(t).
Interstellar atoms and molecules impinge on the grain with velocity υ. If the number
density of heavy atoms having mass m is n, the growth rate of the grain is

4πa2 da

dt
=
πa2nmυ

ρ
αs , (9-66)

where ρ is the density of the interstellar atoms after they have become deposited
on the grain’s surface, αs is the sticking coefficient for atoms impinging on the
grain, and the left side of (9–66) represents the rate at which the grain’s volume
grows. Taking υ ∼ √3kT/m, with T ∼ 100 K and m ∼ 20 amu ∼ 3 × 10−23 g,
ρ ∼ 3 g cm−3, and n ∼ 10−3 cm−3, and the maximum value αs = 1, we ob-
tain

da

dt
∼ n

√
3kTm
4ρ

αs ∼ 10−22 cm s−1. (9-67)
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Fig. 9.11. Spectrum of the cold interstellar molecular cloud NGC 7538 IRS9, from 2.5 to 45
µm. Absorption features due to various solid constituents of interstellar grains are identified
(Wh96).

To grow to a size of 10−5 cm, the available time would have to be 1017 s ∼
3 × 109 yr. With more realistic values of αs, the required length of time increases
to an age greater than that of the Galaxy. Here we have neglected the deposition of
hydrogen on a grain, because pure hydrogen would normally evaporate rapidly.

Of course, there exist regions in space where the number density of atoms such
as oxygen, nitrogen, carbon, and iron is ∼1 cm−3. The Orion region is about this
dense. If there were no destructive effects there, grains could perhaps form in a
time ∼3 × 106 yr, if αs ∼ 1. Furthermore, if the temperature in a dense cool cloud
could become low enough so that hydrogen could solidify on the grains without
rapid re-evaporation, the growth rate could still be higher by two or three orders of
magnitude.

Thus far we have neglected destructive effects. In HII regions, radiation pres-
sure often accelerates small grains to higher velocities than large grains. Collisions
among grains can then take place at velocities as high as ∼> 1 km s−1, to vaporize
both of the colliding grains. The vapors then have to recondense. In addition, sput-
tering by fast-moving protons can knock atoms off a grain’s surface after they have
become attached. Such destructive effects tend to reverse the growth implied by
equation (9–66), or at least will decrease the growth rate. This destruction would be
stronger for frozen water (ice) where molecules are bound weakly, than for strongly
bound substances like silicates or graphite. All three of these solids are constituents
of interstellar grains.
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Another, less catastrophic, destructive effect is evaporation, characterized by the
vapor pressure of the material from which the grains are formed. In thermal equilib-
rium at a temperature T the vapor pressure, Pvap, gives the rate at which molecules
or atoms evaporate from a grain’s surface. The equilibrium vapor pressure is that
pressure of ambient vapor at which the growth rate is just equal to the evaporation
rate. This pressure is related to the vapor density through the equation of state. If
Dalton’s law (4–38) holds, the mass impact rate of molecules is

nmυ ∼
( m
kT

)1/2

Pvap (9-68)

per unit area. This then must also represent the evaporation rate from the surface.
We see that the pressure in the ambient space must exceed the vapor pressure if
the grain is to grow. Hydrogen has a vapor pressure of about 10−7 torr at 4 K
(Table 10.2). This amounts to about 1011 molecules cm−3. This density is far higher
than any expected for interstellar space. On the other hand, grains are never likely
to be cooler than 4 K. This means that hydrogen cannot very well remain on grains,
unless it is chemically bound by the presence of other substances or else adsorbed
on the basic grain material. For other substances this would not be true. Silicates and
graphite have such low vapor pressures that no appreciable evaporation off grains
would occur in periods of the order of the life of the Galaxy. Solid carbon monox-
ide, CO, or carbon dioxide CO2 grains have been detected in the shielded interior of
dusty molecular clouds, where temperatures as low as 12–15 K have been observed
(La96). In bulk form these substances rapidly sublimate, respectively, at tempera-
tures of order ∼20–25 K and ∼>50 K at the low pressures found in the interstellar
medium, but the sublimation temperatures could be even lower for small grain sizes
(Sc97).

For ice, the situation is somewhat more complicated. On approaching close to an
individual star, H2O molecules could evaporate as a grain’s temperature rose. This
is what happens when a comet approaches the Sun from the outer portions of the
Solar System. The surface warms until water, ammonia, and other ices sublimate.
For ice grains, sputtering through collisions with atoms is generally the dominant
destructive mechanism; only on very close approach to a star can evaporation be
significant.

Grains appear to form primarily in the atmospheres of cool giant stars or Mira
variables; both eject gas into interstellar space. The atmospheres of these stars are
dense so that n in (9–66) is high. Formation must, however, take place in a period
as short as a year after material is blown beyond the photosphere. After that, the
outflowing gas becomes too rarefied. With n ∼ 106 cm−3 for the heavier atoms,
T ∼ 2 × 103 K, m ∼ 12 for carbon, it might be possible to form a graphite grain
at a rate da/dt ∼ 3 × 10−13 cm s−1; a grain with a ∼ 10−5 cm would form in a
year. This would be a nucleus that could subsequently still grow, possibly because
radiation pressure would keep it moving slightly faster than the gas flowing out from
the star (see equation (9–15)).
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Mira variables and cool giants often emit an excess of infrared radiation. This is
due to the formation dust in their atmospheres and its subsequent ejection into the
interstellar medium.

The infrared emission from planetary nebulae also indicates the presence of dust.
The grains could have been produced in an earlier red-giant phase of the star, in a
circumstellar shell expanding with the velocity of the original red-giant stellar wind.

The novae Ser 1970, Aql 1970, and Del 1967 were found to grow brighter in
their infrared emission as the visible part of their spectrum dimmed, suggesting that
dust played an important role in their emission. In contrast, supernovae, which eject
far more massive amounts of heavy elements into their surroundings, may expel
most of it into extragalactic space where densities are too low for grains to form.

The formation of molecules presents problems similar to dust formation. In
the past few decades, microwave techniques have uncovered an increasing num-
ber of interstellar molecules, NH3 (ammonia), CO, H2O, HCN (hydrogen cyanide),
H2CO (formaldehyde), CN (cyanogen), HC3N (cyanoacetylene), the hydroxyl rad-
ical OH, and many others. Deuterated versions of hydrogen-containing molecules
also abound. More than one hundred interstellar molecular species are now known
(Oi97).

A number of destructive effects should still be mentioned. Molecules can be de-
stroyed through dissociation — often as a consequence of absorption of, or ioniza-
tion by, ultraviolet photons. Calculations indicate that galactic starlight may destroy
molecules such as CH4, H2O, NH3, and H2CO in times of the order of a hundred
years, unless the molecules are well shielded from light inside strongly absorbing
dust clouds (St72). Ionization by energetic electrons or cosmic-ray particles could
produce similar effects. Collisions among interstellar clouds that accelerate particles
to elevated energies, as described in Section 6:6, could therefore destroy molecules.
Conversely, the high densities at the contact face of two colliding clouds could also
lead to more rapid formation of molecules. Competing formation and destruction
rates must be compared in specific settings to see which predominates.

9:10 Formation of Molecular Hydrogen, H2

Hydrogen atoms can combine to form molecular hydrogen by two different pro-
cesses. The first of these is slow, but predominates when no other constituents ex-
cept hydrogen itself are present, early in the evolution of the Universe, before the
heavier chemical elements have been produced in stars. We will return to this pro-
cess in Chapter 13, where we will see the central role that H2 formation plays in
the formation of the first stars. In today’s universe, however, the formation of hy-
drogen molecules can progress more rapidly wherever cold dust grains are abundant
(Ho71).

At typical grain temperatures of order 15 K, hydrogen atoms can diffuse over
grain surfaces until two atoms find themselves at a catalytic site that facilitates the
bonding of two atoms to form a molecule.
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H + H → H2 + 4.5 eV . (9-69)

The release of the bond energy E = 4.5 eV propels the newly formed molecule off
the surface. Because the mass M of the grain is so much larger than the mass of the
moleculemH2 , conservation of momentum tells us that most of the energy is carried
off by the molecule, whose velocity will be

υ ∼ (2E/mH2)
1/2 ∼ 2 × 106 cm s−1 . (9-70)

Conservation of momentum, nevertheless, implies that the grain receives a signif-
icant kick, a velocity change of order ∆V ∼ υ(mH2/M) shared between transla-
tional and rotational velocities.

9:11 Polycyclic Aromatic Hydrocarbons

Hydrocarbons are molecules consisting primarily of carbon and hydrogen. They are
some of the simplest organic — meaning carbon-based — molecules. A particularly
stable form of hydrocarbon molecule is a benzene ring, an assembly of six carbon
atoms forming a ring to which hydrogen and other atoms, ions or radicals may be
attached. Molecules based on this type of structure are called aromatic hydrocar-
bons. When a molecule comprises several benzene rings, it is said to be a polycyclic
aromatic hydrocarbon, abbreviated PAH. Naphthalene is made up of two benzene
rings, anthracene of three, and literally millions of far more complex aggregates are
known in organic chemistry.

The infrared emission from interstellar space frequently exhibits spectral charac-
teristics reminiscent of various types of PAHs. An exact identification has not been
made, reflecting the possibility that PAHs are highly varied. These macromolecules
absorb visible starlight and redistribute the absorbed energy into phonons — vibra-
tional and torsional modes within the molecule. The PAH acts as an assembly of
coupled springs responding to an impulse. Small amounts of energy can also pro-
duce rotation. The excited modes quickly re-radiate energy in a cascade of infrared
photons whose energies correspond to the chemical makeup of the radiating PAH
and provide clues to its dominant chemical bonds. As the cascade progresses, the
PAH returns to its ground state configuration, where it remains until again excited
by an arriving photon.

Unlike larger grains, PAHs never attain an equilibriumtemperature with starlight.
Their infrared emission is strictly a short-term phenomenon that follows the absorp-
tion of a single photon. Visible and near ultraviolet starlight has an energy of sev-
eral electron volts while the various vibrational and torsional modes of these large
molecules are excited by energies well below an electron volt. This makes PAHs
remarkably efficient converters of optical radiation into infrared. They absorb ener-
getic photons and re-emit many quanta of lower energy.
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9:12 Infrared Emission from Galactic Sources

Stars

Cool supergiants are often shrouded by dust that absorbs much of their visible radi-
ation, re-emitting the energy primarily in the near infrared.

The near infrared emission from circumstellar dust is readily explained. Equa-
tion (4–81) specifies the temperature that a grain will assume at a given distance R
from a star. Some uncertainty prevails because the absorptivity εa and re-radiation
emissivity εr of the grains remains largely unknown.

T =
(
εa

εr

L�
16πσR2

)1/4

, (4–81)

Because the grains are distributed over a range of distances from the parent star, we
also expect a rather broad emission spectrum corresponding to emission by grains
at different temperatures.

Ionized regions

At longer wavelengths, principally beyond 10 µm, Galactic HII regions strongly ra-
diate. The Galactic center also is a powerful infrared source at wavelengths peaking
around 100µm.

The infrared emission from planetary nebulae and HII regions involves relatively
little dust. Often the obscuration within the ionized region is not noticeable, and yet
strong infrared emission is observed. How can dust be responsible?

To explain this phenomenon we have to return to the discussion of ionization
equilibrium in Section 9:2. We had noted there that, for an equilibrium Strömgren
sphere, the recombination rate equals the ionization rate. Each time an electron re-
combines with a proton to form a hydrogen atom we have two possibilities. Either
the recombination leaves the atom in the first excited state n = 2, or else it leaves
it in a higher level from which a cascade of photon emission eventually places the
atom into state n = 2 or else n = 1. Any photon emitted through a transition from
n = 2 to n = 1, or from any higher excited state down to n = 1, has a very high
probability of being reabsorbed by another hydrogen atom in the n = 1 state within
the HII region. The photon then wanders through the HII region in a random walk,
as in Problem 4–4, though with a variable mean free path.

A photon, successively absorbed and reradiated by atoms moving with ther-
mal velocities, υ, eventually becomes Doppler-shifted by ∆ν ∼> ν〈υ2〉1/2/c, large
compared to the natural line width, γ, in equation (7–59). The mean free path
then increases, permitting rapid escape from the region. Nevertheless, the Ly-α
photon’s trajectory out of the region is typically several times longer than the
cloud radius, and dust has a correspondingly greater chance of absorbing the ra-
diation. We have acted here as though all of the Lyman spectrum photons were
Ly-α radiation. This is almost true. A Ly-β photon emitted by one hydrogen
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atom is likely to be absorbed and to give rise to an Hα photon in an atomic
transition n = 3 to n = 2, succeeded by a Ly-α transition n = 2 to n =
1.

As a rule of thumb, we can state that for each ionizing photon, the HII region
eventually must produce one recombination. That recombination, followed by a suc-
cession of emission, reabsorption, and re-emission processes, eventually has to give
rise to one photon of the Balmer spectrum, and one Ly-α photon. The oscillator
strength for absorption of the Ly-α photon is near unity so that the effective cross-
section per hydrogen atom is large. Even if the fractional neutral hydrogen density
is very low, Ly-α absorption usually is large enough to trap the Ly-α photons in the
nebula.

PROBLEM 9–5. For an HII region in which each ionizing photon has unit optical
depth across a distance equal to the radius R, relate nH , the number density of
neutral atoms, to the absorption coefficient aνo listed in Table 9.2.

(a) With reference to Problem 7–11 determine the mean free path at the line
center for Ly-α absorption and compare this to R.

(b) The absorption bandwidth, γ, usually is small compared to the Doppler fre-
quency shift ∆ν ∼ ν〈υ2〉1/2/c where 〈υ2〉1/2 is the root mean square velocity in
the HII region. For 〈υ2〉1/2 ∼ 30 km s−1, what is the Ly-α absorption mean free
path (see Problems 7–10, 7–11, and 7–13)?

(c) Successive absorption and isotropic re-emission of Ly-α in randomly moving
atoms produces radiation whose central frequency undergoes a random walk in the
spectral frequency domain. Eventually, an emitted Ly-α photon may be so far out in
the spectral line wings that most atoms will only have a low absorption cross-section
for it. The photon can then more readily escape the HII region. Show that this will
happen after (nγ/∆ν)2 absorptions and re-emissions, for a frequency shift nγ off
line center and nγ � ∆ν .

Because each ionizing photon gives rise to a Ly-α quantum of radiation, and
because this radiation is likely to be absorbed by a grain before it can escape to
the boundary of the HII region, we might expect that all the radiation converted
into Ly-α would (Kr68) eventually be absorbed by a grain and the energy would be
thermally radiated in the far infrared. Most of the ionizing photons given off by a
star have an energy less than twice the Ly-α energy. Hence we conclude that more
than half the ionizing energy emitted by a star would eventually find its way into
infrared radiation. This seems to be at least approximately true.

We can also compare the infrared emission and the free–free emission from
ionized regions observed in the radio domain. This can be directly related to the
expected recombination line intensities through equations such as (9–5) or (6–141).
We can therefore derive a proportionalitybetween the expected free–free radio emis-
sion from the HII region and the far infrared flux from grains.

The correlation between these two turns out to be so good that a systematic pro-
cess connecting infrared and radio fluxes has been sought. An intriguing suggestion
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is that electric dipole emission from rapidly rotating ∼10−7 cm dust grains, rather
than free–free emission, could be responsible for radio emission, at least in the 5 to
50 GHz frequency range, and that grains in different size ranges could be responsi-
ble both for the infrared and the radio emission (Dr98), (Fi02a).

Photodissociation Regions, PDR

Occasionally, grains also can heat ambient gas. In the photodissociation regions
mentioned in Section 9:4 starlight has been stripped of all its ionizing photons. This
deprives it of the ability to heat the neutral atoms through which it passes as it
crosses from an HII domain surrounding an ionizing star and streams out into a
molecular cloud. The primary heating mechanism for such regions, therefore, ap-
pears to be heating by electrons torn out of grains by the photoelectric effect.

Electrons are easily removed from solids that have a low work function — a low
ionization potential. For interstellar grains, photons with energies of a few electron
volts may suffice to eject an electron. Starlight incident on grains will then charge
them up to the point where the work function plus the electrostatic potential at the
surface of the grain equals the highest incident photon energy. For a grain with a
low work function and radius r, the energy required to remove an electron is Ze2/r,
where Z is the number of electrons removed. With r = 10−5 cm, this energy is
2.3×10−14Z erg. The charge distribution on grains, however, is also determined by
competing collisions with electrons and ions, and generally depends upon ambient
conditions and on grain size and composition (Ce95).

Photons escaping the HII region have energies at least as high as 11 eV — well
below the ionization potentials of the most abundant species, hydrogen, helium,
oxygen, nitrogen, or carbon. If the grain work function is of order 5 eV, this still
permits the grain to be charged up to a surface potential of 6 volts, where the ad-
ditional energy required to overcome the electrostatic attraction is ∼10−11 erg and
Z ∼ 400.

Photoelectric removal of electrons can therefore free up to several hundred elec-
trons per grain. Each of the initially emitted electrons can carry away an energy of
up to a few electron volts. The electron quickly gives up this energy to nearby atoms,
principally through charge exchange, which has a high cross-section ∼10−15 cm2.
In charge exchange the free electron displaces a bound electron in an atom and
transfers a fraction of its energy to the atom. Eventually a low-energy electron is at-
tracted to and captured by the charged grain, only to be recycled through the process
of photoelectric emission, to again transfer starlight energy to ambient atoms. This
cycle is referred to as photoelectric heating by grains.

If the grains at the cloud surface facing the star become fully charged, so that
no further photoemission can take place, the grains can still absorb incident optical
and ultraviolet radiation. The grain temperature will then rise. Most of the absorbed
heat will be radiated away at far infrared wavelengths and escape the cloud. A small
amount of heat can also be transferred to colliding gas atoms and contribute to heat-
ing the gas, though generally at an insignificant level as seen in Fig. 10.4.
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Molecular Clouds

Molecular clouds at extremely low temperatures are primarily cooled through dust
emission at submillimeter wavelengths. Figure 9.12 shows the far infrared emission

Fig. 9.12. Far infrared scans of a very cold dust cloud associated with molecular gas. The dust
temperature indicated by the relative emission at 60, 90, 135, and 200 µm lies in the range of
12 to 15 K (La96).

by grains in a cloud at 10 to 15 K. Shielded from starlight by high ambient dust den-
sities, grains in the interior of these clouds are primarily heated by cosmic rays. Part
of the cosmic-ray energy loss, and part of the destruction of cosmic rays discussed
in Section 9:5, can be attributed to this interaction with grains.

Large interstellar grains may have dimensions of the order of 10−5 cm, per-
mitting them to radiate more effectively at long wavelengths. In the hot cores of
giant molecular clouds, they are heated by frequent collisions with atoms and re-
emit this energy in the far infrared, typically at wavelengths of the order of 100µm.
The infrared emission observed in star-forming regions is produced in this fashion.
Grains are responsible for the bulk of protostellar cooling that permits these clouds
to release gravitational energy as they slowly contract to form stars.

We will return to cooling by grains in Section 10:9.
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Relativistic Processes

In Seyfert galaxies, where strong infrared emission from active nuclei is sometimes
observed, infrared emission may arise through processes such as synchrotron radia-
tion or inverse Compton scattering. Seyfert galaxies can be strong emitters of X-rays
so that highly energetic electrons are likely to be present. In these galaxies it is often
difficult to determine the primary mechanism responsible for infrared emission.

9:13 Orientation of Interstellar Grains

Starlight that has traversed long distances through the Galactic plane tends to be
both reddened and polarized. The transmitted starlight is predominantly polarized
parallel to the plane (Fig. 9.13), meaning that its oscillating electric field vector E is
parallel to the plane. We therefore assume that light polarized perpendicular to the
plane is eliminated — absorbed or scattered — by grains oriented with their long
axes perpendicular to the Galactic plane, as discussed in Section 6:17. The grains
absorb, emit, or scatter light, somewhat like a radio antenna, parallel to their long
axes along which electrons can most readily flow in response to an oscillating E
field. Tiny antennas operating at optical wavelengths have been tested in the labora-
tory and obey the same principles as radio antennas (Mü05).

How can grains become aligned in this way? In Problem 7–6, we saw that grains
have angular frequencies of the order of 105 Hz. It therefore makes no sense to talk
about the orientation of a stationary particle. There is, however, a different kind of
orientation involving preferred directions of a grain’s angular momentum vector.

In Section 9:9 we saw that the formation of molecular hydrogen on grains can
give a grain a significant kick, as a newly formed H2 molecule is ejected at a velocity
υ ∼ 2 × 106 cm s−1. If half the recoil momentum from the molecule goes into the
grain’s translational motion and half into rotation, the angular momentum kick the
grain receives should be of order

δL ∼ 1
2
mH2υa ∼ 3 × 10−23

(
υ

2 × 106cm s−1

)( a

10−5

)
g cm2 s−1 , (9-71)

where a is the grain radius.
On a typical grain, there may only be a few catalytic sites where molecules can

form. Because the grains are small and rapidly spinning, as we saw in Problem 7–6,
molecules ejected from the catalytic sites are likely to be ejected into random spatial
directions around the grain. The grain’s translational velocity should then increase
as a random walk — as the square root of the number of molecules ejected — and be
damped by collisions with ambient gas molecules. The grain’s angular momentum,
however, may increase more nearly in direct proportion to the number of ejected
molecules. Because of the low expected number of catalytic sites on a grain, the
many molecules ejected from a given site may produce a systematically anisotropic
impulse. The grain will then be spun up to much higher angular momenta than
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would otherwise be expected, particularly for a grain in thermal equilibrium with its
surroundings at the low temperatures of interstellar space. This high spin-up rate is
referred to as suprathermal spin-up.

If as many as, say, N ∼ 300 molecules are produced at a catalytic site before
the grain surface becomes altered, possibly in response to a cosmic-ray impact, and
some other site on the grain becomes active, we might expect angular momenta as
high as L ∼ 10−20 g cm s−1.

PROBLEM 9–6. Show that the angular velocity of the grain is ω ∼ 106 rad s−1

in this case, and that L ∼ 10−20 g cm2 s−1 also represents the thermal equilibrium
value at a temperature of 100 K.

Since we know angular momentum to be quantized in units of � we see that the
angular momentum quantum number will typically have a value

J ∼ 107
� . (9-72)

A number of other forces illustrated in Fig. 9.14 also affect the grain’s angular

Fig. 9.14. Alignment mechanisms for interstellar grains: (a) process of paramagnetic relax-
ation; (b) alignment by streaming through gas, or (c) through a photon field. In process (c)
the photon’s linear momentum causes the grain to spin; in process (d) the photon’s intrinsic
spin angular momentum is of importance (see text).
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momentum. Figure 9.14(b) shows ambient hydrogen atoms incident on the grain
applying a torque. However, because the random gas velocities and the translational
velocities of the grains through the gas generally are much lower than the speeds
at which hydrogen molecules are ejected from the grain’s surface after formation,
the torques due to these collisions are likely to be negligible compared to those due
to the formation and ejection of H2 molecules. A similar effect due to the impact
of starlight on the grain is illustrated in Fig. 9.14(c). Starlight, however, also has an
intrinsic spin angular momentum �, parallel to the direction of incidence, as shown
in Fig. 9.14(d). The respective magnitudes of the angular momenta acquired by a
grain per collision with atoms or photons are:

δLH ∼ mυa√
3
, δLe ∼ hνa√

3c
=

ha√
3λ
, and δLi ∼ �. (9-73)

where λ is the wavelength of incident radiation. These are the angular momenta
induced, respectively, by collisions with hydrogen atoms, due to a photon’s extrinsic
angular momentum (Fig. 9.14(c)), and due to the intrinsic photon angular � (Fig.
9.14(d)). For small grains, the last term predominates over the second

a√
3 ∼<

λ

2π
. (9-74)

It also predominates over atomic collisions if
√

3nνc� > nmυ2a or if
nνhν > mnυ2 . Within the Galaxy, nν > 0.02 cm−3 so that for atomic densities
nH ∼ 10 cm−3 , and υ ∼ 105 cm s−1, the photon intrinsic effect will dominate.

A more important randomizing effect, however, is due to thermal emission by
the grains (Ha70). Equation (4–74) gives this rate as ∼1.5 × 1011T 3 cm−2 s−1.
But the efficiency of grain emission is roughly proportional to a/λ, and, for thermal
radiation the peak wavelength is of order λ ∼ 0.36/T . This leads to a very crude
estimate of the emission rate of photons per grain ṅν,gr as

ṅν,gr = 1.5× 1011(πa2)T 3

(
aT

0.36

)
∼ 130

(
a

5 × 10−6cm

)3(
T

30K

)4

s−1 .

(9-75)
This is four orders of magnitude higher than the impact rate nνcπa

2 ∼
1.5× 10−2 s−1 of Galactic photons on such grains.

We next consider magnetic alignment of dust grains (Da51). In this process, a
grain is set spinning about an arbitrary axis, for example, by the ejection of a newly
formed high-velocity hydrogen molecule. We can now postulate that the grain mate-
rial is paramagnetic. Such materials when placed into a magnetic field set up an in-
ternal field whose direction is (Fig. 9.14(a)) parallel to the external field. If the grain
rotates with angular velocity ω about a direction perpendicular to the magnetic field,
the internal field is forced — again at frequency ω — to change its direction relative
to an axis fixed in the grain. The internal field, however, cannot change instanta-
neously. A slight misalignment of the internal and external field arises as shown
in Fig. 9.14(a). The interaction of the induced internal field with the externally ap-
plied field attempts to compel parallelism by opposing the rotational motion. This
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drag torque is proportional to the external field B, to the internal field that also is
proportional to B, to the grain volume, V , and to ω,

Torque = KV B2ω. (9-76)

This holds for a grain spinning about an axis perpendicular to the direction of B.
When the grain spins about an axis parallel to B, the induced field does not need
to change its direction relative to the external field and no drag force arises. This
damping process is called paramagnetic relaxation.

For an arbitrary spin direction, that component of the spin whose axis is perpen-
dicular to the field will therefore be damped out in a time

τ =
I

KV B2
, (9-77)

where I is the moment of inertia about the spin axis; the spin component whose axis
is parallel to B remains undamped.

An aspherical grain whose spinning motion is slowed tends to align itself with
its axis of greatest moment of inertia parallel to the angular momentum axis. This
inertia axis is perpendicular to the long axis of an elongated grain. The net effect
of paramagnetic relaxation is to align elongated grains with their long axes per-
pendicular to the magnetic field. There are indications that interstellar grains may
be exceptionally paramagnetic, due to a feature termed superparamagnetism (Jo67,
Go95, Dr99).

9:14 Acoustic Damping and The Barnett Effect

Paramagnetic substances are characterized by unpaired electron spins. If a rotating
paramagnetic grain initially has an equal number of electron spins directed parallel
and antiparallel to the angular velocity vector ω, it can dissipate its kinetic energy
without loss of angular momentum by transferring some of its angular momentum
to the electron spin system, in effect by flipping some of the electron spins. This
partially aligns the electron spins and their spin magnetic moments, giving rise to
a net magnetization. Dissipation is built into this system since, for a grain rotating
about some direction other than its principal moment of inertia axis, the rotation
axis continually shifts with respect to coordinates fixed within the grain. Stresses
produced by centrifugal forces will similarly shift within the grains at the grains’
spin frequency, giving rise to acoustic waves. Laboratory studies of various low-
temperature materials indicate that most substances are sufficiently inelastic to damp
out these shifts and waves in a period of a few years and, with that, also damp out
any rotational component not aligned with the principal moment of inertia axis.
A second dissipation mechanism arises from the magnetization of a paramagnetic
grain as the electron spins flip. The magnetization vector then also precesses in
a coordinate system fixed within the spinning grain. This also dissipates energy
and ultimately results in the alignment of the magnetic moments of the unpaired
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spins, as well as the rotational axis, with the grain’s principal moment of inertia
axis. Both electron and nuclear spins contribute to this effect, which damps out any
misalignment of the rotation and principal moment of inertia axes on time scales
of ∼105 s, roughly a day. An effect of this general class is referred to as a Barnett
effect (Pu79, La99).

The systematic suprathermal spin-up due to the formation of hydrogen molecules
at a small number of catalytic sites on a grain produces relatively steady rotational
orientations not readily disrupted by interactions with ambient gas or emitted ra-
diation. Barnett damping then ensures that paramagnetic alignment by interstellar
magnetic fields inexorably results in the alignment of both the rotational and the
principal moment of inertia axes with the direction of the local interstellar magnetic
field.

Observations at far-infrared wavelengths permit us to determine the linear po-
larization of radiation emitted by grains deep inside a dust cloud. Because the grains
radiate preferentially along their longest axes, the observed far-infrared polarization
allows us to deduce the direction of the magnetic field deep in the cloud’s interior
(Hi96).

9:15 Stability of Isothermal Gas Spheres

The plane of the Milky Way is laced with molecular clouds, so dense with gas and
dust that they eclipse all visible light from stars at greater distances. Only infrared ra-
diation at progressively longer wavelengths can readily pass through. Some of these
clouds are well isolated, roughly spherical, and have well-defined boundaries. Many
were originally studied by Bart Bok and are called Bok globules. About one third of
the globules contain young stars evidently formed within the globules (A�01). Oth-
ers are devoid of stars. How do such clouds maintain their structure for any length
of time? Why do they not collapse under their own gravity to form stars?

To answer these questions we first need to understand the structure of a self-
gravitating cloud of gas, its dependence on its temperature, and the influence of
chemical composition. For the moment let us restrict ourselves to isothermal clouds
at some temperature T .

Instead of phrasing the problem in terms of forces and potentials, as we did in
Section 4:23, we start with two related expressions, (8–7) and (8–8), respectively
dealing with pressure gradients and distribution of mass,

dP (r)
dr

= −GM(r)ρ(r)
r2

;
dM(r)
dr

= 4πr2ρ(r) . (9-78)

These two combine to yield the equation for hydrostatic equilibrium,

1
r2

d

dr

(
r2

ρ(r)
dP (r)
dr

)
= −4πGρ(r) , (9-79)

which has an obvious similarity to equation (4–151), and shows how the gradient
of the gravitational potential is related to the density and pressure gradient. For the
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ideal gas law (4–37) we have P = ρkT/m, where m is the mass of the hydrogen
atoms or molecules in the gaseous sphere. Inserting this into (9–79) gives

1
r2

d

dr

(
r2

ρ

dρ

dr

)
= −4πGmρ

kT
. (9-80)

With the substitutions

ρ = ρ0e
−ψ and r =

(
kT

4πGmρ0

)1/2

ξ (9-81)

we recover the result (4–154):

1
ξ2

d

dξ

(
ξ2
dψ

dξ

)
= e−ψ . (9-82)

As we saw in Section 4:23 the sphere described by this equation extends out to
infinity and contains an infinite amount of mass. Because the globules we are study-
ing are well confined, we can model them more accurately if we truncate the as-
sumed spherical gas cloud at some radiusRs. To replace the hydrostatic pressure Ps

exerted by the gas stretching fromRs out to infinity, we postulate that there is some
other external pressure, Ps, due to ambient radiation or tenuous, high-temperature
ambient gas, acting on the truncated surface.

We next ask how big and how dense a spherical cloud of temperature T can
be before it collapses under its own gravitational pull. If the density is low and the
temperature high, thermal pressure will prevent the cloud from collapsing. But if we
begin to compress the cloud, keeping its mass M and temperature T constant, the
gravitational pull on its surface layers increases while a counteracting thermal pres-
sure acts to resist this pull. We need to see which of these two ultimately prevails.

The analysis is simplified if we concentrate on a combination of high central
density and low temperature. This choice is most likely to lead to collapse and im-
plies a large value of ξ and a correspondingly simple density distribution given by
equation (9–81).

PROBLEM 9–7. Show that for large values of ξ expressions (9–81) and (4–157)
lead to a density ρ = (kT/2πmGr2). Show also that integration of the expression
on the right of (9–78), out to a radius Rs, at this density, leads to a total mass
M = 2kTRs/mG. In turn, this allows the density to be more simply expressed as

ρ(r) = M/4πRsr
2 (9-83)

for large central densities and low temperatures. Note that, though the density be-
comes infinite at the cloud’s center, the mass within any volume enclosing the center
always remains finite as does the potential.

In this limit the gravitational pull on a volume element at the surface Rs be-
comes −MGρ(Rs)/R2

s = −M2G/4πR5
s, and the thermal pressure amounts to
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Fig. 9.15. The extinction of radiation by the roughly spherical gas cloud Barnard 68 translated
into magnitudes of visual extinction Av. Data points are shown with error bars; the best fit
to produce the observed extinction with an isothermal model of a gas sphere is shown by the
solid line. The theoretical fit closely follows observations to nearly the surface of the globule,
where deviations from sphericity are significant (A�01).

ρ(Rs)kT/m = MkT/4πmR3
s. This clearly shows that gravitation must win out

over a resisting thermal pressure as a cloud of mass M is isothermally compressed
into progressively smaller volumes 4πR3

s.
The point at which gravity wins out can be found by solving equation (9–82).

This is somewhat laborious and permits no analytical solution, but a sphere can be
shown to become unstable at ξs ∼ 6.5 or equivalentlyRs ∼ 6.5(kT/4πρ0mG)1/2

(Bo56). Early work on isothermal gas spheres was done by R. Ebert and W. Bonnor,
and these spheres have come to be known as Bonnor–Ebert spheres (Bo56, Eb55).

The collapse radiusRs depends not only on the temperature and central density,
but — through the value ofm — also on whether the gas is molecular or atomic hy-
drogen. This is not surprising since the thermal pressure of atomic hydrogen is twice
that of the same mass density of molecular hydrogen. Chemical composition plays
such an important role in interstellar processes that we speak of chemodynamics to
indicate the close interdependence of chemical and dynamic processes.

The Bok globule Barnard 68 is an extremely dark molecular cloud. Its den-
sity profile has been probed by observing distant stars whose light has traversed
the cloud to reach us. The cloud’s radial distribution of gas and dust is determined
by measuring the absorption of infrared radiation at several different wavelengths
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as a function of angular distance from the center. Figure 9.15 shows the deduced
absorption profile for the cloud, and the corresponding absorption for an isother-
mal sphere having identical absorption per unit volume and ξ = 6.9 ± 0.2. The
value of ξ suggests that the globule is marginally unstable, and should at some
time collapse to form stars. The cloud lies at a distance of ∼100 pc, has a tem-
perature T ∼ 10 K determined from the relative populations of different excited
levels both of 12CO and ammonia molecules, a central density nH2 = 3.3 × 105

cm−3, and radius Rs ∼ 1.75 × 104 AU. The mass content of the cloud is ∼2M�.
The surface pressure required by the fit to an isothermal distribution is of order
10−11 dyn cm−2, which is in rough agreement with other estimates of the ambient
gas pressure in that part of the Galaxy. The close correspondence of the observed
extinction profile to that of a Bonnor–Ebert sphere suggests that Barnard 68 is an
isothermal pressure-confined, self-gravitating cloud (A�01).

9:16 Polytropes

Although the good fit to Barnard 68 provided by an isothermal cloud of gas and
dust appears convincing, there are many other interstellar clouds, including Bok
globules where conditions may be more complex. In some cases a central isothermal
globule or core may be embedded in a surrounding envelope in which conditions are
adiabatic (Cu00). Turbulent gas clouds permeated by shocks and magnetic fields and
photon-dominated regions at ionization fronts are also likely to adhere to adiabatic
rather than isothermal conditions, as we saw in Section 9:4.

Where adiabatic conditions prevail expressions (4–129) play a central role. To
the extent that the chemical composition of a cloud can critically alter the ratio of
heat capacities, γ, cloud chemistry can again be decisive in determining the stability
conditions of Section 4:22. Turbulent velocities in such clouds play a role similar to
those of thermal velocities and may be assigned a commensurate temperature.

Replacing the volume V in expressions (4–129) by its reciprocal, the density ρ,
leads to

P = Kργ ≡ Kρ(n+1)/n) , (9-84)

where n is a pure number, a characterizing constant called the polytropic index. The
ratio (n+ 1)/n is just the ratio of specific heats γ in (4–125). The polytropic index
n = 3

2
is particularly important since it corresponds to γ = 5

3
, which applies to

regions consisting of atomic hydrogen, molecular hydrogen at low temperatures, or
fully ionized hydrogen. It also applies to nonrelativistic degenerate fermions and,
as discussed in Sections 8:14 and 8:16, to the physics of white dwarfs and neutrons
stars.

We now assume that the density takes the form ρ = λθn , where λ is a con-
stant and θ, called the polytropic temperature, is a function of r. The equation of
hydrostatic equilibrium (9–79) then becomes[(

(n + 1)K
4πG

)
λ−(n−1)/n

]
1
r2

d

dr

(
r2
dθ

dr

)
= −θn . (9-85)
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PROBLEM 9–8. By substitution, show that (9–85) has a solution of the form
θ = Arq, with q = −4 for n = 3

2
. This yields a density proportional to r−6,

which makes both the density and mass infinite at r = 0. This is not a physically
meaningful solution and we therefore need to seek another possibility.

Let us choose a new variable for insertion in (9–85)

ξ =
r

α
, with α =

[(
(n+ 1)K

4πG

)
λ−(n−1)/n

]1/2

. (9-86)

This leads to
1
ξ2

d

dξ

(
ξ2
dθ

dξ

)
= −θn , (9-87)

called the Lane–Emden equation. Note the resemblance of this expression to equa-
tion (9–82), which arose from similar physical considerations but assumed an
isothermal distribution of particle energies rather than adiabatic conditions.

PROBLEM 9–9. By substituting

θ = 1 − 1
6
ξ2 +

n

120
ξ4 − 1

42

(
n2

120
+
n(n− 1)

72

)
ξ6 + . . . (9-88)

into (9–87) show that this expression provides a solution with finite central density,
since θ approaches unity at ξ = 0, and that the proportionality constant λ is just the
central density ρ0. Note resemblances to, and differences from, the solution (4–156)
given in Problem 4–32. With a more precise approximation one can also show that,
for n = 3

2 , θ drops to a first zero at a value of ξ ≡ ξR = 3.65375 (Ch39). We can
consider this to be the radius R of a finite gravitationally bound mass distribution
whose central density is ρ0.

PROBLEM 9–10. By integrating the second of equations (9–78) and substituting
for r and ρ show that the total mass of the aggregate enclosed within radius ξR is

M = −4π
(

5K
8πG

)3/2(
ξ2
dθ

dξ

)]
ξ=ξR

ρ
(3−n)/2n
0 . (9-89)

A detailed computation using the expansion (9–88) shows that for n = 3
2

,
ξ2(dθ/dξ) has a value of 2.71406 at ξ = ξR, so that

MR = −4π
(

5K
8πG

)3/2

(2.71406)ρ1/2
0 . (9-90)



9:17 The Nature of Dark Matter 435

9:17 The Nature of Dark Matter

A wide variety of observations gathered over recent decades have indicated the ex-
istence of dark matter that has, to date, made itself known solely through its gravi-
tational attraction for matter and radiation.

Dark matter appears to dominate the gravitational potential of clusters of galax-
ies. X-ray emitting intracluster gas has such high temperatures that it could not stay
gravitationally bound unless cluster masses were far higher than the detected bary-
onic mass. Similar conclusions arise from observations of the apparently random
velocities of galaxies in a cluster (Sections 3:15 and 4:4) and from the gravitational
time delay and bending of light by galaxies and clusters (Section 5:14).

Large quantities of dark matter are also inferred from the distribution of hot
gases surrounding some elliptical galaxies. These gaseous coronae appear to be
in hydrostatic equilibrium, so equation (8–7) can be applied. Measurement of the
X-ray surface brightness of the gas, taken together with its temperature derived from
its X-ray free–free emission — Bremsstrahlung — tell us both the local gas pressure
and density in an ideal gas approximation. The derived total mass gravitationally at-
tracting this gas is estimated to be from 1 to 5 × 1012M� out to 100 kpc in some
of the best-studied cases (Fa85). These elliptical galaxies appear to have a mass–
luminosity ratio of ∼100M�/L�. The dark matter clearly is far fainter than mass
found in solar-mass stars.

Let us still look at how much of the dark matter may be distributed in a spiral
galaxy’s disk, as compared to its spherical halo.

PROBLEM 9–11. A measure of the disk mass is obtained from the vertical distri-
bution of stars above and below the plane of the Milky Way. Consider stars at height
z above or below the plane and picture the plane as a disk of uniform areal density
σ and radius R. For a disk thin in comparison to the heights z to which the stars
rise, show that the force acting on unit stellar mass located along the disk axis is
(Fig. 9.16)

F (z) = −
∫ R

0

(
2πrσG

(r2 + z2)

)
z

(r2 + z2)1/2
dr = −2πσG for R � z. (9-91)

From this show that for a large disk the scale height is given by

h =
υ2

4πσG
, (9-92)

where υ is a measure of the vertical component of stellar random velocity in the
Galaxy’s plane.

For a galactic disk having mass 1010M�, radius 10 kpc, and hence a uniform
areal density 7 × 10−3 g cm−2, the scale height would be 56 pc for a random ve-
locity component of 10 km s−1. More rigorous calculations and observations of the
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Fig. 9.16. Diagram to illustrate the Galaxy’s scale height for stars passing through the plane.

distribution and velocities of stars in the Galaxy’s disk show that, although the disk
appears to be more massive than can be accounted for by the areal density of stars,
gas and dust, dark matter appears to no more than double the total disk mass (Ba84).
Most of the gravitational mass appears to be in a more spherical halo distribution.

Figure 1.13 shows the rotation curves of two typical spiral galaxies . They re-
flect the apparent existence of gravitating mass not accounted for either in luminous
matter — stars — or as gas and dust. The rotational velocities υ(r) lie in the range
150 to 300 km s−1 and remain nearly constant out to large radii r from a galaxy’s
center. Faint traces of gas in a galaxy’s disk, orbiting at far larger radii than normally
associated with the visible mass, still show the mass M(r) enclosed within a radius
r to still be rising.

If the velocities are Keplerian and truly constant, equation (3–44) would imply
that the gravitational mass M(r) enclosed within a radius r from a galaxy’s center
is proportional to r,

M(r) =
[v(r)]2r
G

. (9-93)

The observed velocities imply a gravitational mass M(r) considerably in excess of
the mass of observed stars or interstellar gas and dust. For a spherical mass distri-
bution throughout the galaxy we have

M(r) = 4π
∫ r

0

ρ(r)r2dr =
[υ(r)]2r
G

, ρ(r) =
[υ(r)]2

4πGr2
, (9-94)

implying that the density drops as 1/r2. Although this derived density profile suf-
fices for present purposes, a rather better radial fit is presented in Section 13:23.

A number of explanations for the discrepancy between the mass of observed
stars, gas, and dust and the derived gravitational mass have been postulated:

1. The most radical suggestion is that general relativity does not correctly rep-
resent the laws of gravitation on scales exceeding ∼1021 cm. Mordehai Milgrom
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has for many years championed a modified Newtonian dynamics (MOND) that de-
scribes the observed dynamics without assuming the existence of unobserved mass
(Mi95a). Though we might ultimately be driven to such a new dynamics, it could
require a massive re-examination of all of astrophysics. Giving up general relativity,
our best current theory of gravitation, would be a drastic step. Most astronomers
have preferred to look at other alternatives.

2. Cool stars, particularly low-mass brown dwarfs were long considered possible
candidates for dark matter, but the Massive Compact Halo Object (MACHO) survey,
that searches for gravitationally lensed background objects rules these out. As Fig.
5.14 shows, distant stars and quasars occasionally are observed to suddenly flare up
for a period of days, as they pass behind a faint foreground star or planet. Although
an appreciable number of such lensing phenomena have been observed, the survey
has all but ruled out that sufficient dark matter to account for the dominant gravita-
tional mass of the Galaxy’s halo could be found in objects with masses in the range

∼> 3 × 10−8M� (A�96, Yo04). The observed amount of infrared radiation due to
stars in the mass range 0.1M� can also account for only ∼3% of the halo’s mass.
Stars of even greater mass are also ruled out because, unless they were faint white
dwarfs or neutron stars, they would easily have been detected by now through their
optical and near-infrared emission (Bo95).

3. Neither can the dark matter be baryonic, as we will see in Section 12:13, and
in Fig. 12.5; otherwise the amount of 4He and 7Li formed in the first few minutes
of cosmic evolution would have been higher than observed. The helium content of
the Universe is quite sensitive to the total density of baryons at that time.

Neutrinos also appear ruled out, because they are fermions with too low a rest–
mass. Current laboratory experiments place an upper limit of a few electron volts
and possibly ∼<0.5 eV on the mass of the electron neutrino (No97). Upper limits
to neutrino masses derived from microwave background polarization measurements
suggest masses ≤0.23 eV (Sp03). To contribute a significant amount of mass to
a galaxy, the density of each of the three neutrino species and their antiparticles,
all of whose rest–masses are expected to be close to equal, would have to be of
order ρν ∼ 2 × 10−25 g cm−3 . A rest–mass mν then implies a number density
nν = ρν/mν . But by equation (7–1) the neutrino momenta would then have to be

mνυν ∼> n
1/3
ν � and

mν ∼> [�ρ1/3
ν /υν ]3/4 . (9-95)

To keep the neutrino velocities below escape velocity from the galaxy, υ ∼ 500 km
s−1, their masses would have to be ∼> 6 × 10−33 g ∼ 3.5 eV, which appears to be
observationally ruled out.

4. Primordial black holes discussed in Section 5:24 can also be largely ruled out
as a dominant source of dark matter. They have been searched for by the gravita-
tional lensing they might produce, and are ruled out by the MACHO surveys within
the same mass limits placed on planetary and stellar masses. Black holes of very
low mass can also be ruled out. As discussed in Section 5:24, if their masses were
well below 1015 g they would by now have exploded. Nevertheless, the existence
of dark matter in the form of well-isolated primordial black holes in the mass range
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1015 g ∼< M ∼<6 × 1025 g cannot yet be ruled out. Larger masses than this would
presumably lead to noticeable disruption of globular clusters and molecular clouds.

5. A variety of exotic weakly interacting massive particles, WIMPS, could also
account for the missing mass. Physicists interested in fundamental particles have
taken an especial interest in these, and active searches for them are under way in sev-
eral laboratories (Wa97). Among them are axions of masses 10−6 to 10−7 eV and
a neutralino of mass 10 to 1000 GeV predicted by some supersymmetric theories
(Tu97). Whatever the nature of the dark matter particles, they cannot be relativistic.
Their velocities υ must be sufficiently low for them to remain gravitationally bound
to a galaxy. In this sense they are cold, and we speak of cold cark matter, often
referred to by the initials CDM.

Additional Problems

9–12. The solar wind is produced by the high temperature ∼2 × 106 K of the solar
corona. The wind velocities, which are ∼400 km s−1, are higher than the thermal
velocities of protons ∼130 km s−1 in ionized hydrogen at that temperature. Show
that this difference can be partly accounted for because randomly directed velocities
in a confined gas all become projected onto a radial direction when the gas freely
expands into a much larger volume where collisions between particles no longer
are important. A similar process probably plays a role in all stellar winds. Assume
equipartition of energy among protons, electrons, and magnetic fields in the corona.

9–13. In a comet, ionized gas is propelled into a straight tail pointing away from
the Sun. Molecules such as CO, initially in the comet’s head, suffer charge ex-
change with protons of the solar wind. In this process, which has a high cross-section
∼ 10−15 cm2, an electron is transferred from the CO molecule to the proton. The
newly formed CO+ ion is now swept along by the magnetic field embedded in the
solar wind. The magnetic field is predominantly transverse to the wind direction. If
the solar wind velocity is 400 km s−1 compute the velocity of ions in the comet’s tail
if roughly 10% of the protons on any given magnetic line of force undergo charge
exchange.

Answers to Selected Problems

9–1. By (4–124), cυ = R/(γ−1). The ideal gas law for unit mass states T = P/Rρ.
This gives the result (9–30).

9–2. Because u � cs, we can write

υD =
1
3

(
−2u+ 2u

√
1 +

9c2s
4u2

)
∼ 2u

3

(
−1 + 1 +

9c2s
8u2

)
.
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9–3. Table 9.4 shows a collision mean free path of order 20 g cm−2, which for an
interstellar matter density of 10−23 g cm−3 gives a path of order 2 × 1024 cm and a
life of ∼6 × 1013 s.

...
dE
dt

∼ 1.6× 10−14 E s−1.

The loss rates in Table 9.3(b) are of order 10−6Z2 eV s−1, so that collisional losses
dominate for all nuclei with energies in excess of ∼ 109 eV.

9–4. For electrons typical losses from Table 9.3(a), for the most significant part
of the energy range covered in Fig. 9.8, are 10−6 eV s−1. At ∼108 eV the life is
∼1014 s. Taken together with the result of Problem 9–3, this indicates a cosmic-ray
energy loss to the interstellar medium of 10−12 erg cm−3/1014 s or
10−26 erg cm−3 s−1.

If integrated over a gas-containing volume of 1066 cm3 in the Galaxy, this would
indicate an eventual radiation loss of order 1040 erg s−1. The total luminosity of the
Galaxy is 103 to 104 times higher; but only about 10% of this luminosity may con-
tribute to heating the interstellar medium; and in the darkest clouds, where radiation
does not readily penetrate, cosmic-ray heating is the dominant factor.

9–5. Our assumption is that nHRaν = 1. Because most atoms are in the lowest
state, we use aνo ∼ 6.3× 10−18 cm2 so that

R ∼ 1.6× 1017

nH
cm .

In actuality, the ionization cross-section drops as aν ∼ aνo(ν/νo)3 for ν > νo,
which lengthens the mean free path for higher-energy ionizing photons.

(a) For Ly-α, the oscillator strength f cited in Table 9.2 is 0.436 so that

σ ∼ 3λ2f

2π
∼ 3 × 10−11 cm2.

This would give an absorption distance

1
σnH

∼ 3 × 1010

nH
cm ∼ 2 × 10−7R.

However:
(b) A Doppler shift away from the central absorption frequency reduces the

ability of an atom to absorb radiation. The mean absorption cross-section therefore
is (cγ)2σmax/16π2ν2〈υ2〉 and, for 〈v2〉1/2 = 30 km s−1, the mean free path is

∼ 16π2ν2〈υ2〉
(cγ)2σmaxnH

∼ 16π2〈υ2〉
(λ)2(25λ4)−1(3λ2/2π)fnH

∼ 7.4 × 1016

nH
cm.

where σmax is the cross-section at line center.
(c) To move a frequency interval nγ off line center, in random walk steps of

frequency shift ∆ν , would require N = (nγ/∆ν)2 steps (see equation (4-11)).
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9–6. For a gas at T ∼ 100 K, kT ∼ 1.4 × 10−14 erg, and the grain that has mo-
ment of inertia I ∼ 10−26 g cm2 has ω ∼ 106 rad s−1 to make kT ∼ Iω2 . The
angular momentum L ∼ Iω therefore has a thermal equilibrium value that is also
L ∼ 10−20 g cm2 s−1. This is no coincidence. The “random” angular momentum
acquired in N = M/m collisions becomes the “systematic” angular momentum to
be altered by the next generation of N collisions. These collisions endow the grain
with a random angular momentum of the same magnitude as its initial value but
oriented in some other arbitrary direction.

9–7. The two expressions in (9–81) give

4πGmρor
2

kT
=

4πGmρeψr2

kT
= ξ2 .

Taking logarithms of both sides and using (4–157) gives

ln(4πGmρr2/kT ) + ψ = ψ + ln 2

or ρ = kT/2πGmr2. This leads to M(Rs) = 2kTRs/Gm and ρ = M/(4πRsr
2).

9–11. The force per unit mass integrated over the whole disk is

F (z) = −
∫ R

0

(
2πrσG
r2 + z2

)(
z

(r2 + z2)1/2

)
dr =

2πσzG
R

− 2πσG ,

where the first term in parentheses is the force along the direction to a particular
surface element and the second term in parentheses provides the component per-
pendicular to the plane. For R � z this gives the desired result on integration. For
a large disk the force changes only along a direction perpendicular to the plane near
the disk axis and is −2πσGz. The height h = (υ2/2)/(2πσG) is the distance from
the plane to which stars or gas clouds with kinetic energy per unit mass υ2/2 can
rise against this force.

9–12. The total energy per proton in the corona is 3kT/2. Because of the magnetic
field, protons and electrons will be moving together in the solar wind expansion
and the energy of random motion can be transferred into expansion velocity. The
total magnetic energy can also decrease, at the expense of particle velocity, because
B ∝ r−2 and the energy that is proportional to B2r3 will be proportional to r−1.
The three sources of coronal energy — protons, electrons, and magnetic fields —
provide an energy of 9kT/2 for each hydrogenic mass mH streaming away from
the Sun. For a coronal temperature T = 2 × 106 K, we have υ ∼ (9kT/mH)1/2 ∼
4× 107 cm s−1.

9–13. If 10% of the protons undergo charge exchange, then the momentum carried
by the others must be shared with the captured CO+ ions. These are 28 times as mas-
sive as a proton. Very little momentum is transferred by the proton that exchanges
charge so that only the remaining protons supply momentum. This brings about a
velocity reduction to a fraction nMH/[(n− 1)mH +MCO ] ∼ 0.27 of the original
solar wind velocity. For an initial velocity of 400 km s−1 for protons, the final ion
velocities would be ∼100 km s−1.
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11:1 Questions About the Universe

In preceding chapters we discussed the appearance of stars and stellar systems and
we looked in some detail at the immediate surroundings of the Sun, the one star to
which we have easy access. Now, we want to examine the environment in which
the Sun, the stars, and the stellar systems are embedded. We want to learn about the
properties of the Universe.

The first questions we would impulsively ask are:

(1) What is the shape of the Universe?
(2) How big is it?
(3) How long has it existed?
(4) What are its contents?

While these are some of the most basic questions to ask, obtaining the requisite
data remains difficult. As a result, we still have no more than partial answers.

We can take two approaches to make headway. The first is the observational ap-
proach. We attempt to observe what the Universe is “really” like. The other approach
is synthetic. We construct hypothetical models of the Universe and see how the ob-
servations fit them. This second procedure might at first glance seem superfluous. It
might seem that all we need are observations; but this is not so.

Any observation has to be interpreted, meaning that it needs to be understood
within the framework of theory, even if that theory consists of nothing more than
the prejudices that constitute common sense. Common sense itself implies a model.
It is three-dimensional; time measurements can be completely divorced from dis-
tance measurements; bodies obey the Newtonian laws of motion; there are laws of
conservation of energy and of momentum. Though common sense is quite useful at
times, it can lead to great misconceptions if uncritically applied.

11:2 Isotropy and Homogeneity of the Universe

If we look out into the Universe as far as the best available telescopes allow, we
find that no matter which direction we look, essentially the same picture presents
itself. We find roughly the same kind and number of galaxies at a given distance in
all directions. There may be statistical variations but they appear to be random. The
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general coloration of galaxies is also the same independent of direction. The only
systematic color differences we detect are those associated with distance, but the
universal red shift of the spectra of distant galaxies does not appear to change from
one part of the sky to another.

Strictly speaking, all this is true only when we look at fields of view outside the
plane of our own Galaxy. The Milky Way absorbs light so strongly that we always
have to make allowances for its presence.

Independence of direction is called isotropy. As far as we can tell, the Universe
is isotropic. There are no indications of any preferred directions, except for the flow
of time to be discussed in Section 11:18.

Next we take into account all those effects associated with distance. We ask
ourselves whether conditions at large distances from us appear to be different from
those nearby. Is the universal red shift the only effect we see, or are there other
distance-dependent factors? If the red shift indeed were the only effect, then we
could postulate an expanding model to explain all observations. The red shift would
be taken to be a Doppler shift caused by the recession of distant galaxies. We would
imply that if it were not for this cosmic expansion, distant parts of the Universe
would appear identical to our local environment. In such a model no structural dif-
ferences would exist in different parts of the Universe and the Cosmos would appear
to be homogeneous.

But this is not what we observe. Galaxies detected at large distances appear quite
different from those nearby because the Universe is very large and the information
conveyed by means of light signals sometimes takes billions of years to reach us. A
distant galaxy we view today appears not as it would to a local observer stationed
near that galaxy, but rather as it would have looked to such an observer many æons
ago when the galaxy was younger. So, we must expect that distant galaxies will
appear progressively younger the farther away we look. Quasars also are found to
be most prevalent at a distance of 10 – 12 billion light years, as Fig. 11.1 shows.

Does this mean that the Universe is inhomogeneous?
Not necessarily! And this is the place where theoretical models begin to be-

come important. We have to consider the possible existence of two entirely different
models, an evolving model and a self-regenerating model. These models will have
different histories.

In most evolving models, matter initially is quite evenly distributed. At some
more or less narrowly defined stage, however, matter aggregates to form galaxies.
These recede from each other in a cosmic expansion observed as a red shift. In this
model more distant galaxies should consistently appear younger. We conclude that
the distant galaxies should at least appear “different” from those nearby. If some
such difference could be firmly established we would have strong evidence in sup-
port of an evolving Universe.

A self-regenerating model takes a different view. Such a universe maintains ex-
actly the same appearance at all epochs and for all time. Such models take two quite
different forms. Historically, the first of these was the steady state universe. It pic-
tured distant galaxies streaming away from us. But any depletion due to the cosmic
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Fig. 11.1. The distribution of quasars across the sky appears to be independent of direction,
indicating that the Universe is isotropic. But we observe few quasars close by. At increasing
red shifts, their numbers first rise and then decline. Although this might seem an indication of
cosmic inhomogeneity, a more detailed analysis reveals that the Universe indeed is homoge-
neous but that it is evolving: The population of quasars peaked at an epoch corresponding to
red shift z ∼ 2, and thereafter declined. Courtesy of Scott Croom, Brian Boyle and the 2dF
QSO Redshift Survey (Cr05).

expansion was replenished through the creation of new matter to form a replacing
generation of galaxies. The density of the Universe was thus kept constant. The
assortment of galaxies in a given volume remained statistically identical at epochs
separated by many æons. There would always be a mixture of young and old galax-
ies occupying any given volume and the ratio of these galaxies would also remain
constant. It did not matter whether we viewed a distant region today, or several
æons from now. The Universe would always look roughly identical even though the
individual galaxies occupying a given region would no longer be the same.

In a more recent version of such a theory, the currently observed evolutionary
phase of the Universe is preceded by a period of rapid inflation in which the Universe
expands at an exponential rate, regenerating itself until its radius has expanded by a
factor of order 1025, all the time maintaining a steady temperature and density.

The remote future of the Universe also appears to be self-regenerating. The dis-
covery that the energy density of the Cosmos is now dominated by a dark energy
of unknown origin suggests that the Universe will forever continue to expand at an
exponential pace, regenerating its dark energy all the time. While the nature and
consequences of inflation are still being studied, and the sources of dark energy are
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a topic of strong current interest, finding new tests for distinguishing different cos-
mological models remains of the greatest importance. Let us see what these entail.

11:3 Cosmological Principle

Some postulates about the Universe have to be granted before any theory can be
developed. These postulates or axioms must then be shown not only to be internally
consistent, but also to be borne out by observational consequences.

A particularly demanding postulate is the perfect cosmological principle. This
principle predicted that for any observer located at an arbitrary position, at an arbi-
trary time in the history of the Universe, the Cosmos will present exactly the same
aspect as that observed by an observer at some other location at the same or even
at some completely different epoch. This principle led to the development of the
steady state model. This has since been discarded because it failed to account for
several observations. The first is the cosmic microwave background radiation ex-
hibiting a blackbody spectrum; no mechanism has been found by which a universe,
with as low a density for all time as that observed today, can maintain and replen-
ish a ubiquitous blackbody radiation bath. The second is a high population of small
galaxies and a low fraction of large galaxies observed at high red shifts. A third is
the prevalence of quasars at red shifts z ∼ 2, seen in Figure 11.1.

A more modest postulate than the perfect cosmological principle is the simpler
cosmological principle (Bo52). Its main hypothesis is that our position in space and
time is not unusual. Hence our local physics, and our locally made observations of
the Universe should not markedly differ from those made by other observers located
in different regions of the Universe. This means that the Universe is homogeneous
at any given epoch, but may evolve from one epoch to another. In contrast to the
perfect cosmological principle, the cosmological principle does appear to hold true.

Both of these principles are extensions of the Copernican hypothesis that we
should in no way consider ourselves favored observers. Though it applies only in a
statistical sense, since one galaxy obviously looks different from its neighbors, the
cosmological principle is useful when used in conjunction with a number of simple
abstract concepts.

The first of these is that of a substratum. The substratum in any cosmic model
is a matrix of geometrical points all of which move in the idealized way re-
quired by the model. Real galaxies have random velocities, but we would expect
their mean motions to be zero with respect to the substratum. We might also ex-
pect that the 2.73 K microwave background radiation would appear isotropic to
an observer at rest in the substratum. A state of rest relative to the substratum
can therefore be determined in a number of practical ways and plays a funda-
mental role in cosmology. We call a particle at rest in the substratum a funda-
mental particle and an observer who is similarly stationary a fundamental ob-
server.

The watch carried by a fundamental observer measures proper time, which gen-
erally differs from time registered by clocks in motion relative to the substratum.



11:4 Homogeneous Isotropic Models of the Universe 481

The proper time of a fundamental observer can be considered to define a world time
scale that could be used by all fundamental observers comparing measurements.
For example, in describing the evolution of a cosmic model we normally think of
a world map that describes the appearance of the Universe at one particular world
time. In contrast, we can also think of a world picture that is just the aspect the
Universe presents to a particular fundamental observer at any given time. To see the
difference between these concepts, we note that all galaxies are at rest in a world
map, but the map may be expanding. On the other hand, in a world picture, distant
galaxies would appear to recede from the observer — at least at the present epoch.

11:4 Homogeneous Isotropic Models of the Universe

Observations made to date do not indicate that there are any preferred directions or
unusually dense regions in the Universe. The data are compatible with a homoge-
neous isotropic model of the Universe, that is, a universe in which there are no select
locations or directions. An observer placed at any location in the Universe would see
distant galaxies red-shifted, in apparent recession, no matter what direction he chose
to observe.

In order to construct a model of such a universe, we assume that the red shift
indicates a genuine expansion. This assumption has become entrenched in cosmol-
ogy, primarily through default. When the red shift was first discovered, a number
of explanations were advanced. One by one the competing hypotheses have been
eliminated — found incompatible with observations, or unlikely on other grounds.
The expansion of the Universe is the only hypothesis that has survived all tests and
now is accepted as the actual cause of the red shift.

We can visualize a universe in which an observer O′ at any point sees all other
observers in distant galaxies receding from her. A simple model in two dimensions
consists of a rubber sheet (Fig. 11.2). Let spots be painted on this sheet in some
random manner. If the sheet is now stretched in length L and width W , by fixed
amounts of αL and αW , respectively, then all distances are increased by a fractional
amount α. If the spots on the sheet represent galaxies, then a galaxy that initially
was at some distance r = (x2 +y2)1/2 from a given galaxy, will later be at distance
(1+α)r = {[(1+α)x]2+[(1+α)y]2}1/2, where x and y are Cartesian coordinates
along the directions L and W .

A flat rubber sheet is not the only two-dimensional model for an expanding
homogeneous isotropic universe. Take a rubber balloon and paint spots on it to
represent galaxies. At a given instant let the radius of the balloon be a. Let the
angle subtended by two galaxies at the center of the balloon be χ. The distance be-
tween galaxies measured along the surface is the arc length aχ. If the balloon is
expanded the angle χ remains constant, but the radius increases to some new value,
say a′ = (1 + β)a, where β is the fractional increase in the radius. The distance
between galaxies is now (1 + β)aχ, and the fractional increase is independent of χ.
This means that if the Universe is homogeneous and isotropic at a given instant an
isotropic expansion will keep it that way.
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Fig. 11.2. (a) Expansion in a flat universe; (b) Expansion in a curved universe.

If the time rate of change of β is β̇, the recession velocity between the two galax-
ies is aβ̇χ, which increases linearly with angle χ. Dividing the recession velocity
by the distance, we obtain the ratio aβ̇χ/aχ = β̇. We talk about a linear distance–
velocity relation because, for increasing separation, the recession velocity increases
in proportion to the separating distance.

A sphere of radius a is described by the equation

x2
1 + x2

2 + x2
3 = a2, (11-1)

where x1, x2, x3 are three mutually orthogonal Cartesian coordinates. An element
of length dl on the sphere is given by

dl2 = dx2
1 + dx2

2 + dx2
3. (11-2)

Eliminating the coordinate x3 by means of equation (11–1), we find

dl2 = dx2
1 + dx2

2 +
(x1 dx1 + x2 dx2)2

a2 − x2
1 − x2

2

. (11-3)

In terms of spherical polar coordinates, we can write dl2 as

dl2 = a2(dθ2 + sin2 θ dφ2) . (11-4)

We can repeat this procedure for a four-dimensional sphere in an exactly
analogous way. Here we do not deal with a two-dimensional surface or a three-
dimensional space. Rather, we work with a space showing isotropy and homogene-
ity in three dimensions; and analogously to the three-dimensional approach of equa-
tions (11–1) to (11–4), we want to investigate the properties of a three-dimensional
hypersurface on a four-dimensional hypersphere. Problem 11–1 will show that the
relation corresponding to equation (11–4) then has the form
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dl2 = a2[dχ2 + sin2 χ(sin2 θ dφ2 + dθ2)]. (11-5)

PROBLEM 11–1. Show how relation (11–5) is obtained by starting with an equa-
tion for a hypersphere

x2
1 + x2

2 + x2
3 + x2

4 = a2. (11-6)

Continue by showing that in terms of three-dimensional polar coordinates, we have

dl2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 +
(r dr)2

a2 − r2
. (11-7)

Then substitute the new variable

r = a sinχ. (11-8)

Consider a sphere of radius R in a conventional three-dimensional space. On
a two-dimensional spherical surface the distance along the sphere is given by Rθ.
A circle about θ = 0 on this surface has length 2πR sin θ. At increasing distance
from the origin the size of the circle increases to a maximum value 2πR at a dis-
tance πR/2. After that it decreases and shrinks to a geometric point at the antipodal
position — at distance πR.

PROBLEM 11–2. Show that on a four-dimensional hypersphere:
(i) The ratio of the circumference of a circle to its radius is less than 2π.
(ii) The surface area of a sphere is

S = 4πa2 sin2 χ. (11-9)

(iii) As the angle χ increases the sphere grows and the surface of the sphere
increases reaching a maximum value 4πa2 at distance πa/2 before shrinking to a
point at distance πa. Show that the element (11–5) defines the total volume

V =
∫ 2π

0

∫ π

0

∫ π

0

a3 sin2 χ sin θ dχ dθ dφ. (11-10)

so that
V = 2π2a3 . (11-11)

We can denote a parameter

λ ≡ k

a2
where k = 0,±1 (11-12)

that defines the curvature of a space. The curvature of cosmological models is de-
fined by the Riemann curvature constant k that can only assume values +1, 0, or
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−1, respectively, describing universes of positive, zero, and negative curvature. The
constant k denotes the algebraic sign of the parameter λ of equation (11–12).

When the radius of curvature is infinite, k = 0, λ = 0, and the space has zero
curvature. Such a space is said to be flat or Euclidean. When λ > 0, the space
has positive curvature. We can also define spaces of negative curvature for which
k = −1, λ < 0 if, as in (11–13) below, we replace the right side of (11–6) by −a2.
Note that the two two-dimensional universes described earlier have different curva-
ture constants. The sheet model is Euclidean; the balloon has positive curvature.

PROBLEM 11–3. In a space of negative curvature, a hyperbolic space, sometimes
called a pseudospherical space:

x2
1 + x2

2 + x2
3 + x2

4 = −a2, (11-13)

where a is real.
(i) Show that

dl2 = r2(sin2 θ dφ2 + dθ2) + (1 + r2/a2)−1 dr2, (11-14)

where r can have values from 0 to ∞.
(ii) Defining r = a sinhχ (where χ goes from 0 to ∞)

dl2 = a2{dχ2 + sinh2 χ(sin2 θ dφ2 + dθ2)}. (11-15)

Show that the ratio of the circumference of a circle to its radius is greater than 2π.
(iii) Show that the surface of a sphere is

S = 4πa2 sinh2 χ (11-16)

which increases without limit.
(iv) The volume of the space is

V =
∫ 2π

0

∫ π

0

∫ ∞

0

a3 sinh2 χ sin θ dχ dθ dφ (11-17)

which is infinite.

To summarize, we note that a space of positive curvature has a finite volume
and is closed. Increasing χ beyond a value π returns us to a region already defined
by χ values between 0 and π. The volume of a closed space is finite and given by
equation (11–11). The space of negative curvature is open. The volume of an open
space is infinite.

A self-replicating inflationary universe can exist only in a flat space. In a curved
expanding space the radius of curvature progressively increases, so that the universe
is not precisely replicating itself. A rapid inflationary phase is still possible in a
curved universe, but the cosmos then cannot be strictly self-replicating.



11:5 Olbers’s Paradox 485

In our balloon model of a universe, a galaxy close to an observer subtends a large
angular diameter. Were this galaxy moved to increasing distances it would subtend
progressively smaller angular diameters until a minimum value was reached at a
distance πa/2, where a is the radius of curvature of the balloon. Beyond this dis-
tance the angular diameter of the galaxy once again would increase until it reached
a maximum value of 2π when seen at the antipodal point of the balloon — that is,
at a distance πa. An observer could then look in any direction he pleased and see
the galaxy at one and the same distance from him. In exact analogy similar features
characterize three-dimensional hypersurfaces. Figure 11.3 illustrates these effects.

Fig. 11.3. (a) Distance–angular–diameter relation in a flat space. (b) Distance–angular–
diameter relation on the surface of a three-sphere.

Attempts to detect a positive curvature, by searching for a minimum angular
diameter of distant galaxies, are made difficult by the finding that galaxies evolve,
and that small galaxies, in the course of time, merge to form larger galaxies.

11:5 Olbers’s Paradox

Consider a Euclidean space uniformly filled with stars. The amount of starlight emit-
ted in a shell at distance r to r+ dr from an observer is proportional to the volume,
4πr2 dr. A fraction proportional to 1/r2 is incident on the observer’s telescope.
From each spherical shell of thickness dr the observer therefore receives an amount
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of light proportional to dr alone. On integrating out to infinite distance, the light
received by the observer should have infinite brightness. This infinity arises only
because we have not taken into account the self-shadowing of stars. A foreground
star will prevent an observer from seeing a star in a more distant shell, provided both
stars lie along the same line of sight. When shadowing is taken into account we find
that the sky should only be as bright as the surface of a typical star, not infinitely
bright. Of course, that still is much brighter than the night sky.

To someone who strongly believed in Euclidean space and in the infinite size and
age of the Universe this would appear paradoxical. Wilhelm Olbers, who advanced
this argument in 1826, saw that such a cosmological view could not be held.

If we try to circumvent the argument by introducing curved space, no advance
can be made. In such a space the area of a sphere drawn about an observer is of
the form of equations (11–9) or (11–16) — the surface area S = 4πa2σ2(χ) is
a function of distance χ alone. The number of stars in a spherical shell is propor-
tional to S(χ) dχ. But the amount of light reaching the observer from that shell is
also reduced by a factor S(χ). These two factors cancel to give the same distance
independence obtained for a flat space.

We could next argue that interstellar dust might absorb the light. But in an in-
finitely old universe dust would come into radiative equilibrium with stars and would
emit as much light as was absorbed. The dust would then either emit as brightly as
the stars, or else it would evaporate into a gas that either transmitted light or else
again emitted as brightly as the stars.

The paradox can only be resolved if at least one of three possibilities applies
(Bo52), (Ha65):

(a) The Universe is very young. Stars have not been shining for very long; light
from great distances could not yet have reached us.

(b) The constants of physics vary with time. Because these constants affect the
rate at which stars emit light, it could be that stars only started shining brightly in
recent times.

(c) There are large recessional velocities of stars at great distances. Their spectral
shifts and apparently diminished luminosity lead to a lower sky brightness.

The correct resolution to Olbers’s paradox appears to be that stars are too sparse
in the Universe, with a stellar density of only 1010 Mpc−3, and that they shine for too
short a time, only about t = 1010 yr. Each star can then be thought of as occupying
a volume V0 = 3 × 1063 cm3. If the star’s surface area is σ = 1023 cm2 and it
radiates for time t ∼ 15 Gyr, roughly the age of the Universe, it could only fill a
volume Vs = cσt = 1051 cm3 without diluting the radiation leaving its surface.
Since Vs/V0 = 3 × 10−13, we see that when the radiation of all stars is diluted to
fill the entire Universe, the radiation density and hence the surface brightness of the
sky is diminished by a factor of 3 × 1012 when compared to the surface brightness
of a typical star. Doppler shifts and diminished intensity due to the expansion of the
Universe are relatively minor factors (We87). The darkness of the sky is largely due
to the low density of stars, their youth, and their finite energy resources.
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11:6 Measuring the Geometric Properties of the Universe

It is possible, at least in principle, to determine the size and curvature of the Universe
on the basis of astronomical observations (Ro55)*, (Ro68)*. Let us examine the
simplest relationships between directly observed quantities and the more abstract
geometrical properties of a homogeneous, isotropic universe. The greatest asset of
such relations is an independence of the specific dynamics — potentially governed
by general relativity — used to describe cosmic expansion and evolution. In effect,
we can obtain a geometric description of the Universe as it appears at the present
world time, without needing to make assumptions about how the Universe evolved
before reaching its present state or how it will evolve in the future. This approach,
though greatly simplified, can yield substantial information.

Consistent with the spaces discussed in Section 11:4, one can show, on group-
theoretical grounds (Ro33, Wa34), that the most general metric describing ho-
mogeneous isotropic spaces is the Robertson–Walker metric — often called the
Friedmann–Robertson–Walker, FRW metric, after three early pioneers of cosmol-
ogy. Here

ds2 = c2 dt2−dl2 with dl2 = a2(t){dχ2+σ2(χ)[dθ2+sin2 θ dφ2]} , (11-18)

where dl2 is the metric of a three-dimensional homogeneous, isotropic space. The
function σ(χ) has the form sinχ, χ, or sinhχ, depending on whether the Riemann
curvature constant of the three-space is k = 1, 0, or −1. The comoving coordinate
interval dχ remains unchanged in a pure expansion or contraction of the scale factor
a(t). For positively curved universes, k = +1 and the scale factor can be taken to be
the radius of curvature of the universe. For k = 0 or −1 universes, the scale factor
has no absolute length and serves mainly to compare the dimensions of the universe
at different epochs.

In this notation:

(a) The world line of a stationary galaxy is a curve, with χ, θ, and φ constant.
Along this curve ds measures the world time interval dt (Section 11:3 and Fig.
11.4).

(b) The world line of any light signal is a null geodesic, meaning that it is char-
acterized by ds = 0.

(c) If we choose a specific world time — t = constant, dt = 0 — we can
measure spatial distances within the Universe with the aid of the metric −ds2. The
curvature of the Universe k/a2 will then be fully determined if we can ascertain
the value of k and of a(t). To this end, consider a world diagram representing an
observer O located at (χ, θ, φ) = (0, 0, 0) and a galaxy at (χ0, θ0, φ0) = constant.
As a(t) changes with time, a constant interval dχ, in the three-space (11–18) will
lead to a changing value of ds2 − c2 dt2. In particular, for a light beam traveling
from an event occurring at world time t1 to reach an observer at world time t0, (Fig.
11.4) we can set ds = 0, and then the equations (11–18) reduce to cdt = a(t)dχ.
Integration along a fixed line of sight (θ, φ) then leads to
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Fig. 11.4. Relation between galaxy and observer (after H. P. Robertson (Ro55)). Courtesy of
the Publications of the Astronomical Society of the Pacific.

∫ t0

t1

c dt

a(t)
= χ(t1, t0) . (11-19)

This is the relation between distance parameter χ, often also called the comoving
distance,χ, and the span of world time (t1−t0). We can also define a proper distance
which, in an expanding universe at time t, is defined as the distance between the
observer and the emitting source along a surface of constant proper time dt = 0.
Then ds = a(t)dχ, which integrates to

proper distance D(t) = a(t)χ . (11-20)

In the limit of infinitesimal time intervals, we also define a

conformal time increment dτ ≡ dt/a(t) = dχ/c , (11-21)

where dt is a proper time interval.
The use of comoving and conformal coordinates places space and time on the

same footing, rendering them unaffected by a change solely in scale factor a(t).
We will keep referring to a comoving distance or a distance parameter here

instead of a distance because it is not quite clear just what we would like to call
“distance.” We will see further on, in equation (11–34), that the apparent luminosity
of distant objects makes the quantity a(t0)σ(χ)(1 + z) another useful measure of
distance. Here z is a measure of the red shift defined by equation (11–23), below.
We discuss this here only because it is annoying not to have an exact analogue to
all the concepts we normally like to attribute to distance. However, in the more
general mathematical spaces that are useful in cosmology, we do not have all these
properties embodied in a single parameter.
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If the light emitted in a time interval t1 to t1 + dt1 is received between times t0
and t0 + dt0, and the frequency of the emitted signal is ν1 while that of the received
signal is ν0, then

ν0 dt0 = ν1 dt1 (11-22)

because the total number of oscillations in the wave is conserved during propaga-
tion. In terms of wavelength λ = c/ν , we have

z ≡ λ0 − λ1

λ1
=
dt0
dt1

− 1 =
a(t0)
a(t1)

− 1. (11-23)

Equation (11–23) defines the measured red-shift parameter z for radiation emit-
ted at time t1. Note that λ, along with all other physical measures of length, stays
proportional to the scale factor a.

PROBLEM 11–4. Equation (11–23) is not yet in a useful form because we do not
know how a(t) varies with time. However, if we make the assumption that a(t)
varies regularly, so that a Taylor expansion may be used to determine a(t1) in terms
of derivatives of a(t0), show that

z =
(
ȧ0

a0

)
(t0 − t1) +

1
2

[
2 − ä0a0

ȧ2
0

](
ȧ0

a0

)2

(t0 − t1)2

+
1
6

[
6 − 6

a0ä0

ȧ2
0

+
...
a0

a0

](
ȧ0

a0

)3

(t0 − t1)3 + · · · , (11-24)

where ȧ0, ä0, and
...
a0 are the first, second, and third time derivatives of a(t) evaluated

at t0, the time of observation.

Similarly expanding a(t), the scale factor at some arbitrary time, as a Taylor
series around t0, we obtain

a(t) = a0[1 + ȧ0(t − t0) +
1
2
ä0(t− t0)2 +

1
3!
...
a0(t− t0)3 + · · ·] . (11-25)

This can be rewritten in terms of three quantities, the Hubble constant, which defines
the rate of expansion,

H(t) ≡ ȧ(t)
a(t)

, H0 ≡ ȧ0

a0
, (11-26)

the deceleration parameter, a negative acceleration rate,

q(t) ≡ −aä
ȧ2

, q0 ≡ −a0ä0

ȧ2
0

= − ä0

a0

1
H2

0

, (11-27)

and jerk, the rate at which the acceleration changes,
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j(t) ≡
...
a

a

(a
ȧ

)3

, j0 =
...
a0

a0

(
1
H0

)3

. (11-28)

In each of the expressions, parameters with subscript zero refer to the present epoch.
With these parameters, we can rewrite (11–24) as

z(t) = H0(t0 − t1) +
1
2
H2

0 [1 + q0](t0 − t1)2 +
1
6
j0(t0 − t1)3 . (11-29)

11:7 Angular Diameters and Number Counts

We can next ask about the angular diameter δ subtended by an observed galaxy.
Let the intrinsic, locally measured diameter of the galaxy be D. Equation (11–18)
shows that, at world time t1, the circumference of a major circle centered on the
observer and drawn transverse to the line of sight through the galaxy is 2πa1σ(χ).
This corresponds to the full range of azimuthal angles 0 ∼< φ ∼< 2π in a plane that
we can arbitrarily designate θ = π/2. The linear diameter of the galaxy therefore
subtends a segment D/2πσ(χ)a1 of a full circle, and an angular diameter

δ =
D

a1σ(χ)
(11-30)

radians. To convert this into values of a(t) measured by the observer at epoch t0, we
invoke equation (11–23) to obtain

δ =
(z + 1)D
a0σ(χ)

. (11-31)

Note that this is a factor of (z+1) larger than the fraction of a radian thatD actually
subtends at time t0. This is because the galaxy was nearer to the observer when it
emitted light at epoch t1 than when its light arrives, at t0.

The second relation of interest to observational cosmology is the dependence on
χ of the number of galaxies N(χ) whose comoving distance is less than or equal
to a given value χ. The comoving number density of galaxies n in the three-space
defined by the metric dl2 in (11–18), is independent of t if evolutionary effects are
neglected. In a homogeneous model it is also independent of χ, so that

N(χ) = 4πn
∫ χ

0

σ2(χ) dχ. (11-32)

Figure 11.5 illustrates these ideas.

PROBLEM 11–5. Show that (11–32) can be expanded into the series relation

N(χ) =
4πn
3
χ3

(
1 − k

5
χ2 + · · ·

)
. (11-33)
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Fig. 11.5. (a) Distance–number–count relation in (a) a flat space, (b) on a spherical surface.
Because the circle or surface drawn about the observer at any given distance is always smaller
than the corresponding circle or surface in a flat space, the number of galaxies counted at
any distance in a spherical universe will also be lower than the number counted in a flat —
Euclidean — universe.

Both relations (11–31) and (11–33) depend on a knowledge of z, if distance
is derived from red shift. However, z is often hard to measure at great distances
because galaxies there are quite faint. We might therefore prefer to deal with the total
observed flux, a readily determined quantity, rather than the red-shift parameter. To
do this, we need to know more about the apparent luminosity of distant galaxies as
seen by an observer today. To determine this, we make the further assumption that
photons are conserved and that their energy is related to frequency by the Planck
expression E = hν with h a universal constant independent of world time.

If L1 is the bolometric luminosity of the galaxy at the time of emission, then the
bolometric flux F0 reaching an observer O is

F0 =
(

L1

4πa2
0σ

2(χ)

)(
1

(1 + z)2

)
. (11-34)

Here the first term represents the geometrical dilution of radiation, since 4πa2
0σ

2 is
the surface area of the three-space of (11–18) drawn about the emitting galaxy and
given by (11–9) or (11–16). The second term represents the reddening. The term
(1 + z) appears squared. One reduction by (z + 1) is due to the decrease in spectral
frequency and, hence, the decrease in energy per arriving photon. A second reduc-
tion by (z + 1) enters because all conceivable frequencies are lowered, including
the rate at which photons emitted by the galaxy arrive at the observer. In unit time
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interval the observer sees (1 + z) fewer photons than were emitted at the galaxy in
unit time. This corresponds to an apparent slowing down of clocks and again means
that less energy arrives at O per unit time interval.

If we deal with a nearly monochromatic source whose luminosity ∆L1 in fre-
quency interval dν1 is ∆L1 = L(ν1) dν1, then the flux received is

F(ν0) dν0 =
L(ν1) dν1

4πa2
0σ

2(χ)(1 + z)2
, (11-35)

where subscripts 1 and 0, respectively, refer to emission and reception times.
Through (11–22) and (11–23) we obtain d(ν1) = (1 + z)d(ν0) and the expression

F(ν0) =
L(ν1)

4πa2
0σ

2(χ)(1 + z)
. (11-36)

This is the spectral line flux to be expected from individual distant quasars and
galaxies.

Returning to equation (11–34) we can make use of the ratio of bolometric lu-
minosity of a source and its apparent bolometric magnitude at the observer as a
measure of the luminosity distance of the source. This is defined as

DL ≡
√

L1

4π(1 + z)2F0
= a0σ(χ) . (11-37)

In principle, it should be possible to determine the history of cosmic expansion
by plotting the luminosity distance versus the red shift. If the expansion rate of the
Universe had once been high and then had suddenly stopped, we would see distant
sources highly redshifted while nearby sources were not redshifted at all. As we will
see in the next section, increasing sensitivities have now made such observations
possible.

The flux density F(ν0) in equation (11–36) is often written as S(ν). The rela-
tionsN(χ) ∝ χ3 and F(ν0) ∝ χ−2, respectively, in (11–33) and (11–36), confirm
that in a Euclidean universe Seeliger’s theorem — the relation between N and S
given in equations (2–4) and (2–5) — holds universally.

11:8 The Flux from Distant Supernovae

As mentioned in Section 2:8, supernovae of type Ia are found to have uniform lu-
minosities in the local universe. Once the light curve — given by the rest-frame
color, the rise time and rate of decline of luminosity — is determined, the luminos-
ity is found to be essentially identical for all SNe Ia. This has permitted their use as
distance indicators, as in Fig. 11.6.

Equation (11–23) shows that the red shift z = ∆λ/λ is just the fractional ex-
pansion the Universe has undergone over some time interval (t0 − t1) referred
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Fig. 11.6. The magnitudes mB of supernovae of type Ia selected for exhibiting low extinc-
tion within their parent galaxies, and plotted against their red shifts z. The magnitudes mB

take red shift into account and correspond to the blue light emitted in the rest-frame of the
supernova. The implications of the three curves marked by different values of the symbols
ΩM and ΩΛ are discussed below, in Section 11:12. The data were culled from surveys of
both nearby and distant supernovae published by different groups in five separate studies.
Courtesy of Saul Perlmutter (Pe05).

to the present epoch t0. More generally dz/dt refers to the expansion rate be-
tween any two epochs t and t + dt. Differentiating with respect to time gives
dz/a0H(z) = dt/a(t), where we have written the Hubble constant as a function
of red shift: H(z) = (1/a)(da/dz)(dz/dt). When we see light from a distant su-
pernova redshifted by an amount z, H(z) gives the Hubble constant of the Universe
at the epoch when the supernova emitted the light. If the rate of expansion is not
constant, then the Hubble constant changes along a photon’s light path as it travels
toward us. The comoving coordinate of the emitting supernova is then obtained by
integration along the light path derived from (11–19)

χ(z) =
c

a0

∫ z1

0

dz

H(z)
, (11-38)
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where z1 is the red shift at the epoch of emission. By inverting this relation and
comparing the comoving distances of supernovae at different red shifts, we can
recover the history of the cosmic expansion, i.e., the history of the Hubble constant
over past epochs.

Returning to (11–29) we might make use of the proper distance D from (11–20)
to substituteD/c for (t0 − t1) and obtain a relation between distance and red shift,
independent of the spatial curvature k. However, D is not a directly measurable
quantity. On the other hand, while the luminosity distance DL can be directly as-
sessed, it does depend on curvature through its dependence on σ(χ). Considerations
that will arise in Chapter 12 tell us that space is at least very close to flat, and for a
flat space, DL = D. SubstitutingDL/c for (t0 − t1) in equation (11–29 ) therefore
gives us a direct link between the luminosity distance and red shift.

z(t) = H0(DL/c) +
1
2
H2

0 [1 + q0](DL/c)2 +
1
6
j(t)(DL/c)3 . (11-39)

Since equation (11-37) relates DL to the known bolometric luminosity of SNe Ia
and the observed bolometric flux F , this leads by way of equation (A–3) of the
Appendix to a relation between the observed magnitudes of SNe Ia and their red
shifts.

m0 = M1 + 5 log
[
σ(χ)(1 + z)

a0

10 pc

]

= M1 + log
[ DL

10 pc

]
= M1 + 5 log

[
L1/4πF)1/2

10 pc

]
, (11-40)

where a0 is now measured in parsecs and the division by 10 pc reflects that absolute
magnitudeM1 always refers to the apparent magnitude of an object at a distance of
10 pc (as explained in Section A:7(e)).

Equations (11–39) and (11–40) now provide direct links between the observed
bolometric magnitudes of SNe Ia, their red shifts, and their luminosity distances.
Equation (11–39) shows the further relation to the deceleration parameter.

Figure 11.7 shows the apparent magnitudes of distant SNe Ia as a function of red
shift, referred to their expected magnitudes if the deceleration parameter had been
zero, q(t) = 0 throughout.

To date, the most distant SNe Ia reliably observed extend no further than red
shifts z ∼< 1.7. But the data of Figs. 11.6 and 11.7 suggest that the cosmic expansion
was slowing down before the epoch z ∼ 0.8 and has been accelerating ever since.

The observational value of q0 is still somewhat uncertain and, as we just saw,
appears to be changing. As Table 11.1 shows, we can relate potential q0 values to
the curvature k of space.

PROBLEM 11–6. From the definition of q0, and the exponential expansion of an
inflationary phase, a(t) ∝ etH , show that the cosmic scale factor expands exponen-
tially. Show also that for these models, q0 = −1.
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Fig. 11.7. The apparent magnitudes of supernovae of type Ia plotted as a function of red shift.
The data points shown are weighted averages for supernovae found in fixed redshift bins. The
data and the curves depicting different models of the expansion history of the Universe are
shown relative to an eternally coasting model, for which the deceleration parameter q(z) = 0
for all time. The best-fit curve through the data points is indicated by the dashed curve, which
assumes q(t) = q0 + z(dq/dz) with q0 < 0 and dq/dz > 0. It indicates that the expansion
of the Universe was decelerating at a red shift z ∼ 1.7, where the slope of the curve is
parallel to the constant deceleration curve, then coasted for a while, and now is accelerating.
The point of inflection, where the acceleration drops to zero, appears to be around z = 0.8
though the data are too sparse to define the epoch precisely. The fiducial lines are drawn for
ΩΛ = 0.73, ΩM = 0.27, parameters discussed below, in Section 11:12. (Courtesy of Adam
Riess (Ri04).)

Table 11.1. Values of the Deceleration Parameter q0 in Different Cosmological Models.

k q0

For evolving models with zero

cosmological constant and

⎧⎪⎪⎨
⎪⎪⎩

+1 > 1/2

0 = 1/2

−1 0 ≤ q0 < 1/2pressure (see Section 11:12 below)

Inflationary and steady state models 0 q0 = −1

11:9 Magnitudes and Angular Diameters of Galaxies

In principle, the arguments just presented apply not only to supernovae but also to
galaxies. However, galaxies significantly evolve over cosmic time. In order to take
this into account, one needs to replace M1 in (11–40) by its expanded form

M1 = M0 − Ṁ0(t0 − t1) + · · · . (11-41)

To the extent that this may prove successful one can then obtain a relation be-
tween a galaxy’s magnitude and its angular diameter. If the flux F0 in equation
(11–34) is integrated over the received spectral frequency range dν0 and divided by
the square of the angular diameter δ in (11–31), we obtain a relation between mag-
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nitude and angular diameter that could be applied to distant galaxies if they were all
alike.

PROBLEM 11–7. Show that to lowest order

m0 = 2.5 log∆F0 = 2.5
[
2 log δ − 3 log(1 + z) + log

∆L1

4πD2

]
. (11-42)

A useful lowest-order approximation is

(t0 − t1) = H0z (11-43)

so that

m0 = M0 − Ṁ0H0z + 5 log
[
σ(χ)(1 + z)

a0

10 pc

]
. (11-44)

In most of the cosmological models considered today, curvature effects such as
those illustrated in Figs. 11.6 and 11.7, are observable, if at all, only at such large dis-
tances that galaxies and the stars inside them presumably evolve significantly during
the time their signals take to reach us. How well we can then define the time deriva-
tives Ṁ0 or M̈0 is not at all clear. Galaxies can suffer catastrophic structural changes
as evidenced, say, by the explosion of material from the nucleus of the galaxy M82
or the extremely powerful radio “jet” of the giant spherical galaxy M87. For many
quasars and violently active galactic nuclei, AGNs, even greater short-term varia-
tions in luminosity and spectral energy distribution may be expected. These traits
make galaxies, quasars, and AGNs rather unreliable distance indicators.

11:10 Dynamics on a Cosmic Scale

As we saw in our discussion of black holes in Chapter 5, Einstein’s general theory of
relativity makes gravitation inseparable from the geometry of space. General rela-
tivistic cosmology posits this same strong interdependence (Ei17). In the remainder
of our discussions, we will assume that general relativity provides a good descrip-
tion of the Universe and its evolution, even though we recognize two limitations:

(a) General relativity has been tested out to a scale no larger than the Solar
System, o(1013 cm), and it is not clear that the same laws hold on the scale of the
Universe, o(1028) cm. Few laws of physics span such large ranges.

(b) We have found no way to date of incorporating quantum physics in general
relativity, so that our description of the early Universe must be uncertain for epochs
when the Cosmos may have been no older than ∼10−43 s and, given the limited
speed of light c, regions separated by more than ∼10−33 cm could never have been
in causal contact.
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11:11 Einstein’s Field Equations

In the early 1930s, Georges Lemaı̂tre, H. P. Robertson, and A. G. Walker found
that in an isotropic homogeneous space the general relativistic field equations of
Einstein reduce to two simple differential equations in the scale factor, a (Le31),
(Ro33), (Wa34). The first of these equations gives the mass density ρ, including the
equivalent mass of all radiation and matter, in terms of a cosmological constant Λ,
the curvature of space k, and the expansion or contraction speed ȧ/a, relative to a
scale factor a whose dimensions are length.

8πGρ
3

=
−Λc2

3
+
(
ȧ2 + kc2

a2

)
, (11-45)

whereG is the gravitational constant, and dots represent differentiation with respect
to world time. The constant Λ corresponds to a tension in the cosmic substrate so
that work has to be done on the Universe in order to expand it; alternatively work
can be derived during an expansion, depending only on whether Λ is taken to be
negative or positive. The ratio ȧ/a ≡ H is the Hubble constant at any given epoch;
despite its name, H generally evolves with world time.

The second of the equations gives the change in the mass density of the Universe
on expansion or contraction, including work done against the pressure of the cosmic
fluid, P . This is the energy conservation equation

dρ

dt
+ 3
(
ρ+

P

c2

)
ȧ

a
= 0, or

8πGP
c4

= Λ−
(

2aä+ ȧ2 + kc2

c2a2

)
. (11-46)

The equation on the right is obtained by inserting the time derivative of (11–45) into
the equation on the left.

11:12 The Density Parameter Ω

If we set Λ and k = 0 in equation (11–45), we can define a critical density ρcrit

ρcrit ≡ 3H2

8πG
. (11-47)

For today’s Hubble constant, H0 ∼ 70 km s−1 Mpc−1, ρcrit = 9.7 × 10−30 g
cm−3. A look at equation (11–46) tells us that this density is critical in the sense
that the acceleration ä will asymptotically approach a value of zero as the density
progressively declines through expansion, so that ȧ approaches zero provided the
pressure P also becomes negligible.

ä = − ȧ
2

2a
and q0 =

1
2
, (11-48)
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where we have made use of equation (11–27). The Universe then continues to ex-
pand indefinitely, but the velocity of expansion decelerates monotonically. On inte-
grating with respect to world time,

ln[ȧa1/2] = constant (11-49)

or
Ha3/2 = constant, H(z + 1)−3/2 = constant. (11-50)

We may then talk about an apparent age τA for the Universe given by

τA ≡ 1
H

=
[

3
8πGρ

]1/2

. (11-51)

This age is proportional to a3/2. For late stages in the evolution of the universe,
when it is filled with nonrelativistic matter, but before domination by dark energy Λ
sets in,

τA ∝ a3/2, ρ ∝ a−3 [matter-dominated era]. (11-52)

In contrast, for Λ = k = 0 and early epochs, when the universe is intensely hot and
the mass–energy density is dominated by radiation,

P =
ρc2

3
[radiation-dominated era] . (11-53)

Equation (11–51) still holds, though we now have

ρ ∝ a−4 [radiation-dominated era] , (11-54)

as is readily understood if we consider the number of quanta of radiation to be con-
stant during this era. In that case, the number density of quanta is proportional to
a−3, but because of the red shift the energy per quantum decreases as a−1. The prod-
uct of number density and energy per quantum of radiation is therefore proportional
to a−4. This holds equally well for photons and other quanta lacking rest–mass. To a
good approximation, it also holds for massive particles at very high energies, where
the particles travel at speeds close to the speed of light and their rest–masses are
small compared to their total mass energies. From equation (11–54) we then have

H =
1
τA

∝ a−2 ∝ (z + 1)2 [radiation-dominated era]. (11-55)

In summary:

τA = H−1 ∝ [a(t)]n/2

∝ [z + 1]−n/2

} {
n = 3 [matter-dominated era],
n = 4 [radiation-dominated era].

(11-56)

PROBLEM 11–8. (a) Show that the actual age or world time, ta, of the Universe,
when k = Λ = 0, is just
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ta = (2H)−1 (11-57)

for a relativistic equation of state, P = ρc2/3,
(b) At a later epoch, when the pressure has dropped to P = 0 and the Universe

is matter-dominated, show that the world time is related to the Hubble constant by
ta = 2/3H , provided ta � t′0, where t′0 marks the epoch when the pressure drops
well below the relativistic value. Because the epoch during which the Universe has
been matter-dominated is far longer than the earlier relativistic epoch, the age of the
Universe today is

ta ∼ 2τ
3

=
2

3H
. (11-58)

(c) For the very latest stages of a universe with cosmological constant but a flat
space, k = 0, the cosmological constant Λ must eventually dominate the mass–
energy density. Show that the asymptotic age of the universe then approaches

ta ∼ (3/Λc2)1/2 ln(a/ax) =
ln(a/ax)

H
=

ln(1 + zx)
H

, (11-59)

where ax  a is the scale factor and zx � 1 is the red shift at the crossover from
the matter-dominated to the Λ-dominated era.

Right now, the density of atoms and ions, usually referred to as the baryonic
density ρB of the Universe is well below the critical density, as is the density of
dark matter discussed in Section 9:17. But the value of the cosmological constant
appears sufficiently high to make the overall mass–energy density equal to ρcrit.

In order to describe the evolution of the Universe for different possible density
values, we frequently make use of a density parameter Ω, defined by

Ω ≡ ρ

ρcrit
. (11-60)

If we assume that the pressure in the Universe has been negligible in recent epochs,
P = 0, we obtain from (11–46) that

ä

a
= −ΩMH2

2
+
Λc2

3
and q =

ΩM

2
− ΩΛ , with ΩΛ ≡ Λc2

3H2
. (11-61)

Here ΩM is the density parameter for matter, including dark matter and bary-
onic matter, and the deceleration parameter q is given by (11-27). The curvature
λ = k/a2 expressed in (11–12) can be used to define a curvature density parameter
Ωk as

Ωk ≡ −
(
c

H0

)2
k

a2
0

, so that ΩM + ΩΛ +Ωk = 1 . (11-62)

This emphasizes that the curvature of space dynamically acts like a mass density.
The expression on the right of (11–62) is just a different way of writing the Einstein
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equation (11–45). Figures 11.6 and 11.7 indicate that the present expansion rate of
the Universe may be dominated by dark energy due to either a cosmological constant
Λ, or to some variable form of energy often referred to as quintessence, which may
not have remained constant throughout the evolution of the Universe. Its density
parameter today is ΩΛ ∼ 0.7, while ΩDM ∼ 0.23 for dark matter and ΩB ∼ 0.04
for baryonic mass, with uncertainties of order 0.04 in both ΩΛ and ΩDM . As seen
in Table 13.1, the Universe appears to be flat, i.e., k = 0; today’s total density
parameter ΩT (t0) ≡ Ω0 = ΩΛ + ΩDM + ΩB ≡ ΩΛ + ΩM = 1.02 ± 0.02
(Be03, Sp03). For a constant dark energy density Λ, the cross-over from matter- to
dark-energy-domination occurs when ΩM (1 + z)3 = ΩΛ. For ΩM = 0.27 and
ΩΛ = 0.7, this occurs for z = 0.37 when, judging from (11–59), the Universe was
very roughly ∼4 × 109 yr younger, or ∼1010 yr old. For the same current values
of ΩM and ΩΛ, (11–61) shows that the Universe transitioned from decelerating to
accelerating expansion, q = 0, at z = 0.73, in accord with the turnover region in
Figs. 11.6 and 11.7. The SNe Ia data, in this way, are useful for setting bounds on
the ratioΩM/ΩΛ.

11:13 Some Simple Models of the Universe

(a) Static Universe of Einstein

Before the expansion of the Universe had been discovered, Einstein (Ei17), quite
understandably, proposed a static cosmic model of the Universe. His general rela-
tivistic field equations, (11–45) and (11–46) allowed Einstein to calculate the den-
sity of this universe in terms of its radius, on the assumption that the pressure was
negligibly low, P = 0. The Einstein universe is spherical (k = 1) and has constant
radius of curvature a (Fig. 11.8).

PROBLEM 11–9. For Einstein’s universe a = constant and k = 1.
(i) Show that these two assumptions lead to

Λ =
1
a2

+
8πGP
c4

(11-63)

and that the density of the universe is fixed at

ρ =
c2

4πGa2
− P

c2
. (11-64)

We know that P/c2  ρ, at present. If we lived in an Einstein universe, Λ would
have to have a value ∼ a−2, and ρ ∼ c2/4πGa2.

(ii) Show that if k = 0 and P = 0 a static universe would require Λ = 0 and
ρ = 0, leaving a undefined.
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Fig. 11.8. Some cosmological models. The scale of a(t) and of t is not the same for different
curves. The only important consideration in this figure is the shape of each curve, rather than
its displacement along the ordinate or exact dimensions.

(b) de Sitter Model

Shortly after Einstein proposed the static model in 1917, Willem de Sitter pointed
out that the general relativistic field equations permit the description of a second
model, one that exists in a flat space, k = 0. It is an expanding model. At first it
had no more than academic interest (de17). But the finding by Edwin P. Hubble
of progressively increasing red shifts in distant galaxies and the implied cosmic
expansion raised its significance (Hu29). Its main drawback is that the density of
such a universe must be zero. However, cosmic densities are low anyway, and this
was not considered an overriding difficulty.

PROBLEM 11–10. de Sitter’s universe is flat and empty, k = ρ = P = 0. Show
that the scale factor a of the expanding universe obeys

a = a0e
(Λc2/3)1/2t (11-65)

and the age of the universe is given by (11–59). The actual Universe appears to be
headed toward an exponential expansion, but the pressure P appears to be propor-
tional to Λ and negative.

(c) Eddington Model

In 1930, Georges Lemaı̂tre and Arthur Stanley Eddington discovered that the Ein-
stein universe is unstable (Ed30). A small deviation from the perfect conditions
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postulated by Einstein would result in either a continuing expansion or else an accel-
erating collapse. They set up a model invoking this instability, thinking that galaxies
might be able to form at the unstable stage.

Eddington then proposed a model of the Universe that starts out in an Einstein
state, becomes perturbed by processes involving the formation of the galaxies from
an initially uniform distribution of gas, and goes over into a uniform expansion. One
difficulty with this model is that the formation of galaxies is more likely to result
from an instability that would lead to contraction rather than expansion of the Uni-
verse. The model was interesting because it focused attention on cosmology as not
just a matter of geometry. A model must also be able to account for the physical
state of matter found in the Universe. Galaxies are likely to have condensed out of
an initially uniform gas. If this gas was in rapid expansion, how was it possible to
counteract the expansion in order to force the gas to contract into galaxies? Edding-
ton and Lemaı̂tre tried to make a plausible guess.

PROBLEM 11–11. Prove the instability of the Einstein universe for P = 0. Note
that an infinitesimal expansion makes ρ < c2/4πGa2 − P/c2, so that even with
ȧ = 0, we have ä > 0 and the expansion must continue. The proof for an initial
contraction is similar.

(d) Lemaı̂tre Model

Lemaı̂tre (Le50) also proposed another model. The universe starts out in a highly
contracted state and initially expands at a rapid rate. The expansion is slowed down
and brought to a halt in a state that is nearly identical with the Einstein state. Galax-
ies form at this stage and give rise to a new expanding phase that continues indef-
initely (Fig. 11.8). As we saw, in Figs. 11.6 and 11.7, recent measurements on the
magnitudes of supernovae at high red shifts show them to be somewhat fainter than
would be expected if the Universe was expanding at constant speed. They indicate
that the Universe was decelerating before red shift z ∼ 1, was freely coasting around
z ∼ 0.5 and now is accelerating (Ri01). This has been interpreted as a speeding up
of the expansion and a positive constant Λ or a quintessence with an as yet un-
known equation of state. Although the Universe never entirely stopped expanding,
the resemblance to the Lemaı̂tre model is evident.

PROBLEM 11-12. For a universe with quintessence Λ, that makes no contribution
to the pressure P but does add to the density in the same way as a cosmological
constant, show that the acceleration ä goes to zero for a density ρo for which

Λ =
4πGρo

c2
for nonrelativistic matter,

=
8πGρo

c2
for relativistic matter. (11-66)
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If an inflection is to occur for vanishing expansion, ȧ/a⇒ 0, show that the curvature
of the universe at this epoch has to be positive k = +1, and the radius of curvature
ao is

ao =
(

c2

4πGρo

)1/2

= Λ−1/2 nonrelativistically,

=
(

3c2

16πGρo

)1/2

=
(

2Λ
3

)−1/2

relativistically. (11-67)

A variant of the model of Problem 11–12, which goes through an inflection but
never ceases to expand, may also be considered.

PROBLEM 11–13. We can ask for the value of a cosmological constant Λ and
density ρ at which a universe with k = 0 would undergo inflection for different
equations of state P (ρ):

(a) Show that for a matter-dominated universe with P = 0, ä = 0 for
ΩΛ ≡ Λc2/3H2 = 1/3, ΩM ≡ 8πGρM/3H2 = 2/3.

(b) Show that for a radiation-dominated universe with P/c2 = ρr/3, ä = 0
occurs for ΩΛ = 1/2, Ωρr = 1/2.

(c) Current observations suggest that the equation of state for dark energy, writ-
ten as the ratio of pressure to energy density, is

w =
8πGPΛ

c4Λ
∼ −1 (11-68)

and that the pressure due to matter PM is negligible even when the density of matter
ρM is appreciable (Sp03). Show that the epoch of inflection, ä = 0 occurred when
Λ = 8πGρ/5c2. If Λ is constant throughout time, and the best estimate for condi-
tions today is ΩΛ = Λc2/3H2 ∼ (0.7/0.27)(8πG/3H2c2)ρ0 = (0.7/0.27)ΩM ,
this means that inflection occurred when ρ = 5(0.7/0.27)ρ0, i.e., at z = 1.35. See
Fig. 11.7.

(e) Friedmann Models

The relativistic cosmological models described so far have had one feature in com-
mon. They all involve a nonzero cosmological constant Λ in the relativistic field
equations. Alexander A. Friedmann set this constant equal to zero, essentially
denying its existence (Fr22). The Friedmann models can have Riemann curvature
k = −1, 0, or +1. Some of the models start in an extremely dense state and continue
to expand. Others start out in a dense state, expand, eventually start contracting, and
collapse back into the initial dense state. This cycle may repeat itself so that such
models oscillate.
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An important feature of both the Lemaı̂tre and Friedmann models is the high
initial density of the universe. This was seized on by George Gamow, Ralph Alpher,
and Robert Herman who set out to compute the temperature and pressure that must
have existed at early times and thus establish the nuclear reactions that should have
taken place (A�01a). The resulting constituents should have the chemical composi-
tion of matter observed in the early phases of the Universe before nucleosynthesis
in stars followed by stellar explosions would have significantly altered the chemical
makeup of stars and interstellar matter. This early chemical composition should be
close to that found on the surfaces of the oldest stars observed in the galaxy. The
models developed by Gamow, Alpher, and Herman had the strength of making pre-
dictions that could be tested. In Section 12:13 we will see how well these predictions
were borne out!

(f) Einstein–de Sitter Model

A special case among the Friedmann models is one in which not only the cosmo-
logical constant, but also the curvature k is zero, and the pressure term in (11–46)
is negligibly small compared to the mass density P/c2  ρ. This model is often
referred to as the Einstein–de Sitter universe.

PROBLEM 11–14. Show that (11–45) and (11–46) applied to the Einstein–de Sitter
model yield the relations

ä

a
= −4πGρ

3
and H2q0 =

4πGρ
3

. (11-69)

More generally, for P = Λ = 0 obtain also

(2q0 − 1) =
kc2

H2a2
. (11-70)

PROBLEM 11–15. For a Friedmann universe (Λ = 0) prove that:
(a) With k = +1 and an initially dense universe for which P/c2 = ρ/3, the

solution to equations (11–45) and (11–46) has the parametric form

a+ = b(+o) sinx, t+ = b(+o)(1 − cos x)/c, (11-71)

where x is a parameter and b(+o) is a constant.
(b) For late stages of a universe with k = +1 and P = 0, show similarly that

a+ = a(+o)(1 − cos x), t+ = a(+o)(x− sinx)/c. (11-72)

Note that x grows monotonically with t+, so that (1 − cos x) eventually must ap-
proach zero. The universe first grows, but later on collapses.

(c) For the dense stage, of a hyperbolic universe (k = −1)
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a− = b(−o) sinh y, t− = b(−o)(cosh y − 1)/c. (11-73)

(d) For the late stage of a hyperbolic universe

a− = a(−o)(cosh y − 1), t− = a(−o)(sinh y − y)/c. (11-74)

We have looked at so many different solutions of equations (11–45) and
(11–46) because different portions of the Universe may at early times have had
different densities and curvatures. As we will see in Chapter 13, such curvature
fluctuations could explain the structure on small scales that we see in the Universe
today. The Universe we survey today consists of many regions that, as we will see in
Section 11:15, once were out of causal contact. We will need to understand how all
these different segments may have evolved separately before eventually merging.

11:14 Self-Regenerating Universes

First described by Hermann Bondi and Thomas Gold (Bo48) and by Fred Hoyle
(Ho48), such a universe is flat and provides the same aspect at all times and in
all places. The expansion rate is uniform in space and time. Old galaxies and young
ones are statistically distributed in some fixed ratio at all distances from an observer.

Inflationary cosmological models, which exhibit a somewhat similar regenera-
tion as the universe expands by some twenty-five orders of magnitude, were first
proposed by Alan Guth (Gu81). Such universes, however, need not initially have a
flat space. The only requirement is that the universe expands to such an extent that
its curvature today be very small and difficult to measure — just as the curvature of
a large sphere is difficult to measure when we examine only a small portion of its
surface. We will investigate inflation in more detail in Chapter 12.

The discovery that the expansion of the Universe today is largely driven by dark
energy, suggests that the remote future of the Universe will also be self-regenerating.
The part of the Universe within any given observer’s event horizon will gradually
empty itself of stars and galaxies as these expand away and disappear across the
horizon, so that most regions of the Universe will eventually contain nothing except
dark energy that will forever continue to replenish itself.

The most surprising aspect of all these models is the suggestion that matter or
energy is continually created. It is created from empty space — from nothing!

Or is it? Some theories postulate new fields from which matter or energy would
be created. But thus far this has been done mainly to keep the conservation laws
of physics intact. The new fields — called the C-field in the traditional steady state
theory; referred to as the Higgs scalar field φ in inflation; and considered to be some
form of vacuum energy, usually called dark energy to account for today’s expansion
of the Cosmos, all serve this purpose.

An observer in a steady state universe would expect to see matter created locally
and we might wonder whether the rate of creation might be observed directly. We
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can readily compute what that rate should be. Consider a spherical volume with
radius r expanding at some rate directly proportional to r. Call this rate Hr,

dr

dt
= Hr . (11-75)

The rate at which the volume expands is

d(4πr3/3)
dt

= 4πr2
(
dr

dt

)
= 4πr3H . (11-76)

If the density of the sphere is to be maintained constant at some value ρ0 during
this expansion, the increased volume must be filled with matter at density ρ0 so
that the rate of matter creation is 4πr3Hρ0 in a sphere of radius r. Dividing by the
volume of the sphere, we find the rate of matter creation in unit volume to be 3Hρ0

ρ̇0 = 3Hρ0. (11-77)

An estimate of the value of ρ0 can be obtained by taking the number density of
galaxies and multiplying by a typical galactic mass. The matter density so obtained
is of order ∼10−30 g cm−3 . With a Hubble constant of 70 km s−1 Mpc−1 we obtain
a creation rate 3Hρ0 ∼ 10−47 g cm−3 s−1. If the baryonic fraction of matter were
created in the form of hydrogen, this would imply a creation rate of the order of one
atom per cubic meter in ∼40 Gyr.

As we will see in Chapter 12, the creation rate in the self-regenerating phase of
the inflationary universe, in contrast, was fast and furious. But we don’t yet know
how to directly test for this, so many æons later.

11:15 Horizon of a Universe

When a man on a cruising ocean liner wants to determine the distance of the horizon,
he only needs to drop a buoy overboard and determine the buoy’s range at the last
instant before it disappears over the horizon. If the man is quick enough, he may
then be able to shin high up on the ship’s mast and briefly see the buoy again before
it finally disappears over the horizon a second time. Two points are worth noting.

First, the distance of the horizon depends on the position of the observer. If a
preferred horizon distance is to be defined, it should be selected in terms of some
fundamental observer placed at some specific height above the ocean surface.

Second, no matter how high above the surface the observer climbs, there is an
absolute horizon beyond which he can never see. He cannot see further than halfway
to the antipodal point. His absolute horizon divides the surface of the Earth into two
hemispheres.

An observer placed at a given location in a universe will also be able to define
a horizon beyond which he cannot see. This horizon can be specified in a number
of different ways. The distance to the horizon may depend on the speed at which
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the observer is moving, so that a horizon is best defined in terms of a fundamental
observer O who is at rest with respect to the mean motion of galaxies in his local
environment.

To define concepts, let us return to the FRW metric given by equations (11–18).

(a) The proper distance between a fundamental observer and some fundamental
particle is defined for a given world time, t1 by dt = 0,

D(t1) =
∫
ds = a(t1)

∫
dχ = a(t1)χ . (11-78)

The velocity of particle then has two components: the first is the recession due to
the expansion of the substratum, the second is a peculiar velocity vp relative to the
substratum.

v(t1) = ȧ(t1)χ + a(t1)χ̇ = H(t1)D(t1) + vp , (11-79)

where the first term on the extreme right is the Hubble expansion velocity, frequently
called the Hubble flow or, more simply, the recession velocity. When the peculiar ve-
locity is zero, the red shift tells us the distance to the emitter, rather than its velocity.
The red shift thus plays a strikingly different role in general relativistic cosmolo-
gies from what might be expected if we tried to view the cosmic expansion in terms
of special relativistic Doppler velocities. Distant galaxies move away from us be-
cause space expands, not because they move away from us relative to a stationary
substratum.

As already noted in the derivation of equations (11–19), for a photon the peculiar
velocity is the speed of light, and the comoving distance to the point from which
light is reaching us was obtained by integrating over its past light cone. This is
illustrated in the bottom panel of Fig. 11.9.

(b) The Hubble radiusRH , which defines a volume known as the Hubble sphere,
is the distance at world time t1 of a fundamental particle having a recession velocity
equal to the speed of light,

RH(t1) = c/H(t1) . (11-80)

Returning now to the discussion of cosmic horizons, a classification due to W.
Rindler (Ri56)* and further elucidated by Davis and Lineweaver (Da04)*, defines
three kinds of horizons: an event horizon, a particle horizon, and finally an absolute
horizon:

(c) In some cosmological models, remote parts of the universe recede from an
observer at ever-increasing speeds, for instance, during the exponentially expanding
phase of an inflationary universe or at all epochs in a steady state model. In such
a universe there will exist a world time t1 (Fig. 11.9) at which the distance of a
fundamental particle P from a fundamental observer at A increases at precisely the
speed of light. Before t1 the particle P , which may be a galaxy, can emit radiation
that eventually reaches A; but after t1 radiation emitted by the galaxy cannot reach
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Fig. 11.9. Space–time diagrams for a general relativistic universe with ΩM = 0.3, ΩΛ = 0.7
and H0 = 70 km s−1 Mpc−1. In all three plots, vertical dotted lines show the world lines
of comoving objects; each is marked with the red shift at which a comoving galaxy would
appear. Ours is the central vertical world line z = 0. Time and conformal time, and their
relative scale factors a ≡ a/a0 = (1 + z)−1 are plotted against comoving distance a0χ
measured in units of 109 light years (300 Mpc). The present epoch is shown by the horizontal
line marked now, whose intersection with our world line marks the apex of our past light
cone. In the top two panels the present age of the Universe is marked as ∼13.5 Gyr. In the
bottom panel the conformal time τ going back to a red shift z ∼ 1100 is given. This is
the red shift of the microwave background; as discussed in Chapters 12 and 13, this is the
greatest distance from which light can reach us in our Universe. 1 Glyr = 109 light years.
The comoving distance to the surface from which the microwave background has reached us
currently lies at 46 Glyr as explained in Problem 11–17, below. The figure does not attempt to
reach farther back. (For additional explanations see the text.) (Courtesy of Tamara M. Davis
and Charles H. Lineweaver (Da04).)
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him because the intervening distance is increasing at a rate greater than the speed of
light. In terms of (11–19), the event horizon lies at comoving distance

χeh(t1) =
∫ ∞

t1

cdt

a(t)
. (11-81)

The cosmic event horizon is somewhat analogous to the event horizon for matter
falling into a black hole (Section 5:13). Events prior to t1 can be transmitted to the
observer whereas events subsequent to t1 may forever remain hidden from him –
the difference being that, if the expansion of the Universe sufficiently slows down,
a galaxy that was previously receding faster than the speed of light may again come
into view. This is apparent in the top panel of Fig. 11.9, where the teardrop-shaped
past light cone traces the distances from which light was emitted at different epochs
t1. Particles that were initially receding faster than the speed of light become visible
as the original expansion of the Universe decelerates. Later, as dark energy begins
to play a dominant roleΩ → 1 and the Universe accelerates, such regions will once
again cross the event horizon never to be seen again. As shown in the bottom panel,
the past light cone given by (11–19) in comoving coordinates approaches the event
horizon (11–81) at t = t∞.

(d) In other cosmological models a different type of horizon is important. Take
an inflationary model in which matter initially is highly compact. At zero time the
universe begins an exponential expansion. Two particles, P andA, initially quite far
apart, rapidly recede from each other. Because of the large separation, light emitted
by particle P at time t = 0 will not reach A until well after the cosmic expansion
has slowed down, at t0. Before t0 the observer is quite unaware of the existence of
P . After t0 he can receive messages emitted at P . Particle P is said to enter the
observer’s particle horizon at time t0 (Fig. 11.8). In terms of (11–19), the distance
to the particle horizon is

χph(t1) = c

∫ t0

0

dt

a(t)
. (11-82)

We can then define a particle horizon for any fundamental observer and world time
t0. It is a surface that divides all fundamental particles into two classes: those that
have already been observable and those that have not.

For electromagnetic radiation, the particle horizon currently does not have a
great deal of significance, because we are unable to see farther than the surface
of last scatter. However, neutrinos and gravitational radiation could be reaching us
from greater distances and be detected by sufficiently sensitive detectors. For these
two types of radiation the particle horizon could then impose a more distant surface
from beyond which no signals would reach us.

PROBLEM 11–16. Show that during early epochs, when curvature and dark en-
ergy may be neglected, the particle horizon lies at about the Hubble radius in the
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radiation-dominated phase and at about twice the Hubble radius in the matter-
dominated phase of the Universe.

PROBLEM 11–17. The past light cone shown in the bottom panel of Fig. 11.9
stretches back to the surface from which the microwave background radiation
reaches us. At this surface of last scatter, lying at red shift z ∼ 1100, the radi-
ation is scattered by electrons one last time before the cosmic expansion makes
the Universe essentially transparent. As implied by equation (11–19), the past light
cone just traces out the distances χ(t1, t0) to points that emitted radiation at dif-
ferent times t1. The comoving distance to the emitting surface can be evaluated by
means of the following steps:
(a) Show that equation (11–45) can be rewritten as

ȧ = a0H0

[
ΩM

(a0

a

)
+ ΩΛ

(
a

a0

)2
]1/2

. (11-83)

(b) Using this expression, equation (11–19) and the identity dt/a(t) = da/(ȧa),
evaluate the distance a0χ(t1, t0) back to the surface of last scatter, and verify that it
corresponds to the 46 Glyr shown in Fig. 11.9.

In some models both particle and event horizons exist. The inflationary model
with dark energy that currently best describes our Universe is of this kind. Because
there is an initial explosion from a compact state, a particle horizon will exist; be-
cause there is a subsequent acceleration governed by dark energy an event horizon
will also come into play.

(e) We may wonder about the distance of the horizon from a moving observer.
Clearly, if the observer accelerates himself toward a fast receding galaxy, his event
horizon can be extended as indicated in Fig. 11.10.

Fig. 11.10. The absolute horizon for an observer at A (see text).

A number of results can be proven (Ri56):
(i) In a model without an event horizon, a fundamental observer can sooner

or later observe any event.
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(ii) In a model having an event horizon, but no particle horizon, an ob-
server can be present at any one specified event, provided he is willing to travel and
provided he starts out early enough.

Statement (i) depends on the absence of particles receding faster than the speed
of light. Statement (ii) hinges on the fact that any given particle must have been
within an observer’s event horizon at some time in the distant past.

(iii) In a model with both event and particle horizons an observer originally
attached to a fundamental particle finds that there exists a class of events absolutely
inaccessible to him, no matter how he travels through space. This class of events
defines an absolute horizon as shown by the following argument.

Suppose a fundamental observer were placed at some positionA in the universe.
There can then exist a critical particle P that initially recedes at exactly the speed
of light and that enters A’s particle horizon at time t = ∞. Let the initial distance
(11–20) between P and A be D. Next, consider a fundamental observer at a point
B situated along the line of sight AP but at a distance D beyond P . Again, P will
enter B’s particle horizon at t = ∞. By moving at the speed of light toward P ,
observer A would reach P at t = ∞. B would be receding at the speed of light
relative to P and would, therefore, enter A’s particle horizon on A’s arrival at P
at time t = ∞; but all particles beyond B would forever remain inaccessible to
A. Position B defines an absolute horizon for a fundamental observer at an initial
positionA (Fig. 11.10).

11:16 Topology of the Universe

Thus far we have assumed that the Universe is simply connected — that it has the
simplest topological structure. In the two-dimensional models, we have talked about
spherical surfaces, or planes, or hyperbolical surfaces of negative curvature.

There exist more complicated surfaces some of which can be easily constructed.
If we take a rectangular sheet and label the four edges a, b, c, d, as shown in
Fig. 11.11(a) we can obtain a cylindrical surface by joining edges a and b. But
there are several ways of joining a and b. We can give the sheet a twist, as indicated
by the arrows, and obtain a Møbius strip as in Fig. 11.11(b).

If edges a and b are joined and edges c and d are joined also, we can obtain a
torus or a Klein bottle depending on whether the sheet is given no twist or one twist
— Fig. 11.11(c).

The Møbius strip and Klein bottle are re-entrant. Starting on the exterior side
of a surface, we are able to reappear at the starting point but on the interior of the
surface without ever crossing an edge or perforating the surface. There is, however,
a change in directions. An arrow pointing in a particular direction appears reversed
when it returns to its starting point (on the opposite surface of the strip).

In some re-entrant models an observer O′ may return to her own past. In still oth-
ers she might return to her starting point with her arrow of time reversed with respect
to her surroundings. Some spaces of negative curvature are not open when complex
topological forms are allowed (He62). Although general relativity determines the
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Fig. 11.11. Simply connected and re-entrant topologies.

geometry — i.e. the curvature of space-time — it only constrains topology; it does
not dictate it.

How could we tell if we were living, say, in a universe with the topology of
the torus in Fig. 11.11(c). If the circumference of the torus defined by the length of
edges a = b is shorter than the distance to where the cosmic microwave background
radiation originated, we could look along opposite directions parallel to these two
edges on the surface of the torus to see whether we can identify matching features in
the background surface brightness distribution, viewed along these two directions.
The same could be done looking along opposite directions on the surface parallel
to edges c and d. In a universe described by a three-dimensional, rather than a two-
dimensional hypersurface, the topology can be more complex. There could then be
numerous pairs of directions along which we could look to distinguish whether the
universe is simply or multiply connected. Light reaching the observer from differ-
ent directions would be traversing the universe along quite distinct trajectories, and
there would be little correlation in the brightness distribution pattern observed at
widely spaced angular separations. The actually observed microwave background
does lack such correlations at large angular separations, and this has led to the sug-
gestion that space might be closed — positively curved — and have a complex
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topology, specifically the topology of a twelve-sided, so-called Poincaré dodeca-
hedral space (Lu03). A search for matching pairs of patterns in the observed mi-
crowave background distribution, however has failed to confirm this (Co04).

11:17 Do the Fundamental Constants of Nature Change with
Time?

Has the speed of light been the same throughout the history of the Universe? Do
Planck’s constant or the gravitational constant, or the charge of the electron change
very slowly but yet significantly on a cosmic scale?

The first person to worry about this problem and to come up with some quantita-
tive indicators was P. A. M. Dirac (Di38). He noted that the fundamental constants of
Nature could be arranged in groups that were dimensionless numbers of order 1039

or (1039)2 = 1078. The ratio of the gravitational to the electromagnetic force of
attraction between proton and electron, or alternatively the ratio of the gravitational
to the electromagnetic Bohr orbit, is one such example

e2

mempG
= 1039. (11-84)

If this ratio is to be constant, then we would expect the mass and charge of the elec-
trons or protons to change if cosmic evolution affected the value of the gravitational
constant.

The radius of the Universe out to the cosmic horizon RH is of the order of
1028 cm, while the Compton wavelength of the electron is

−λc=
λc

2π
=

�

mec
= 4 × 10−11 cm , (6–168)

so that RH/ −λc∼ 1039 as well. In general, such numbers can be constructed by
taking the ratio of a cosmic and a microscopic quantity. We may not expect to get
ratios of precisely 1039 in each case, but the exponents cluster remarkably closely
around the numbers 39 and 78. The number of atoms in the Universe obtained by
dividing the mass of the Universe M by the mass of the proton mp is

N =
M

mp
= 1078. (11-85)

The puzzling thought about this ratio is that the flow of particles across the cosmic
horizon would clearly destroy its constancy on a time scale of the order of an inverse
Hubble constant τA = H−1 ∼ 4×1017 s. Over a period of 1010 yr,N would change
appreciably, in violation of Dirac’s argument that dimensionless constants should
not change.

Dirac argued that if the clustering of such numbers around the values of 1039 or
its multiples was no coincidence, then it indicated that microscopic and macroscopic
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— atomic or subatomic and cosmic — quantities were related. Since the Universe
is expanding, then because of the changes in the size of the Cosmos, there should
be corresponding changes on an atomic scale to keep the dimensionless expressions
constant. How this might happen he did not explain.

Gravitational fields have been considered the only suitable candidates for induc-
ing change, ever since Einstein tried to incorporate Mach’s principle into his general
relativistic theory of gravitation. Mach’s principle, named after nineteenth and early
twentieth century scientist Ernst Mach, takes on various forms, but states that the
local properties of the Universe should somehow be dictated by its grand structure.
Dirac’s hypothesis of constant dimensionless numbers is another version of Mach’s
principle. Its quest is to unite the very large-scale behavior of matter with physics
on an atomic and nuclear scale.

The question of ultimate interest is whether the fundamental constants of Nature
remain constant or change as the Universe evolves? A natural time scale over which
we might expect the constants to change in response to an expanding universe is
the age of the Cosmos, of order H−1. Let us first examine what we know about the
gravitational constant G.

Between 1969 and 1971 astronauts placed laser-ranging retroreflectors on the
Moon. Laser signals from Earth bounced off these reflectors show no changes in the
Moon’s orbit in over three decades. This places an upper limit of | Ġ/G |< 10−11

per year (No96). More involved and somewhat less direct arguments restrict even
this low rate by another order of magnitude (Th96).

An interesting study on the possible variability of Planck’s constant with world
time was done by Wilkinson (Wi58). He was interested in the integrated effect of
changes in Planck’s constant over a period of the order of the age of the Earth. The
age of the Earth and of meteorites can be determined separately from a number of
different radioactive decay schemes, some of which involve alpha-particle emission
and others beta-decay. These two processes have quite different physical bases, and
we would not expect the ages given by beta- and alpha-decay schemes to be the
same if the fundamental constants of Nature varied appreciably.

The evidence cited by Wilkinson comes from a study of paleochroic haloes.
These haloes are spherical shells observed in rocks that have small inclusions of
radioactive material. As the material decays, any alpha particles will give rise to a
thin visible shell at the end of the particle’s path through the rock, where most of the
energy is dissipated. Corresponding to individual alpha-particle energies, we then
obtain individual shells. These shells are easily identified with given alpha-decay
schemes. Two statements can then be made.

(i) The physics of charged particle transit through material, a process that is
purely electromagnetic, is invariant over a period of order 2 × 109 yr or perhaps
slightly more. Otherwise the shells would be diffuse, not thin. This is instructive
because the alpha-decay scheme discussed by Wilkinson involves both electromag-
netic and nuclear forces.

(ii) Some alpha-emitting nuclei also have the possibility of undergoing beta de-
cay. The ratio of these two decay rates is called the branching ratio. Wilkinson was
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able to state that if the branching ratio had increased or decreased by an amount of
order 10 over the past 2× 109 yr, he would have found that certain haloes produced
by alpha particles should have been absent and others much stronger than predicted.
Because no such anomalies were found, any changes taking place over the past few
æons in the many fundamental physical constants involved were probably small.

Observations on a variety of different spectral lines, all similarly red-shifted in
distant quasars, permit us to also conclude that the relative masses of the electron
and proton cannot have changed by more than a few parts in 1014 per year, and
that the fine-structure constant must have remained comparably constant (Co95a).
Similarly, observations of distant quasars have shown the fine-structure constant α
to be constant to a few parts in 1016 per year, and laboratory experiments conducted
over a five-year period show the current rate of change of the fine-structure constant
to have upper limits of the order of a few parts in 1015 per year (Fi04).

If there are changes in the fundamental physical constants they are so small that
they are unlikely to have played a role in the evolution of the Universe – or vice
versa. The expansion of the Universe apparently has no significant influence on the
fundamental constants of Nature. Mach’s principle appears to be invalid.

11:18 The Flow of Time

We tend to think that time always increases. But with respect to what? And what do
we mean by “increase”?

The simplest answer would be to say that time is that which is measured by
a clock. But as we saw in Section 3:10 there are different types of clocks and we
might wish to compare them to see whether they all are running at the same rate or
whether there might be, say, a systematic slowing down of one type of clock relative
to the others.

Here we have assumed that all possible clocks will always run in one direc-
tion only. In that case, however, we would never be able to decide whether time is
running “forward” or “backward” because these two directions would be indistin-
guishable.

For gravitational and electromagnetic processes we do not know how to define a
direction of time’s flow. The physics that describes the orbiting of the Earth around
the Sun holds equally whether the Earth moves in a direct or retrograde orbit. Under
a time reversal, the Earth and all the other planets would return along the same orbits
that had led them to their current positions in the Solar System. Such orbits would
be no different from a set of future orbits that could have been predicted from a
simple reversal of all velocities involved. If we recorded the motion of the planets
on film, we would detect no violations of the laws of Nature whether we ran the film
forward or backward.

Similarly we could use the orbital motion of an electron in a magnetic field to
define time. Here the orbit in which the electron travels is identical to one that a
positron would travel if it were going along the same path backward in time.
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Both these examples exhibit a basic symmetry that seems to pervade all nat-
ural physical processes. If we reverse the flow of time T , reverse the sign of the
electric charge of matter C , and reverse the sign of all positions and motions, in
what is called a parity operation P , then the observed results are indistinguishable
from an original process in which none of these reversals or reflections took place.
The operation C is called charge conjugation; and T is called the time-reversal op-
eration. The currently favored physical theories, the so-called local field theories,
require that under the combined operations CPT all physical processes remain in-
variant.

Because of these symmetries, it would appear impossible for us to know whether
we are living in a world in which time is running forward and the Universe is
expanding, or whether time is running backward and the Universe is contracting.
These cosmic motions are independent of electric charge so that a charge conju-
gation would not be noticeable either. We would just assume we were made up of
matter, but actually it might be what we currently call antimatter.

How, then, do we determine the direction in which time is flowing?
The second law of thermodynamics was long believed to define the direction

of time in a unique way. The law states that as time increases, any isolated system
tends toward increasing disorder. Light initially concentrated near the surface of a
star flows out to fill all space. The reverse never happens. Light that fills space does
not converge and flow into a single compact object. Such ordered motions, although
strictly permitted by a simple time-reversal argument, are possible but highly im-
probable. The second law of thermodynamics states that as time increases, greater
randomness comes about because there are many states of a system in which the sys-
tem is disordered and only few in which it has a high degree of order. If any given
state is as likely to occur as any other state, then the chances are that the evolved
system will be found in one of the many disordered states rather than in one of the
very few ordered configurations.

If tendency toward disorder depends on the cosmic expansion, as suggested by
T. Gold (Go62), then the flow of time should be well correlated with the flow toward
disorder. But what would happen if the Universe were contracting rather than ex-
panding? Would the second law still hold and time run in the accustomed manner?
We do not know.

We wish that there might be more straightforward ways of determining the di-
rection of the flow of time. A possibility of this sort has come into sight in recent
decades.

In 1956 Lee and Yang (Le56) pointed out that parity might be violated in weak
interactions. This was swiftly verified in a variety of experiments. Parity, P, is the
ability to differentiate mirror-symmetric objects, such as a right hand from a left
hand. Experiments on beta decays, which involve solely the weak force of nature,
showed that all neutrinos have a left-handed spin, never a right-handed, whereas
antineutrinos have a right-handed spin. Nature evidently can tell left from right.

However, it then seemed that invariance under a combination of operations CP
should hold universally true. A positron moving in a negative direction should in-
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variably trace out the same path as an electron moving in a positive direction at an
identical velocity. If CP invariance held, together with the above-mentioned CPT
invariance, the laws of physics still would automatically remain invariant also under
time reversal, T .

In the mid-1960s, however, a group at Princeton University (Ch64) discovered
that violations of CP symmetry occasionally occurred in the decay of neutral K-
mesons. Since then this has been fully confirmed in measurements on both neutral
K and neutral B mesons.

In the high-energy collision of protons and antiprotons one produces both neu-
tral K mesons K0 and their antiparticles K̄0. A K0 is always accompanied by pro-
duction of a π+ and a K−; a K̄0 is always accompanied by a K+ and a π−. This
makes it easy to know whether a K0, a kaon, or its antiparticle, an antikaon has
been produced. This is important, because the K0 and K̄0 spontaneously intercon-
vert; each oscillates between being a K0 and a K̄0 a part of the time. Both these
particles are unstable. The K0 decays into a π+ and an e−, and a K̄0 decays into
a π− and an e+. By observing the nature of the particle initially produced, and the
decay products when it decays, we can determine what fraction of the time the K0

remains a K0 and what fraction of the time it spends as its antiparticle K̄0, and vice
versa. Measurements show that there is a slightly greater probability, ∼6 × 10−3,
that the antikaon will turn into a kaon than the other way around. We may think of
this as the time required for the kaon–antikaon transformation being longer than the
antikaon–kaon transformation.

Now, the time taken for a kaon–antikaon transformation equals the time-reversed
rate for the antikaon-kaon transformation. If we recorded the sequence on film, the
time taken would be the same running the film forward as backward. But because the
observed kaon–antikaon transformation is slower than the observed antikaon–kaon
transformation, this is a violation of time-reversal invariance (Pe98, Sc99).

Nature does seem to know which way time flows. However, whether this ability
to distinguish the direction of time also determines its direction, is not yet resolved.

In Section 12:12 we will discuss the preponderance of matter over antimatter in
the Universe, an asymmetry that may be related to a violation of CP or time-reversal
T symmetry. If so, however, the specific violation accounting for this preponderance
of matter still eludes us (Qu03).

11:19 Branes and Compact Dimensions

The three-dimensional hypersurfaces we discussed in Section 11:4 can be thought
of as three-dimensional membranes — 3–branes — in a four-dimensional space. A
recent set of world models suggests that our Universe is just one of many branes,
parallel universes, that are stacked in layers in a higher-dimensional space having n
extra spatial dimensions beyond the three infinite spatial dimensions that constitute
our brane. Figure 11.12 shows such a brane that happens to fold back on itself.
But separate branes stacked on top of each other also have been postulated. The
spacing between these surfaces could be as small as a fraction of a millimeter. A
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Fig. 11.12. A brane model of the Universe. Branes are three-dimensional worlds that may be
separated from each other by a gap less than 1 mm across. Branes may fold over, as shown
in this illustration, or they may run parallel to each other indefinitely. Light, neutrinos, and
relativistic particles can propagate solely within each brane, but gravitational fields set up in
one brane may propagate across the gap to another.

currently favored model is one in which n = 2 additional noncompact dimensions
exist. Noncompact dimensions are dimensions that could be infinite, in contrast to
compact dimensions that might, e.g., represent particle spins, which are restricted to
a finite domain (Ra99, Ar02).

Vibrations of branes could occasionally cause them to collide and produce all the
energy and matter in the universe. Such collisions might repeatedly occur, giving
rise to an endless series of universes. One consequence could be that the cosmic
expansion we are currently witnessing is not the result of a single explosive origin
of our universe, but rather is due to a collision between an adjacent brane and ours.

Brane worlds have been invoked to explain why gravity is so weak compared to
electromagnetic and nuclear forces — i.e., why the gravitational attraction between
two electrons is 42 orders of magnitude weaker than their electrostatic attraction.
The argument is that although photons, neutrinos, and all particles are restricted to
adhere to a single brane, gravity propagates in all the added dimensions as well, be-
cause gravity is what determines the structure of space–time. On scales smaller than
the separation between branes, gravitational forces might then be much stronger, be-
coming comparable to electromagnetic forces on very small scales. Experiments de-
signed to search for changes in the gravitational constantG on scales below 100µm,
to date have failed to uncover dramatic changes (Ch03). Predictions made by vari-
ous versions of the theory can also be tested with accelerators that slam elementary
particles into each other at energies of order 1012 eV. It is heartening that these
theories can be experimentally tested — and potentially accepted or rejected.

Additional Problem

11–18. A supernova exploded at (z + 1) ∼ 20. Using (11–38), and (11–56) with
n = 3

2 , show that its distance at the epoch of explosion t1 was
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a1χ(z) =
a0χ(z)
(z + 1)

=
1

(z + 1)
c

H)

∫ z

0

dz

(z + 1)3/2
∼ 1027 cm .

If its luminosity was 1046 erg s−1 show, with the help of (11–34), that its bolometric
flux observed today is F ∝ (z + 1)−4 ∼ 5 × 10−15 erg cm−2 s−1.

Answers to Selected Problems

11–1. Writing x2
4 = a2 − r2, with r2 = x2

1 + x2
2 + x2

3, we have

dx4 =
(r dr)
a2 − r2

11/2

, and dx2
1 + dx2

2 + dx2
3 = dr2 + r2 dθ2 + r2 sin2 θ dφ2.

This leads to (11–7) which gives (11–5) on substituting (11–8).

11–2. The radius of the circle is aχ = constant. From (11–5) we see that an element
at distance aχ has an increment of length squared

dl2 = a2 sin2 χ(sin2 θ dφ2 + dθ2) .

(i) We can always choose θ = π/2 as the plane of the circle; then the circumfer-
ence becomes ∮

dl =
∫ 2π

0

a sinχdφ = 2πa sinχ.

The ratio of circumference to length therefore is χ−12π sinχ ≤ 2π.
(ii) The area of an element on the sphere is

dσ = (a sinχ sin θ dφ)(a sinχdθ).

The area of the whole sphere therefore is∫ ∫
a sinχ sin θ dφ a sinχdθ = 4πa2 sin2 χ.

(iii) The element of three-dimensional volume suggested by (11–5) is

dV = (a dχ)(a sinχdθ)(a sinχ sin θ dφ) = a3 sin2 χ sin θ dθ dφ dχ

from which (11–10) and (11–11) follow.

11–3. (i)

x2
4 = −a2 − r2, dx2

4 = − r2 dr2

(a2 + r2)
,

dl2 = dr2 + r2(sin2 θ dφ2 + dθ2) − r2 dr2

a2 + r2
.
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This is equivalent to (11–14).
(ii) With r ≡ a sin hχ

dl2 = a2 sinh2 χ(sin2 θ dφ2 + dθ2) +
a2(d sinhχ)2

1 + sinh2 χ
,

but 1 + sinh2 χ ≡ cosh2 χ and d sinhχ = cosh χdχ, so that we obtain (11–15).
For aχ = constant, θ = π/2, dl = a sinhχdφ, and a circle has circumference
2πa sinhχ ≥ 2πaχ.

(iii) The element of surface is then seen to be

dσ = (a sinhχ sin θ dφ)(a sinhχdθ) .

Integration over all values of θ and φ for aχ = constant then gives (11–16).
(iv) Similarly, the volume element is

dV = (a sinhχdθ)(a sinh χ sin θ dφ)(a dχ) ,

which leads to (11–17).

11–4. Equation (11–23) states 1 + z = a(t0)/a(t1). A Taylor expansion in
∆ ≡ (t1 − t0) gives

1 + z =
a(t0)

a(t0 +∆)
= 1 − ȧ0

a0
∆+

1
2

(
ȧ2
0

a2
0

− ä

a0

)
∆2 + . . . ,

where a0 ≡ a(t0). This yields (11–24).

11–5.

sinh2 χ =
(
χ+

χ3

6
+ · · ·

)2

= χ2 +
χ4

3
+ · · · = χ2 − kχ4

3
+ · · · , k =−1.

sin2 χ =
(
χ− χ3

6
+ · · ·

)2

= χ2 − χ4

3
+ · · · = χ2 − kχ4

3
+ · · · , k = 1.

N(χ) =
4π
3
nχ3

(
1 − k

5
χ2 + · · ·

)
.

11–6.

q0 = −a0ä0

ȧ2
0

. For exponential expansion :

ȧ0 = a0H, ä0 = a0H
2, ... q0 = −1.

11–8. (a) Because k = Λ = 0, and P = ρc2/3, ä = 0, in equation (11–46). We
know that for a relativistic gas ρ ∝ a−4, so that (11–45) can be written as

H =
ȧ

a
=
(

8πGρ0

3

)1/2
a2
0

a2
,
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where a0 and ρ0 are values chosen for some initial time t0 = 0. On integrating, we
obtain a world time ta:

a−2
0

(
3

8πGρ0

)1/2 ∫ a

0

a da =
∫ ta

0

dt = ta ∼ 1
2H

for a0  a.

(b) When the pressure can be taken as negligible, P = 0 and

ȧ

2a
= − ä

ȧ
,

which integrates to ȧ = Aa−1/2, where

H =
ȧ

a
=
(

8πGρ′0a′03

a3

)1/2

≡ A

a3/2

defines the value of the constant of integration A. A second integration then yields,
for ta � t′0,

ta ∼ t− t′0 =
2
3

(
1

8πGρ′0a
′
0
3

)1/2

(a3/2 − a′0
3/2) ∼ 2

3H
for a′0  a.

(c) This follows from integration of (11–45) for ρ = k = 0.

11–9. (i)

Λ = (a2)−1 +
8πGP
c4

because ȧ = ä = 0 in (11–46) .

(11–64) then follows from (11–45) and (11–46).
(ii) The result follows from substitution of the given values in (11–46) and

(11–45).

11–10. (11–45) and (11–46) yield

Λ =
3ȧ2

c2a2
=

2aä+ ȧ2

c2a2
,

which has the solution (11–65). The age is a/ȧ = H−1 =
√

3/Λc2.

11–11. Initially, by (11–45), (11–46), 6ä = ac2[2Λ − 8πGρ/c2]. If ρ decreases
because of a disturbance, ä > 0, the universe expands, which decreases ρ further,
and so on (Ed30).

11–12. The first set of expressions is obtained from equations (11–45) and
(11–46), on setting ä = 0, with P = 0 for nonrelativistic matter and P = ρc2/3 for
relativistic matter. The second set of expressions is then obtained by setting ȧ/a = 0
and substituting the respective values for Λ into equation (11–45).
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11–13. (a) From (11–46) and the definition of ΩΛ in (11–61), ΩΛ = 1
3 follows at

once in a matter-dominated universe. Equations (11–45) and (11–60) then lead to
ΩM = 2

3 , a result that also is apparent because ΩΛ + ΩM = 1 in a flat universe,
k = 0.

(b) In the radiation-dominated case, (11–45) and (11–46) lead to ΩΛ = ΩM ,
and for k = 0 each must be 1

2
.

(c) For 8πGPΛ/c
4 = −Λ, (11–46) with (11–45) lead to Λ = 8πGρM/5c2,

or ΩΛ = ΩM/5, for ä = 0. Because today’s value of ΩΛ ∼ (0.7/0.27)ΩM , the
density ρM at inflection must have been 5 × 0.7/0.27 ∼ 13 times higher, so that
(z + 1) at inflection would have been 2.35 and z = 1.35.
11–14. (11–45) and (11–46) give

−2aä = ȧ2 + kc2 =
8πGρa2

3
.

For Λ = P = 0,

−
(
äa

ȧ2

)
= q0 and 2q0 − 1 =

−2aä
ȧ2

− 1 =
kc2

ȧ2
=

kc2

H2a2
.

11–15. (a)
8πGP
c4

= −
[
2aä+ ȧ2 + c2

c2a2

]
=

8πGρ
3c2

=
c2 + ȧ2

c2a2

so that initially äa = −(c2 + ȧ2). We try the solution (11–71) that gives

ȧ+ = c cotx, ä+ =
−c2

b(+o) sin3 x
.

These satisfy the differential equation above.
(b) The trial solution (11–71) satisfies the equation

2äa = −(ȧ2 + c2)

which follows from (11–46) at this stage of evolution. We see this since

ȧ+ = c sinx[1− cosx]−1, ä+ = −c2[a(+o)(1 − cosx)2]−1.

(c) The equation to be satisfied now is äa = c2 − ȧ2 which, following the above
procedures, is fulfilled by (11–73).

(d) Similarly (11–74) satisfies 2äa = −ȧ2+c2 for the late stages of a hyperbolic
universe.

11–16. For Λ = k = 0 , and n = 3 or 4, respectively, for a matter- or radiation-
dominated universe, we have(

ȧ

a

)2

=
8πGρ0

3

(
a0

a1

)n
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from (11–45), so that (11–82) yields

χph = c

∫ t0

0

dt

a
= c

(
3

8πGρ0an
0

)1/2 ∫ a0

a1

a(n−4)/2da .

For a1  a0, this yields a0χph = RH for n = 4 and a0χph = 2RH for n = 3.

11–17. (a) We can rewrite equation (11–45) as

(
ȧ

a

)2

=
(
ȧ0

a0

)2 [
ΩM (z + 1) +

ΩΛ

(z + 1)2

]
(z + 1)2 .

On setting (z + 1) = a0/a1 we obtain the desired result.
(b) Noting that dt/a(t) = da/(ȧa), we obtain the distance to the surface emis-

sion at z ∼ 1100 from equation (11–19) as

χ(t1, t0) =
c

ȧ0

∫ a0

a1

da

[Ωma0a+ ΩΛ(a4/a2
0]11/2

.

This may be integrated to obtain the distance to the surface of last scatter, 46 Glyr,
shown in the bottom panel of Fig. 11.9. A rough estimate is obtained by neglecting
the second term in the denominator, which remains relatively small until z ∼ 0.5.
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Having gained some insight into the present appearance of the Universe and the
factors that determine its evolution, it is natural to ask whether the Cosmos ever had
a beginning and what, if anything, came before it. In Section 11:3 we saw why the
Universe cannot be in a steady state but must be evolving. It either had a beginning,
or it has oscillated, alternately expanding and contracting. An evolving universe,
however, raises two new problems of its own, which we now take up in turn.

12:1 The Isotropy Problem

The first of these concerns the near-perfect isotropy of the microwave background
radiation. Admittedly, as we saw in Section 5:9, the Sun and nearby galaxies ranging
out to ∼100 Mpc and moving as a group, exhibit peculiar velocities of the order of
several hundred kilometers per second with respect to the microwave background
radiation. Figure 12.1 summarizes some of this information. But, averaged over the
largest scales, ∼>103 Mpc, the distribution of galaxies appears to be at rest with
respect to the background. This raises a puzzling question, “How could the cosmic
microwave background radiation be as homogeneous and isotropic as it is observed
to be?” This radiation is reaching us from great distances. Yet it must at some time
have been in local thermal equilibrium to have a blackbody spectrum. But how can
we account for thermal equilibrium in radiation arriving from portions of the sky
in diametrically opposite directions? The radiation from each of these directions
is only just now reaching us after a long journey through space. How could two
such widely separated regions ever have been in causal contact, let alone thermal
equilibrium?

Equation (11–19) tells us that the rate at which light can traverse an increment
of comoving distance dχ in time dt is

dχ

dt
=

c

a(t)
. (12-1)

PROBLEM 12–1. Using equations (12–1) and (11–56) to (11–58), show that the
time taken for light to cross a parameter distance 2χ is always more than twice the
time it took to traverse χ in the first place, whether a universe is in a relativistic
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Fig. 12.1. Estimates of the motion of the Local Group of galaxies. The direction of motion
relative to the microwave background radiation is designated COBE, signifying that it was de-
rived from data obtained with the Cosmic Background Explorer, COBE satellite. More recent
observations with the Wilkinson Microwave Anisotropy Probe, WMAP provide an even more
precise determination in good agreement with the position shown. Residual velocity mea-
surements — deviations of red-shift distances from other distance indicators — are shown as
follows: Filled and open points represent supernovae, respectively, with negative and posi-
tive residual velocities. The areas of these points correspond to the magnitude of the velocity
residual. Filled and open crosses show the direction the Local Group is approaching or leav-
ing, according to the best fit to available data, respectively, on supernovae in distant galaxies,
and data on the brightest galaxies in clusters reported by Lauer and Postman (La94). Galactic
coordinates are used with the Milky Way plane at zero latitude and the central meridian at
335◦, i.e., removed 25 ◦ from the Galactic center (Ri95).

phase or is filled with nonrelativistic matter. Show also that the comoving distance
χ that can be traversed in time t increases monotonically in proportion to t1/2 in a
radiation dominated era and t1/3 in a matter-dominated era.

Since the microwave radiation from two opposite directions in the sky is only
just now reaching us, it would appear that the sole way these regions could have
reached thermal equilibrium, in either a radiation- or a matter-dominated era, is to
postulate an epoch, early in the evolution of the universe, during which the Universe
was not expanding or only expanding slowly. Though a cosmological constant can
bring about a pause in expansion, the current value of Λ is so minuscule that it
cannot have sufficiently reduced the expansion at early epochs when radiation and
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matter densities were the dominant terms in equations (11–45), (11–46). These two
equations are rewritten here for convenience,

8πGρ
3

=
−Λc2

3
+
(
ȧ2 + kc2

a2

)
. (12-2)

dρ

dt
+ 3
(
ρ+

P

c2

)
ȧ

a
= 0, or

8πGP
c4

= Λ−
(

2aä+ ȧ2 + kc2

c2a2

)
. (12-3)

12:2 The Flatness Problem

A second problem that appeared puzzling for some time was the apparent absence
of any curvature in the Universe. This came to be known as the flatness problem.
Let us rewrite equation (12–2) in the form

4πGρa3

3a
=
kc2

2
+
ȧ2

2
− Λc2a2

6
. (12-4)

We then note that the term on the left has the form of a potential, whereas the sec-
ond term on the right has the form of a kinetic energy per unit mass. If we consider
conditions in the remote past, when the Universe was very young and more com-
pact, we see from (12–4) that the cosmological constant term would have declined
in proportion to a2 and become negligibly small as a declined. In contrast, equation
(11–54) shows that the potential term was proportional to a−2, and therefore very
large. ȧ2 must therefore also have been very large, and the difference between these
two quantities, namely kc2, would have remained constant, independent of a. In or-
der for this term to be small today, it must have been a fantastically small fraction of
the potential or the kinetic energy per unit mass when the Universe was very young.
For all practical purposes the Universe must have been very close to Euclidean at all
early times. The most sensible conclusion to draw was that the Universe had always
been flat, and that the Riemann curvature constant had always been k = 0, and still
was. In general relativistic cosmologies, the curvature constant is a property of the
space that remains invariant, unaffected by the dynamics of evolution.

The problem with this was that today’s Hubble constant and hence ȧ2 were too
high for the present-day mass density on the left of (12–4) to balance. It appeared
that the Universe had to be open and k = −1. This was before the recognition that
the dark matter density of the Universe appreciably exceeds the baryonic density,
and before the existence of dark energy had been discovered and found to readily
balance the equation with k = 0.

With this realization, the flatness problem went away. However, both the isotropy
and the flatness problems have had an historically important impact on cosmological
thought and were two of the original reasons for adopting the inflationary cosmo-
logical model, which we will discuss below, in Section 12:6. Before that, however,
we need to delve into the origins of the microwave background radiation.
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12:3 Where Did the Microwave Background Radiation Originate

Let us ask ourselves first whether we can identify any plausible sources of energy
giving rise to the microwave background radiation. Could this energy, for exam-
ple, have been generated in stars? Could a large number of discrete sources have
produced this uniform background?

If the Universe is isotropic and homogeneous, we can imagine dividing it into
individual cubicles separated by totally reflecting walls that expand along with the
Cosmos. The radiation accumulated due to past emission by sources within each
cubicle, as measured today, would then be precisely the same as though no walls
had existed at all. Successive reflections off the receding walls would systematically
redshift the radiation.

Consider such a cubicle that currently has unit volume. At some past epoch char-
acterized by red shift z, the sources within the cubicle emitted an energy increment
∆ε. The red shift will have reduced this to∆ε(1 + z)−1, by today. Because the vol-
ume of the cubicle will, in the meantime, have increased by (1 + z)3, the radiation
density in the cubicle will have declined by (1 + z)4, but the volume would have
increased by (1 + z)3.

Let us next ask whether the energy now found in the microwave background
could have been produced through the conversion of hydrogen into heavier elements
in stars? We currently observe that a fraction f < 0.30 of the mass of atomic matter
is in the form of elements heavier than hydrogen (Lo03). Most of this is in the
form of helium. As discussed in Chapter 8, the liberated energy is 0.029 hydrogen
masses mH per helium nucleus formed. For a contemporary baryonic density, ρB ,
we therefore would expect the radiation density in the Universe to be

ρrad =
∆ε

(1 + z)4
≤ 0.029fρBc

2

4(1 + z)
≤ 8 × 10−13

(1 + z)
erg cm−3, (12-5)

where the baryonic density, today, is ρB(t0) = ΩBρcrit ∼ 4 × 10−31 g cm−3

and an energy injection epoch, z, is assumed. The dependence on (1 + z)−1 is
readily understood if we consider the ratio of photon-to-nucleon number densities
to remain constant during cosmic expansion. Then the energy per photon decreases
with increasing red shift as (1 + z)−1, while the mass–energy for nucleons remains
constant.

Today’s microwave background corresponding to a temperature of 2.725 K pro-
vides a radiation density of 4× 10−13 erg cm−3. If the hydrogen-to-helium conver-
sion energy had been recently injected into the Universe and had then been rapidly
thermalized, it would be possible to account for the observed radiation density, ρrad,
only if the flux had been generated at epochs z ≤ 2. Otherwise the red-shifted en-
ergy density would fall short of the currently observed background radiation.

Current observations of the most distant quasars and galaxies indicate that the
Universe was largely transparent by the epoch z = 6. Within galaxies not quite
that distant, for which infrared observations are available, about half the radiation
produced in stars appears to have escaped as ultraviolet, visible, or near-infrared
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radiation, while another half was locally absorbed by dust and re-emitted in the far
infrared. But dust re-emission would have left its imprint on the background radia-
tion in marked deviations from its observed spectrum now known to be blackbody
to within <1% of peak intensity. Moreover, the high transparency of the Universe
by z = 2 would have prevented this infrared flux from becoming isotropically re-
distributed or thermalized.

The generation of sufficient energy through collapse of massive objects to form
black holes can also be ruled out. Table 1.6 shows that the total mass in black holes
today is of order 0.1% of the total baryonic mass, and it appears that far less than
1% of the collapse energy may be emitted as electromagnetic radiation. Nor would
this radiation have a blackbody spectrum.

Arguments along such lines rule out the possibility that the microwave back-
ground could have been recently generated. We are driven, instead, to consider a
primordially hot Universe, whose thermal history is indicated in Fig. 12.2.

Fig. 12.2. Density/temperature history of the Universe since the Cosmos was one second old.
Based on a drawing by M. Longair (Lo78).
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12:4 Looking Back in Time

We now ask ourselves how, using only data available today, we might determine
conditions that existed in the Universe during earlier epochs. Some quantities we
will need to know depend only on the red shift z. These parameters are tabulated
in Table 12.1 and represent an adiabatic extrapolation back in time based solely on
volumetric arguments. Because the microwave radiation is thermal, the density is
related to temperature by the blackbody expression (4–74), ρ = aT 4 ∝ (z + 1)4.
The rest-mass density of matter, in contrast, is proportional to (z+ 1)3, throughout,
and a cosmological constant would have remained invariant.

Table 12.1. Evolution of Different Quantities with Red Shift.a,b

Red Shift Tphotons nphotons ρphotons ρM Remarks
(z + 1) K cm−3 g cm−3 g cm−3

1.1×109 3×109 5.4×1029 6.7×102 3.5×10−3

3×108 8×108 1.11×1028 3.7 ∼ 7×10−5 Element formation erac

104 2.73×104 4.1×1014 4.6×10−18 2.6×10−18

⇑ Radiation dominatedd

⇓ Matter dominatedd

1100 3.00×103 5.5×1011 6.7×10−22 3.5×10−21 Baryon decoupling erae

1000 2.73×103 4.1×1011 4.6×10−22 2.6×10−21

100 272.5 4.1×108 4.6×10−26 2.6×10−24

10 27.25 4.1×105 4.6×10−30 2.6×10−27

1 2.725 4.1×102 4.6×10−34 2.6×10−30 Present

a Assumes a current value of ΩM = ΩB + ΩDM ∼ 0.27, with baryonic matter alone,
ΩB ∼ 0.04, H0 = 70 km s−1 Mpc−1 and ρcrit = 9.7× 10−30 g cm−3. ρM is the rest-mass
density. The mass density of photons is ρphotons = aT 4

photons/c2.
b Entries in this table are derived from current estimates, which appear in the last row. These
are extrapolated backward in time assuming adiabatic evolution.
c As we will see in Section 12:13, helium and trace quantities of other light elements form
from protons and neutrons at this epoch.
d The radiation- and matter-domination epochs are discussed in Section 12:16.
e At high temperatures matter and radiation are coupled and in thermal equilibrium. As the
Universe expands and cools to sufficiently low temperatures and densities, baryons and radi-
ation decouple and cool to different temperatures. This is discussed quantitatively in Section
13:5.

This extrapolation tells us that the Universe could at one time have been ex-
tremely hot and compact, quite possibly at temperatures and densities far higher
than those envisaged in Table 12.1. Let us, therefore, tackle the question from a
different perspective and ask, “What is the highest temperature, highest density uni-
verse we could image?”
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12:5 The Planck Era

Let us first ask about the earliest, shortest time span over which the laws of physics,
as we currently understand them, might have been valid. This is determined by
the range of validity of general relativity. At extreme densities and over extremely
short time intervals, this theory will need to be replaced by a quantized theory of
gravitation that still awaits discovery. However, as we saw in Chapter 5, it is possible
to list conditions under which general relativity can be trusted.

In Section 5:20 we found that the most compact mass we could envision was the
Planck mass

mp ≡
(

�c

G

)1/2

= 2.18× 10−5 g. (12-6)

The diameter of this mass is the Planck length

lp ≡
(

�G

c3

)1/2

= 1.61× 10−33 cm. (12-7)

The shortest time during which it makes sense to talk about such a mass is the length
of time light would take to traverse the Planck length. This is the Planck time,

tp =
(

�G

c5

)1/2

= 5.38× 10−44 s. (12-8)

Over shorter intervals than this, one end of the Planck mass distribution would cease
to be aware of the presence of the other end, so that the laws of causality would no
longer apply. The Planck time must therefore be considered the earliest time in the
existence of the Universe for which equations (12–2) and (12–3) could apply. There
is no guarantee that they apply that early, but there is reason to expect that they
cannot apply any earlier.

Finally, dividing the Planck mass by the cube of the Planck length gives us a
measure of the density the early Universe could have attained. The laws of relativity
could not be expected to apply at higher densities than this Planck density

ρp ≡ c5

�G2
= 5.18× 1093 g cm−3. (12-9)

It makes sense to also ask about the temperature that might have existed at the
Planck time. We can proceed by considering two possibilities: only bosons being
present or only fermions being present. For bosons, having two possible spin val-
ues, the density–temperature relation has the form of equation (4–74). For fermions
restricted to a single spin value, the energy density in the relativistic extreme is

ρ =
4πc
h3

∫ ∞

0

p3 dp

epc/kT + 1
=

7π5

30h3c3
(kT )4 =

7
16
aT 4, (12-10)

where a is the radiation constant 7.57× 10−15 erg cm−3 K−4 — not to be confused
with the scale factor for which we have used the same symbol a.
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For a mixture of bosons with statistical weight gbi and fermions with statistical
weight gfj , we then find

T = a−1/4ρ1/4

⎛
⎝1

2

∑
i

gbi +
7
16

∑
j

gfj

⎞
⎠

−1/4

c1/2. (12-11)

The factor c1/2 enters because equation (12–9) refers to energy density, rather than
mass density. If neutrinos and antineutrinos were present at such early epochs, we
would have to set gfj = 1 for each neutrino species because each has only a single
spin state. For electrons or positrons, gfj = 2, corresponding to the two possible
spin states for these particles. For photons, gbi = 2, again corresponding to two
possible spin states. If the number of available species was of order unity, the tem-
perature would have been

Tp ∼
(
c2ρp

a

)1/4

∼ 1032 K. (12-12)

The mass contained within the present-day horizon of our Universe is about
1055 g. At the Planck time this mass would have been contained in a volume of
order 10−39 cm3, having diameter ∼10−13 cm. This span, however, could only be
traversed at the speed of light, in 3×10−24 s, a period which is long compared to the
Planck time. We again encounter the difficulty here of causally connecting one end
of the Universe to the other during these initial states. This is not surprising because
we had set up equation (12–7) with the idea that the Planck time simply connects
different portions of a Planck mass causally — not a mass 60 orders of magnitude
larger and hence 20 orders of magnitude more extended.

12:6 Inflationary Cosmological Models

To overcome this difficulty with causality, while also resolving the isotropy and
the flatness problems, Alan Guth in 1981 introduced an inflationary cosmological
model that evolves through several successive stages (Gu81).

At first the cosmos is compact and expanding sufficiently slowly to permit
widely separated regions to come into causal physical contact and reach equilib-
rium. This gives way to vastly more rapid expansion of such enormous proportions
that regions which had previously attained equilibrium grow to a size far larger than
the currently observed Universe. This inflationary phase, in turn, is succeeded by a
stage in which the Universe is filled with radiation and particles at high temperature.
The expansion continues, though at a decreasing rate; the density and temperature
progressively decline, much in the fashion we had deduced in Table 12.1, ultimately
permitting the formation of clusters of galaxies and voids that we observe all around
us today. The expansion during the inflationary phase is so extensive that the Uni-
verse we observe out to the most distant galaxies is only a tiny portion of a much
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larger Cosmos beyond our event horizon, whose actual size may be incalculably
large.

Let us now examine how such a cosmos could take shape.
Starting in the Planck era, t ∼ 10−43 s, an interval of rapid relativistic expansion

begins, during which the density and hence the temperature both drop by many
orders of magnitude. During this time the scale factor a, the temperature T , the
world time t, and the density obey the relations (11–57) and (12–2)

a ∝ t1/2 ∝ T−1 ∝ ρ−1/4 . (12-13)

This continues until t ∼ 10−35 s by which time the temperature has dropped from
1032 K to 1028 K, where particles and/or radiation have energies of 1015 GeV. The
energy density has correspondingly dropped by a factor of 1016, so that the expan-
sion no longer is dominated by the matter and radiation density of the Universe but
rather by a vacuum energy density, assumed to have an energy density correspond-
ing to a temperature of ∼1015 GeV or ∼1028 K.

This vacuum energy density — a potential energy density — is dominated by
the so-called Higgs scalar field. Its form is not known but it is often written as

V (φ) =
λ

4
(φ2 − η2)2, (12-14)

sketched in Fig. 12.3.
Triggered by any small inhomogeneity, the vacuum energy density can slowly

relax to the state of lowest energy density, φ2 = η2, through a gradual expansion
resembling the expansion of a Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)
model, in which the vacuum energy density acts somewhat like a cosmological con-
stant Λ.

As the expansion proceeds, the Higgs field drives the expansion of the Universe.
Inserted into equations (12–2) and (12–3), the vacuum energy density acts very
much like a density due to a slowly varying cosmological constant Λ. The slow
variation reflects the gradual change in V (φ) as φ2 approaches η2. The word “slow”
needs to be explained. The entire inflationary expansion lasts only∼10−33 s. “Slow”
means that the vacuum energy is gradually relaxing toward η during this period. As
φ approaches closer to η, the potential drops appreciably more rapidly.

We can describe this sequence of events quantitatively. Substituting equation
(12–2) into (12–3) we obtain

8πGP
c2

=
2Λc2

3
− 2

ä

a
− 8πGρ

3
. (12-15)

To find the expansion rate we need to postulate an equation of state during this
phase — a relation between pressure and density. If we adopt a negative pressure,
and consider the density to be dominated by the Higgs field,

P

c2
= −ρ = − Λc2

8πG
, (12-16)
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Fig. 12.3. Sketch of the inflationary potential. Note the symmetry about the vertical axis,
φ/η = 0, the initially shallow decline in V (φ) as φ approaches ±η, and the much steeper
decline in V (φ) near φ = ±η.

we find from (12–3) that the density remains constant. If we set the expansion to be
exponential,

a = aoie
Ht = aoi exp

[(
2Λc2

3

)1/2

t

]
, (12-17)

where aoi is the scale factor at onset of inflation, equations (12–15) to (12–17) are
seen to be consistent with (12–2) and (12–3) provided the Riemann curvature term
kc2/a2 in equation (12–2) can be considered negligibly small. This is certainly close
to correct because the exponential expansion of the scale factor, a, rapidly reduces
any curvature that may have been present initially. Equation (12–17) reflects a re-
generation rate (11–77) and, once again, recalls that the inflationary stage mimics
the steady-state universe in apparently regenerating itself out of nothing.

The mass–energy density Λc2/8πG at t = 10−35 s, is of the order that the
radiation density would have at a temperature of 1028 K, which is ∼1077 g cm−3.
The exponential expansion rate at this epoch must then be of order

(
2Λc2

3

)1/2

∼ 4 × 1035 s−1. (12-18)

In the course of 1.5 × 10−34 s, the Universe is able to expand by a factor of ∼e60

or ∼1026. All this time the Higgs scalar field, which we have represented by a
cosmological constant, remains roughly constant; the energy required to keep up
the expansion is provided by the release of tension through the equation of state in
which the pressure term is just the negative of the energy density.

At the end of this inflationary expansion, the dimensions of the region encom-
passing the Universe that lies within our current horizon are of the order of 10 cm.
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Moreover, it has only taken the Universe ∼10−34 s to expand to this size. At the
speed of light the same expansion would have taken 10−10 s. This emphasizes that
space itself can expand at an arbitrary speed, limited only by equations (12–2) and
(12–3). Matter and radiation, in contrast, cannot traverse space any faster than the
speed of light, c.

Piecing together this series of events, we see that the Universe we now observe
around us has come from a region only about 10−25 cm in diameter at the start of
the inflationary phase. During the preceding 10−35 s this region could have been tra-
versed by radiation, come to pressure equilibrium, and attained homogeneity. There
is no guarantee that this actually happened, but the model makes a good case for it.
Note also that the region ∼10−25 cm in diameter is more than ten orders of magni-
tude smaller than the estimate of 10−13 cm we had reached in Section 12:5 without
considering inflation. The difference arises from the hypothesis that most of the
mass–energy density observed in the Universe today originates not from the mass–
energy present during the Planck era, but rather from the vacuum energy density
that is released following inflation.

A feature of the inflationary model is that it is also consistent with the flatness
of the Universe, the lack of observed curvature, and hence the value k = 0 of the
Riemann curvature constant. This is because any curved surface when sufficiently
expanded will appear flat in a small region around any chosen point. The inflation
increases the scale of the Universe so enormously and balloons the Universe out to
such a large extent, that locally, within any horizon defined by the speed of light, the
curvature becomes negligible.

Of importance in considering the inflationary model is the recognition that the
portion of the Universe we now see is only an unimaginably small fraction of a larger
Universe which will forever remain unknown to us — out of touch, beyond physical
reach, beyond study by physical means. Because physics normally confines itself to
statements about systems that can be examined observationally or through exper-
iment, the proposition that such remote realms of the Universe exist, though they
can never be observed, breaks with traditional ideas about the range of permissible
scientific inference!

PROBLEM 12–2. Fundamental particle physics suggests that the Universe should
have been filled with magnetic monopoles in the earliest moments of existence of
the Universe. Magnetic monopoles are carriers of magnetic charge, similar in fash-
ion to electrons that carry a unit of electric charge. These particles were consid-
ered by Polyakhov and independently by t’Hooft in 1974 (Po74), (Ho74) and are
likely to have energies of order 1016 GeV apiece. Show that after inflation, the Uni-
verse could have contained fewer magnetic monopoles than one for each galaxy that
would eventually form.
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12:7 The Post-Inflationary Stage

Toward the end of inflation, a phase transition sets in. The extreme expansion dur-
ing the inflationary phase will have drastically lowered temperatures as φ slowly
approached η. However, as the vacuum energy is released, rapid reheating occurs.
The energy of the false vacuum becomes available, much as energy is liberated when
supercooled liquid water freezes to form ice.

Conservation of energy and the establishment of thermal equilibrium at this
stage require that the enormous reservoir of vacuum energy give rise to large num-
bers of photons and particles. If only electromagnetic radiation were produced —
and produced suddenly — its temperature would correspond to T ∼ 1014 GeV. But
the vacuum energy does not decay all at once and, besides photons, an appreciable
array of other particles and antiparticles arises making for a high entropy. The re-
heating at the end of inflation is an essential feature of the theory. Just how it comes
about, however, is still being debated (Ko96). A relevant factor may be that the tem-
perature at this stage roughly corresponds to the temperature TGUT ∼ 1015 GeV,
at which grand unified theories of particle interactions, GUTs, expect the strong
and weak nuclear forces, as well as electromagnetic and gravitational forces, to be
roughly equal to each other. Below this energy, the strong and the electroweak forces
no longer remain comparable, symmetry is broken, and a phase transition can set in.

During reheating, the equation of state becomes that for a relativistic gas,

P =
ρc2

3
. (12-19)

Once this new phase of the Universe begins, the continuing expansion leads to
an adiabatic temperature and density decline, during which unstable particles decay
while some others, like neutrinos, decouple from the electromagnetic radiation field.
The Universe is now approximated by a FLRW model that continues to expand and
cool right down to the present era.

Not all of the vacuum-energy density from the inflationary state needs to be
transformed into particles and radiation. Some of it may stay on as a low-level resid-
ual cosmological constant, Λ, whose energy density c2Λ/8πG is negligible at the
time

c2 | Λ |
8πG

 3H2
o

8πG
(12-20)

in order to be consistent with today’s observed expansion rate.
At the world time tei marking the end of inflation, the total energy density is

almost unaltered from its original value at the onset of inflation Toi, a time when
strong, electromagnetic, and weak interactions all have a universal strength of about
1015 GeV, corresponding to a temperature of roughly 1028 K. The red shift at which
inflation ends, therefore, is zei ∼ 1028/3 ∼ 1027.5, where the factor 3 roughly
corresponds to today’s microwave background radiation temperature. Because the
Universe expands by a factor of ∼1026 during inflation, we see that the red shift at
onset of inflation would have been zoi ∼ 1053.5.
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12:8 The Riemann Curvature Constant

An important consequence of inflation is this: following the onset of the immensely
rapid inflationary stage, there once existed, at world time t1, a volume V1 that ulti-
mately evolved into a volume of the Universe V0 stretching out to some red shift,
say z ∼ 1, at the present world time t0 (Pe93)*.

To show this, let us consider the comoving distance χ(t1, t0) that a light ray is
able to traverse in time (t0 − t1). From (11–19) or (11-82) we see that this is

χ(t1, t) =

t0∫
t1

c dt

a(t)
=

a0∫
a1

c da

aȧ
. (12-21)

This finite comoving distance tells us that the rapid inflationary expansion phys-
ically isolated volume V1 from the rest of the Universe and kept it isolated until re-
cent times. The region within V1 evolved to its present appearance through a purely
local set of physical processes, unaffected before epoch t0 by anything that would
have gone on elsewhere in the Universe, beyond comoving distance χ(t1, t0).

This will be an important consideration when we look at the formation of cosmic
structures in Chapter 13. There, we will see that the size and distribution of clusters
of galaxies and voids can be related to density fluctuations and, more generally, the
curvature of space k in some volume V1 during the Planck era, possibly well before
the inflationary phase set in.

Let us examine this curvature quantitatively to show, as we previously assumed,
that its effect was essentially negligible on the evolution of the Universe, at least
until rather recent epochs. Galaxies we observe at moderate red shift z ∼ 1 today,
lie at a comoving distance χ0, given to rough approximation by

χ0a0 ∼ cH−1
0 . (12-22)

This approximation involves a scale factor that increases by no more than a factor
of (z + 1) ∼ 2, and a Hubble constant that decreases by only a factor of order
(z + 1)3/2 ∼ 2.8 during the traversal of χ0. We now assume that, at some initial
epoch during the inflationary era, t1, we would have had a scale factor a1 and a
corresponding Hubble constant H1 that would have again permitted radiation to
cross a comparably large comoving distance χ0 in roughly its own Hubble time

χ0a1 ∼ cH−1
1 . (12-23)

Expressions (12–22) and (12–23) lead to the conclusion that the red shift at t1 is, to
lowest approximation,

z1 ∼ a0

a1
=
H1

H0
. (12-24)

Equations (12–22) and (12–23) also show that the product χaH is roughly the same
at the present epoch t0, and at the early world time t1. And (12–2) tells us that
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(Haχ)2 =
8πGρ(aχ)2

3
+
Λ(aχc)2

3
− kχ2c2. (12-25)

Equations (12–22) and (12–23) show that the left side of (12–25) has the same value
∼ c2 at epochs t0 and t1, and for an identical value of χ the last term on the right of
(12–25) remains identical as well. Hence, the curvature term has the same fractional
significance relative to (Haχ)2 at epoch t1 as it does at the present epoch t0.

Let us now examine the evolution of the different terms in expression (12–25)
as we successively look back in time to epochs tei marking the end of inflation, and
even farther back in time to the onset of inflation at toi to determine the epoch at
which (12–23) would have held. We can see from (11–56) that H ∝ a−3/2 in the
matter-dominated era which, as Table 12.1 indicates, lasted from the epoch of red
shift (z + 1) ∼ 103.5 to the present, (z + 1) ∼ 1. During the preceding radiation-
dominated era going back to the end of inflation (1 + zei) ∼ 1027.5, H ∝ a−2.
During inflation — from (1 + zei) ∼ 1027.5 to (1 + zoi) ∼ 1053.5 H remains
constant.

This means that the left side of (12–25) first increases by a factor of 103.5 as we
go back in time from (1 + z) = 1 to (1 + z) = 103.5. It then increases by a further
factor of 1048, going back to red shift zei = 1027.5 for a total increase of 1051.5.
During inflation, the left side then drops in proportion to a2 ∝ z−2, in going from
zei back to zoi , and diminishes by a factor of ∼ 1051.

This explains how the left side of (12–25) can have roughly the same value at
t0 and some arbitrary epoch t1 following the onset of inflation at toi. Figure 12.4
plots the evolution of the product Ha to show that it had the same value following
the onset of inflation as it does today, so that (12–23) indeed would have correctly
described the Universe at epoch t1.

Fig. 12.4. Mapping of the Universe at inflationary times onto today’s observed Universe. The
diameter of the Hubble sphere at all epochs corresponds to the separation between the two
horizontal dotted lines. The black circular spot on the left, encloses today’s observed Universe
out to z ∼ 1. The black circular spot on the right encloses the corresponding region following
the onset of inflation that eventually came to be mapped onto the black circular spot on the
left, i.e., onto the portion of the Universe we see stretching out to z ∼ 1 today.
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PROBLEM 12–3. Show that the sum of the first two terms on the right of (12–25)
follows the same scaling as the left side of the equation in each of the three intervals
ranging from (z+ 1) = 1 back in time, respectively, to 103.5, 1027.5, and 1053.5, by
assuming that the term containingΛ is negligible compared to the term containing ρ
from z0 to the end of inflation, zei ∼ 1027.5, and that the false vacuum of the Higgs
field, designated by the term involving Λ during inflation, then dominates back to
zoi = 1053.5 and the onset of inflation.

PROBLEM 12–4. Convince yourself that, if the end of inflation occurred at red
shift zei = 1027.5, the onset of inflation must have taken place at zoi ∼> 1053.5, so
that the inflationary expansion of the Universe must have increased the scale factor
by at least 1026, for the homogeneity of the Universe to be explained by inflation.

Suppose now that the curvature term at the present epoch was significant though
difficult to discern. Then at world time t1, it would have been equally significant
relative to the other three terms in equation (12–25). At even earlier times during
the inflationary period, kχ2c2 would have grown in importance, as Λ(aχc)2/3, the
other dominant term in (12–25), would have declined in proportion to a2. The effects
of this increased curvature would be apparent today in observations of regions lying
beyond z ∼ 1 — i.e., outside the volume V0 we had considered. This is because
we observe these more remote regions as they appeared at a world time t  t0.
At that epoch, regions from an era much earlier than t1 would have been mapped
onto our universe, and those regions would correspondingly have exhibited larger
curvature. Because regions lying beyond z ∼ 1 show no such enhanced curvature,
we conclude that curvature was a minor effect even in the early phases of inflation.
The global value of the Riemann curvature constant appears to have been k = 0
throughout time. This partly justifies our assumption in Sections 12:6 and 12:7 that
curvature effects could be neglected.

Local curvature fluctuations on small scales are not ruled out by this argument.
In Chapter 13 we will see their importance for seeding the formation of cosmic
structures.

12:9 Quark–Gluon Plasma

Let us return to the post-inflationary era when the phase transition from the false
vacuum to the present-day vacuum sets in. What kinds of particles are created at
that epoch cannot be ascertained right now because neither the particles created in
high-energy accelerators, nor the most energetic observed cosmic-ray events reach
energies of 1014 GeV. The highest-energy cosmic-ray particles observed have en-
ergies just above 1011 GeV. More important, perhaps, the energetic cosmic-ray par-
ticles we do observe are isolated, whereas they would have been densely packed at
early epochs.
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We know that protons, neutrons, and the atomic nuclei in which they are assem-
bled consist of quarks and gluons. Accelerator experiments in which high-energy
gold nuclei are smashed into gold targets, fleetingly produce a dense aggregate of
subnuclear particles as two gold nuclei interpenetrate. These experiments show that
quarks and gluons, instead of being confined to well-identified particles then behave
more like free particles. At densities higher than those encountered in ordinary nu-
clei, quarks and gluons are expected to produce a quark–gluon plasma, QGP. Such
high densities would have existed in the post-inflationary era at temperatures above
1013 K corresponding to times earlier than ∼10−6 s.

Quarks are subnuclear particles characterized not only by an electric charge, but
also by what is called a color, though it has nothing to do with colors the human
eye can see. The quarks interact with each other through eight massless particles
— the gluons — which are massless but differ from electromagnetic radiation. Col-
lectively, the gluons and quarks are referred to as partons, since they occur only
as parts of other more complex particles — never as individual, isolated quarks or
gluons.

Six types or flavors of quarks have been found. They are designated as follows:

Table 12.2. Quarks, their Masses, and Electric Charges.

Quark Mass (Energy/c2) Electric Charge

up (u) ∼5 MeV/c2 +2/3
down (d) ∼10 MeV/c2 −1/3
strange (s) ∼150 MeV/c2 −1/3
charm (c) ∼1.3 GeV/c2 +2/3
bottom(b) ∼4.2 GeV/c2 −1/3
top(t) ∼173.5 GeV/c2 +2/3

The behavior of quarks and gluons is described by quantum chromodynamics,
QCD, the theory that deals with the structure of baryons, of which the protons and
neutrons are the most stable, and mesons, among which the pions and kaons are
the least massive. Collectively, the baryons and mesons are called hadrons. The
baryons, the class of particles that includes protons and neutrons contain sets of three
characterizing quarks, whereas the mesons, including pions, kaons, and others, are
characterized by a quark and an antiquark. The charged mesons necessarily have an
antiquark of a different flavor than the quark. Even though the electrical charges of
the quarks are multiples of one-third the electron charge, as shown in Table 12.2, the
total charge of every hadron is either zero or a positive or negative integer multiple
of the electron charge. The characterizing set of quarks for the proton are (uud). For
the neutron they are (ddu), respectively yielding a net charge of 1 and 0. Among
quarks, the d and u quarks have the lowest masses, making them the most stable.
Among hadrons, the protons and neutrons are the most stable.
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At early epochs when the Universe was still extremely hot, a quark–gluon
plasma consisting of all six types of quarks is thought to have prevailed. As the
temperature dropped below 2 × 1015 K, roughly 175 GeV, at ∼10−10 s, the t quark
and its antiparticle t̄ would begin to annihilate and decay into lower-mass quarks,
leaving only the five lower-mass quarks and their antiquarks in the quark–gluon
plasma. The other massive quarks would successively drop out in the same way,
ultimately leaving only the very low mass quarks, u and d, the strange quark s, and
possibly their antiparticles in the quark–gluon plasma as the temperature dropped to
∼250 MeV.

12:10 The Origin of Baryonic Mass

Let us now set up a cosmic chronology from as far back as experimental evidence
today permits us to reach. At a temperature of ∼250 MeV ∼ 3×1012 K, the Universe
is 10µs old, and u and d quarks are fully relativistic, as indicated by their low masses
listed in Table 12.2.

PROBLEM 12–5. Use equation (12–10) to estimate the mass density per quark
species as ∼3 × 1014 g cm−3 at a temperature T ∼ 3 × 1012 K. The combined
energy density of u and d quarks alone should, therefore, be ∼6 × 1014 g cm−3 at
this temperature.

PROBLEM 12–6. The radii of protons and neutrons are r ∼ 10−13 cm. Their
masses, given in Appendix B:1, are mP ∼ mN ∼ 1.67 × 10−24 g. Show that
the mass density of the matter contained in either particle is ∼4 × 1014 g cm−3.

From this we see that, as the temperature of the Universe drops through
T ∼ 3 × 1012 K, the mass density is rapidly dropping to the density of nucleons.
Before the temperature drops this low, the quarks are able to roam widely, because
quarks are free to move around as long as the quark plasma is sufficiently dense.
This property is called asymptotic freedom. But the binding force on a quark be-
comes essentially infinite if it attempts to stray beyond a distance of ∼10−13 cm
from its nearest neighboring quark. As the Universe expands and the density drops,
the quark–gluon plasma reaches the freeze-out density, at which it breaks up into
hadrons. By assembling themselves into hadrons, the quarks are able to maintain a
close distance to nearest-neighboring quarks. Removing them farther from a nearest
neighbor would require enormous energies. This explains why no isolated quark has
ever been observed.

By smashing two gold nuclei into each other at energies of 200 GeV, at the Rel-
ativistic Heavy Ion Collider, at the Brookhaven National Laboratory, a quark–gluon
plasma may have been fleetingly produced. A large fraction of the kinetic energy
of interacting nucleons — protons and neutrons making up the gold nuclei — is
converted into quarks, antiquarks, and gluons at high temperatures. As this plasma
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expands and cools, the freeze-out temperature is reached at which hadrons form.
These particles no longer interact with each other but stream out of the collision
target into an ambient set of detectors that measure their properties. Although the
aggregate produced in these collisions has some of the attributes theoretically ex-
pected of a quark–gluon plasma, further experiments are required to establish an
equation of state and the nature of the phase transition from the plasma to ordinary
hadronic matter (Lu03a).

It is interesting to note that the expected phase transition at early cosmic times
occurs when the quark–gluon plasma is still relativistic. To understand why this is,
we need to note that the mass–energy of two u quarks and one d quark adds up to
only ∼20 MeV/c2, whereas the rest-mass of the proton is ∼938 MeV. Why then are
the protons and neutrons so massive (Wi99)?

PROBLEM 12–7. To explain this mass difference, note that the radius of the proton
is rp ∼ 10−13 cm.

(a) Equation (7–1) then suggests that the momentum of each quark has to be
p ∼ �/rp ∼ 10−14 g cm s−1. Show that the quarks are moving relativistically.

(b) Show that the individual quark masses then are ∼ p/c ∼ 3.5 × 10−25 g or
∼200 MeV/c2 apiece, and that the three quarks alone can account for nearly 2

3 of
the rest–mass of the proton and similarly for the neutron. But this approach does not
take the mass of the gluons into account.

(c) The gluons binding the quarks set up a potential that allows the quarks to
move freely when they are close to each other, but sharply prevents them from ven-
turing beyond rp. We can then think of the gluons as setting up a potential well with
close-to-vertical walls in which the three quarks are trapped. The lowest energy of
each quark will then be a standing wave state with wavelength twice the potential
well diameter, amplitude zero at the well walls and maximum amplitude at the well
center. Show that the total mass of the three quarks in the potential set up by the
gluons should then be ∼930 MeV/c2.

Although Problem 12–7 is a drastic oversimplification — because gluons and
quarks are inseparably connected — the masses of protons and other hadrons can
indeed be calculated in computations that seek out stable configurations of partons
mutually interacting to produce standing waves (Wi99). Such calculations show that
most of the baryonic mass is due to the dynamics inside the hadrons. As already
mentioned in Chapter 5, inertial mass should be considered to be a measure of en-
ergy content, so that we should be writing m = E/c2, as Einstein originally did
(Ei05b), rather than the more conventionally quoted expression E = mc2.

In summary, most of the baryonic mass we find in the Universe is not due to the
rest-mass of quarks, or any other particles, but rather a consequence of the binding
forces that confine partons to small spaces.

The origin of the electron mass, however, appears to be different and is not yet
understood.
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12:11 Leptons and Antileptons

The electron is a particle that belongs to the family of leptons. This family com-
prises the electron e and its neutrino νe, the muon µ and its neutrino νµ, and the
τ , pronounced “tau,” and its neutrino ντ . All six are spin- 1

2
fermions. The mass of

the µ is 207me or ∼106 MeV, and the mass of the τ is 1.78 GeV. These six par-
ticles and their corresponding antiparticles, would all have been mixed in with the
quark–gluon plasma at early epochs. As the temperature of the Universe dropped,
the τ particles would have annihilated against their antiparticles τ̄ as the temperature
dropped through T ∼ 1.8 GeV ∼ 2 × 1013 K.

12:12 The Matter–Antimatter Asymmetry

Today, the Universe consists almost entirely of matter. Trace quantities of antipro-
tons have been detected at levels of a few parts per million in the cosmic-ray flux at
energies in the 200 to 600 MeV range, and at a level of one part in 104 at energies
around 10 GeV. These antiparticles are probably formed in collisions of higher-
energy cosmic rays with the interstellar medium (Ho96), (Mo97a). Aside from such
traces, the Universe appears to be devoid of antimatter.

Antimatter is hard to detect at a distance. Antihydrogen, which has been created
in small quantities at accelerators, is expected to give off a spectrum identical to
hydrogen. Hence, a distant galaxy would look the same whether it was composed
of matter or antimatter. However, because galaxies and clusters of galaxies interact,
annihilation of matter and antimatter at cluster boundaries would be readily detected
through the emission of annihilation radiation — ∼<100 MeV gamma rays. Because
significant annihilation radiation is not evident, we conclude that the Universe con-
sists overwhelmingly of matter.

We do not know how to account for this predominance. The most likely cause of
the asymmetry is a weak interaction that involved CP-violation (see Section 11:18)
during an early era when the Universe was still very hot. One possibility is that a
species of very massive neutrinos existed at these early epochs and that CP-violation
in the subsequent decay of these particles generated a matter–antimatter asymme-
try in its decay products. This would express itself as a predominance of leptons
over antileptons, and a precisely compensating predominance of baryons over an-
tibaryons. The difference between the number of leptons and antileptons is known
as the lepton number, and the difference between the number of baryons and an-
tibaryons is called the baryon number. Although the decay of such a massive neu-
trino would violate both lepton and baryon number, the difference between lepton
and baryon number would be conserved (Qu03).

The matter/antimatter symmetry could also have been broken at a later epoch,
t ∼ 10−11 s, when energies would have dropped to the weak interaction scale
T ∼ 300 GeV, and similar symmetry violations could have taken place. Either way,
the violations need to be only of the order of one part in∼109 to produce today’s ob-
served baryon-to-photon ratio (Tu97). A vast amount of matter and antimatter may
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then have annihilated early in the evolution of the Universe to produce an equivalent
amount of radiation and leave behind just one particle for every original set of ∼ 109

particle–antiparticle pairs that annihilated, melding into the cosmic background ra-
diation.

A number of CP-violating proposals have been advanced. The solution of the
puzzle, however, must be found experimentally. Experiments at high-energy accel-
erators show that interactions of K0 and K̄0 mesons, and similarly of B meson
systems, violate both C and CP conservation. So we know that asymmetries of this
kind do arise in Nature though, so far, not on a scale sufficient to account for the
observed preponderance of cosmic matter over antimatter.

12:13 Early Element Formation

Let us now return to our chronology.
(i) We briefly interrupted this survey with the Universe 10µs old. The post-

inflationary phase is by now long established. Temperatures and densities have been
evolving relativistically, all along, in accordance with equation (12–13), and the
temperature has dropped to T ∼ 3 × 1012 K. The densities now are so low that the
quark–gluon plasma cannot be maintained, and the plasma breaks up into individ-
ual particles in which the quarks can remain closely confined — mainly pions that
contain quark–antiquark pairs of u and d. The pions and antipions mutually anni-
hilate almost as soon as they are formed, releasing neutrinos, photons, and energy
to heat all the remaining cosmic constituents, mainly photons, electrons, positrons,
neutrinos, and antineutrinos. Also emerging at this epoch are minuscule numbers of
protons and neutrons, roughly one for every ∼109 ambient particles and photons.

(ii) The Universe is a little more than 10 ms old (Bo85). The temperature has
dropped to below 1011 K, and neutrons and protons have number densitiesn(N ) and
n(P ) that reflect thermal equilibrium through a Boltzmann factor corresponding to
the difference, c2∆m, in their mass–energies (A�53).

n(N )
n(P )

= exp
(
−c

2∆m

kT

)
. (12-26)

This equilibrium is maintained by interactions with ambient electrons, positrons,
and electron neutrinos as well as antineutrinos, through reactions of the type

ν + N ⇔ P + e−, (12-27)

e+ + N ⇔ P + ν, (12-28)

N ⇔ P + e− + ν. (12-29)

Just as in equation (12–10), the energy density in neutrinos plus antineutrinos is
related to the energy density of photons by the ratio 7

8 . The neutrino/antineutrino
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energies are still sufficiently high at this temperature to keep electron–positron pairs
in equilibrium abundance through the reactions

e+ + e− ⇔ ν + ν̃. (12-30)

(iii) At t ∼ 0.1 s, the temperature is T ∼ 3×1010 K. The weak interactions now
are too slow to compete with the expansion rate, and the neutrinos decouple from
matter. The energy at this stage is still of the order of a few MeV per particle, and
hence electron–positron pairs persist in equilibrium with photons.

e+ + e− ⇔ γ + γ. (12-31)

(iv) At t ∼ 1 s, T ∼ 1010 K, particle energies are of the order 1 MeV. Reactions
of the type (12–28) and (12–29) can no longer maintain the equilibrium between
neutron and proton number densities required by equation (12–26), and the ratio of
neutrons to protons freezes out at a value characteristic of ∼1010 K. The neutron–
proton mass difference is c2∆m = 1.293 MeV, and detailed calculations give a
neutron-to-proton ratio of ∼ 1

6 at freeze-out. Thereafter, the ratio changes primarily
as the neutrons decay into protons with a half-life of order 10.23 ± 0.02 min —
often referred to in terms of the mean life 885.4± 1.3 s (Ar00).

PROBLEM 12–8. Show that the neutron half-life is 0.693 times its mean life.

(v) At t ∼ 10 s, T ∼ 3 × 109 K, energies drop below the electron–positron
rest–mass and these particles annihilate in pairs, heating the radiation and matter
remaining behind. No further pairs are produced, because the photon energies now
are too low. But the heat generated in annihilation causes a temperature difference
between the photon bath and the bath of neutrinos that earlier decoupled from mat-
ter and radiation. Henceforth, the neutrino temperature uniformly remains below the
photon temperature. If neutrinos have a rest–mass very close to zero, their contem-
porary background temperature — as we will see in Problem 12–9 below — should
be found to be 1.95 K, whereas the radiation temperature is known to be just be-
low 2.73 K. This neutrino bath has not yet been detected; we do not currently have
sufficiently sensitive apparatus.

At this stage, deuterons can already be formed through the reaction

N + P = D + γ (12-32)

but they are quickly destroyed by photodissociation.
(vi) At t > 102 s and T ∼ 109 K this photodissociation becomes less frequent

as photon energies decline. Now, the following reactions all can set in (Fig. 13.13)
to produce the stable isotopes, D, 3He, and 4He.

D + N ⇔ 3H + γ,
D + D ⇔ 3H + P,

} {
3H + P ⇔ 4He + γ,
3H + D ⇔ 4He + N ,



546 12 An Astrophysical History of the Universe

(12–33)

D + P ⇔ 3He + γ,
D + D ⇔ 3He + N ,

} ⎧⎨
⎩

3He + N ⇔ 4He + γ,
3He + D ⇔ 4He + P,
3He + 3He ⇔ 4He + 2P.

It is not possible to form stable elements of mass 5 or 8 at these temperatures and
densities, though some traces of beryllium and lithium isotopes of mass 7 can be
formed, the latter in quantities that should be measurable,

4He + 3He → 7Be + γ,

(12-34)
4He + 3H → 7Li + γ.

Figure 12.5 shows the final abundances for several primordially produced ele-
ments expected for different baryon-to-photon ratios η. The figure also shows the
current uncertainties in the observed values of the primordial densities. These un-
certainties arise from alternative mechanisms for light-element production, through
nucleosynthetic processes in stars or spallation of heavy elements in circumstellar
or interstellar spaces by cosmic-ray particles. Measurements on the D/H ratio in a
particularly metal-poor damped Ly-α system at red shift z = 2.076 yields a value
∼2× 10−5, consistent withΩBh

2 ∼ 0.025, somewhat outside the range of the best
helium abundance values (Pe01).

12:14 The Entropy of the Universe

Equation (4–134) tells us that the entropy S of blackbody radiation at temperature
T in a volume V is S = 4aT 3V/3. For an adiabatic expansion, dS = 0, and the
product

V T 3 = constant (adiabatic process) . (12-35)

The entropy is strongly dominated by the radiation. The baryons — because of
their scarcity — contribute only negligibly. The entropy per baryon, then, is just the
entropy per unit volume divided by the number of baryons in the same volume

S

V nB
=

4aT 3

3nB
= 10−14 T

3

nB
erg K−1 (12-36)

or, because the photon number density (equation (4–74)) is 20T 3 cm−3 ,

S

V nB
= 5 × 10−16 nγ

nB
, (12-37)

where nγ is the photon density. This does not take neutrino entropy into account,
which is comparable to the photon entropy for each type of neutrino (electron-,
muon-, or tau-neutrino) present though somewhat smaller: first, because the statis-
tical weights of neutrinos and antineutrinos are lower, as discussed in connection
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with equation (12–11); and second, because, as we will see in Problem 12–9, the
present-day neutrino temperature is lower than the photon temperature by an added
factor of (11/4)1/3.
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Fig. 12.5. Predictions of primordial nucleosynthesis as a function of baryon-to-photon ra-
tios, η, in the Universe. The continuous curves represent theoretical predictions. The hatched
bands indicate the range of primordial light element abundances consistent with observations
of 4He and D in metal-poor extragalactic clouds and with 7Li observations in metal-poor
stars in the globular cluster NGC 6397. 3He values were obtained from measurements on
HII regions, but may not accurately reflect primordial abundances because of contamination
by cosmic-ray spallation products and other sources. The dashed line in the box labeled 7Li
indicates a 95% confidence level observational upper limit for the abundance of this isotope.
The range of ΩBh2 shown in this figure is consistent with cosmic microwave background
observations (Sp03). h is the Hubble constant in units of 100 km s−1 Mpc−1. A Hubble
constant of 70 km s−1 Mpc−1 corresponds to h = 0.7. Courtesy of Coc et al. (Co04a).
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Equation (12–10) gives the total energy density per fermion of a given spin. Neu-
trinos and antineutrinos have only one possible spin each. Electrons and positrons
have two spin modes each. For the era when all these species were in thermal
equilibrium with photons, an epoch characterized by temperatures in the range
1012 ≥ T ≥ 1010 K, the total energy density in photons and electrons and electron-,
muon-, and tau-neutrinos — plus their respective antiparticles — was

ρ = aT 4 + 4
(

7
16

)
aT 4 + 3 × 2

(
7
16

)
aT 4 =

86
16
aT 4 , (12-38)

where it is important to note that photons are their own antiparticles. Equation
linebreak(4–134), which applies equally to photons and relativistic particles, then
leads to an entropy per unit volume, s = S/V ,

s =
43
6
aT 3 (12-39)

at these high temperatures. Because the subsequent evolution of the Cosmos can be
considered to be adiabatic, the total entropy remains constant, and the entropy per
unit volume is inversely proportional to the scale factor cubed,

sa3 = constant. (12-40)

Here again it is important not to confuse the scale factor awith the radiation constant
for which we have used the same symbol in equations (12–36) to (12–39).

PROBLEM 12–9. Show that the annihilation of electron–positron pairs raises the
photon temperature by a factor of (11/4)1/3 compared to that of the decoupled
neutrino background bath. Note that entropy has to be conserved in the annihilation.
If the neutrino rest–mass is close to zero, show that the temperature of primordial
neutrinos, today, should be ∼1.95 K.

12:15 A More Precise Extrapolation Back in Time

The rest–mass of neutrinos has not yet been measured, but appears to be well
below 1 eV or <10−33 g. The neutrinos must, therefore, be relativistic through-
out the radiation-dominated era, and contribute appreciably to the overall radia-
tion density. This follows from equations (12–10) and (12–38), where the pho-
ton and neutrino terms are seen to be of comparable magnitude. However, care
has to be taken in the application of (12–38) because, as we saw in Problem
12–9, the neutrino temperature is lower than the photon temperature Tph by a fac-
tor of ∼(4/11)1/3. Equation (12–38) then tells us that the relative contributions of
photons and the three neutrino species to the total radiation density are, respec-
tively, aT 4

ph and (42/16)a[(4/11)1/3Tph]4 ∼ 0.681aT 4
ph. A more careful calcula-

tion which takes into account that the neutrinos still are able to absorb part of the
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energy liberated in the electron–positron annihilation era, raises the neutrino con-
tribution to the density to 0.685aT 4

ph. This makes the total radiation mass density
ρradiation ∼ 1.685aT 4

phc
−2.

With this value for the radiation mass density, we can now return to the ex-
trapolation back in time that Table 12.1 provided, and fill in rather more informa-
tion on the assumption that the Universe is flat — the Riemann curvature constant
k = 0. At each epoch (z + 1), we can now calculate a Hubble constant based
on the mass–energy density of the Universe at the corresponding red shift. The
age of the Universe is then given by (11–57) and (11–58), respectively, for the
radiation-dominated and mass-dominated epochs. For the most recent dark-energy-
dominated era, we take today’s directly observed Hubble constant, here taken to be
H0 = 70 km s−1 Mpc−1, and extrapolate back in time, using (11–59) and assum-
ing a dark energy density parameter ΩΛ = 0.7 and a dark-plus-baryon mass-density
parameter ΩM = 0.27. Equality of radiation and matter densities then comes at
(z + 1) = 3230, whereas neglect of the neutrino contributions would have led to
equality at (z + 1) ∼5400 — a significant difference. These considerations are now
factored into Table 12.3, which provides a more detailed extrapolation back in time
than was possible in Table 12.1, solely on the assumption of an adiabatic expan-
sion of a gas consisting of particles with rest–mass and photons. Like Table 12.1,
Table 12.3 assumes that today’s Hubble constant is H0 ∼ 70 km s−1 Mpc−1. The
assumption of k = 0 implies that the mass–energy density is critical throughout, so
that it scales as ρcrit = ρrad(z + 1)4 + ρM (z + 1)3 + ρΛ, relative to current values
of ρrad, ρM , and ρΛ. Equation (11–47) then yields the dependence of the Hubble
constant on critical density and thereby on red shift.

12:16 The First 400,000 Years

The eventful history we have sketched of the Universe, starting with the Planck era
and continuing through formation of the light elements, has all taken place within
the first few minutes of existence. The next 400,000 years, in contrast, pass rather
quietly, as Tables 12.1 and 12.3 indicate. The Universe keeps expanding adiabat-
ically, with a diminishing Hubble constant in full accord with equation (11–57).
Since the Hubble constant determines the distance to the particle horizon, the vol-
ume of the Universe within which physical contact and potentially pressure equi-
librium can be established keeps growing, as Table 12.3 shows. Because the mass–
energy of radiation declines as a−4, while the matter density declines only as a−3, a
cross-over point is reached at which the mass density of the Universe switches from
radiation domination to matter domination. Tables 12.1 and 12.3, which we drew up
by an extrapolation backward in time, show that this happens at z ∼ 3230 when the
Universe is roughly 70,000 years old.

Throughout this time, and for another 300,000 years, the Universe remains
opaque. Light cannot penetrate any appreciable distance without being Thomson-
scattered by free electrons. Throughout, most of the matter density in the Universe
is due to dark matter. We see from Table 12.1 that the baryonic matter density at
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Table 12.3. Evolution with Riemann Curvature Constant k = 0a,b.

Red Shift Hubble Constant tage Hubble Radius Rest-Mass
(z + 1) (km s−1 Mpc−1) RH = (c/H) within RH (g)

1.1× 109 7.5× 1017 20 s 0.08 AU 2.5× 1034

3× 108 5.6× 1016 270 s 1.1 AU 1.2× 1036

104 7.2 × 107 6,600 yr 4 kpc 2 × 1049

⇑ Radiation dominated
3200c 9.2 × 106 6.9× 104 yr 45 kpc 9 × 1050

⇓ Matter dominated
1100d 1.5 × 106 4.8× 105 yr 220 kpc 3.0× 1051

1000 1.3 × 106 5.5× 105 yr 230 kpc 3.6× 1051

100 3.6 × 104 1.75 × 107 yr 8.3 Mpc 1.7× 1053

10 1,140 5.5× 108 yr 260 Mpc 5.3× 1054

1 70 1.37× 1010 yr 4,300 Mpc 2.3× 1055

a Assumes Ω0 = 1, throughout, as implied by k = 0, and current values ΩΛ = 0.7,
ΩM ∼ 0.27, with a Hubble constant H0 = 70 km s−1 Mpc−1. The Hubble constant at
earlier epochs is calculated from the rest-mass density of matter plus a radiation density
taken as the mass density of photons plus three species of neutrinos and their antineutrinos
— 1.685aT 4

ph/c2.
b Values for early epochs are derived from radiation densities 1.685aT 4

ph . Matter densities
are obtained from Table 12.1. Ages tage are derived from equations (11–51) and (11–57) to
(11–59). The Universe is radiation-dominated before z ∼ 3200 and matter-dominated there-
after until Λ-domination sets in at z ∼ 0.37.
c Equality of radiation and matter densities.
d Decoupling era.

T = 3000 K, for ΩB = 0.04 and ΩM = 0.23, is about 300 cm−3. This is the
number density of electrons at the onset of the recombination era. 1 The Thomson
scattering cross-section σe = 6.652 × 10−25 cm2 thus restricts the mean free path
of radiation to ∼1 kpc, less than 1% of the distance to the cosmic horizon at this
epoch.

Electrons and protons, however, rapidly combine as the temperature drops
through 3000 K at z ∼ 1100 and the Universe, for the first time in its history, be-
comes transparent. Radiation can now freely travel across the entire Cosmos —
a matter of the greatest importance to us, as we try to unravel the history of the
Universe. It permits us to look back in time and directly view conditions when the
Universe was only 400,000 years old. In Chapter 13, we will see how this look back
in time helps us to deduce how galaxies and clusters of galaxies came to be formed.

1 “Recombination era” is an unfortunate but generally accepted misnomer. It implies that
electrons and protons had at some previous era already existed in a combined state as
hydrogen atoms. However, as the history portrayed throughout this chapter shows, until
∼400,000 years had passed, the Universe was consistently too hot to permit electrons to
stay attached to protons.
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12:17 Last Impact and Decoupling of Matter from Radiation

Because the photon number density exceeds the number density of atoms by a fac-
tor of ∼109, the photons as a whole decouple from matter rather quickly, whereas
matter takes a long time to decouple from the radiation. During this longer interval,
the radiation continues to Thomson scatter off electrons.

On average, last impact for a photon on an electron occurs when

[xnHσec]tage ∼ 1 . (12-41)

Since the ionization fraction x rapidly drops through 10−3 at ∼3200 K and
nH ∼ 300 cm−3, we see that xnHσec drops to below 10−14 s−1, while the age
of the Universe at this epoch, as given in Tables 12.1 and 12.3, is <1014 s. For most
photons, scattering at the surface of last impact, therefore, comes about rapidly at
decoupling around 3200 K.

12:18 Observational Evidence

We have sketched a rather detailed history of the Universe in this chapter. We should
still ask,“How far back in time can we actually trust the sequence of events de-
scribed? What is the solid evidence?”

The observational evidence available today does not actually require tempera-
tures and densities ever to have been higher than those needed to bring the abun-
dance of neutrons and protons into rapid thermal equilibrium on a time scale short
compared to the neutron half-life. This temperature is 1010 K, prevailing in the Uni-
verse at epoch t = 1 s. As the Universe cooled below this temperature, the neutron-
to-proton ratio froze out at a value characteristic of 1010 K, but with a subsequent
decay of neutrons in the following minutes leading to the formation of 4He and mi-
nor traces of other light elements when the Universe had reached an age of a few
hundred seconds, by which time the temperature had dropped below 109 K.

With improved observational determinations for the initial abundance of helium
and the current matter density, evidence for early temperatures as high as 1011 K
would be strengthened. At these temperatures all light or massless neutrino species
are kept in thermal equilibrium through neutral current weak interactions with elec-
trons and positrons

e+ + e− ⇐⇒ νi + ν̄i where i = e, µ, τ . (12-42)

As the temperature drops through 3 × 1010 K, at t ∼ 0.1 s, the weak interactions
become too slow to keep up with the expansion rate, and the neutrinos and antineu-
trinos decouple from the electrons and positrons. The number of neutrino species
existing in the Universe, nevertheless, still can affect the total helium abundance
produced later, at t ≥ 102 s and T ≤ 109 K, through their contribution to the
density in equation (12–2) and, thereby, to a higher expansion rate. The amount of
helium 4He produced is increased if the expansion is faster, because the neutrons
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present in the early Universe have less time to decay. This is a quite significant
effect, increasing the total amount of helium in the Universe by 4 to 6% for each
added neutrino species. Current observations of early helium abundances agree best
with 4He production by three neutrino species. Recent accelerator experiments on
Z◦ boson decay show that only three kinds of neutrinos exist in Nature. If improved
measurements on the early helium abundance and the total matter density in the
Universe confirm that a mass density requiring three species of ambient neutrino
radiation baths existed at helium formation, we would have to conclude that initial
temperatures at one time had been sufficiently high to produce all three neutrino
species in thermal equilibrium with radiation and matter. This would have required
temperatures ∼1011 K. To date, these appear to be the strongest observational de-
mands for high temperatures in the early Universe.

To reach much farther back in time, we would need to better understand physical
processes at higher temperatures and densities. Current accelerator experiments on
the decay of Z-bosons are beginning to yield insights into the state of quarks and glu-
ons that may form a quark–gluon plasma at temperatures of 1012 K — the temper-
ature of the Universe at age 10−2 s (Wi98). To produce the Z-bosons, however, ac-
celerators capable of producing particles at energies in excess of 1 TeV ≡ 103 GeV
∼ 1016 K have been required. To go to even higher temperatures, we may have to
turn to Nature. Gamma rays at energies up to 50 TeV have now been detected com-
ing from the Crab Nebula (Ta98). Far higher-energy, 3 × 1020 eV ≡ 3 × 1011 GeV,
cosmic-ray particles have also been observed; their energies are only a factor of
∼103 lower than the energy of matter at the postulated phase transition that ends
inflation. The study of such naturally occurring high-energy particles may help us
elucidate events at epochs ∼<10−27 s. By understanding the physics of matter in this
early era, we may find observational tests to probe the defining predictions of infla-
tion.

Answers to Selected Problems

12–1. From equation (11–56) we see that

a(t) ∝ t1/2 for a relativistic gas,

∝ t2/3 for nonrelativistic matter.

If we insert these relations in equation (12–1) and integrate, we see that the time
t1 − t0 required to cross distance parameter χ can be derived, respectively, for these
two cases, from

χ ∝ (t1/2
1 − t

1/2
0 ) relativistic

and
χ ∝ (t1/3

1 − t′0
1/3) nonrelativistic.

For the relativistic case doubling χ requires an added time interval that can be
derived from t

1/2
2 − t

1/2
1 = t

1/2
1 − t

1/2
0 . Setting t0 = 0, this yields t2 = 4t1. For the

nonrelativistic case, a similar argument leads to t2 = 8t1.
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12–2. During inflation, the number density of all particles decreases by ∼(1026)3 =
1078. We saw that the initial mass density before inflation corresponded to a tem-
perature T ∼ 1028 K, or 1077 g cm−3, so that a volume 10 cm in diameter, which
defines all matter ultimately to become part of the Universe within present hori-
zons, would have originated in a volume element 10−75 cm3 before inflation. The
mass content of this region would have been 100 g. Even if filled entirely with
monopoles of energy 1016 GeV = 1.8 × 10−8 g, it could at most have contained
1010 monopoles. The number of galaxies within the current cosmic horizon is of
order 1011.

12–3. Except for a brief recent interval starting at z ≤ 2, matter or radiation have
dominated the right side of (12–25) all the way back to zei, with ρ ∝ H2, as follows
from (11–52), (11–54) and (11–56). From zei back to zoi, the second term dominates
the right side of (12–25), and both Λ and H remain constant.

12–4. A short inflationary period would mean that regions which had not been in
causal contact before world time toi would be included in the volume V1 that maps
onto the observed volume V0 today. The volume V0 would then include regions that
had never been in causal contact and would appear, in violation of observations, to
be chaotic rather than homogeneous. The inflationary scenario was designed to solve
the homogeneity problem, but can do this only if the inflationary era is sufficiently
long to permit small regions, which could have established firm causal contact by
toi ∼ 10−35 s, to be mapped onto the observed universe.

12–7 (a) p ∼ �/rp = 1.05 × 10−14 g cm s−1. Because the quark rest-mass is
∼ 10 MeV ∼ 2×10−26 g, its motions must be highly relativistic. (b) The individual
quark masses are p/c ∼ 3.5 × 10−25 g ∼ 200 MeV/c2, while the proton mass is
938 MeV/c2. (c) The wavelength of the standing wave is λ ∼ 4rp. Its frequency is
ν = c/λ, and the associated mass per quark is hν/c2 = h/(4rpc) ∼ 5.5× 10−25 g
∼ 310 MeV/c2.

12–8. For exponential decay, half the number of initially present neutrons n0 is left
when n0e

−αt = n0/2, which occurs for t1/2 = ln 2/α = 0.693/α. The mean life
is given by

tmean = − 1
n0

∫ ∞

0

t

(
dn

dt

)
dt =

1
α
.

12–9. Equation (12–38) tells us that the energy density for electrons plus positrons,
is 7aT 4/4 in the relativistic limit. Accordingly, the entropy (4–134) is also 7/4 as
high as that of photons. Since entropy is conserved in adiabatic cooling, and the
photon entropy is dependent on the temperature alone, regardless of the presence of
any other particles, the electron and positron entropies also must depend only on the
instantaneous temperature and must continue to scale in proportion to the photon
entropy. During annihilation, which can be considered a phase transition, entropy
is also conserved and temperature remains essentially constant so that the volume
must expand by a factor (11/4) to have an identical photon energy density and



554 12 An Astrophysical History of the Universe

entropy density at the beginning and end of the annihilation period. During this ex-
pansion, the neutrinos are cooled in proportion to the linear expansion and hence
a photon-to-neutrino temperature ratio (11/4)1/3 = 1.40 becomes established
at annihilation and is maintained forever after, making the neutrino temperature
Tν ∼ 1.40 × 2.725 = 1.95K today. If the neutrino rest–mass is significant, cool-
ing on expansion makes the neutrinos nonrelativistic. They then cool to appreciably
lower temperatures because their adiabatic constant is γ = 5/3, whereas photons
have γ = 4/3.



13 The Formation of Cosmic Structures

In this chapter we will consider the origins of cosmic structure on the scale of galax-
ies and clusters of galaxies. The problem of galaxy formation is one of the most
complex in all of astrophysics. Considering that the observed portion of the Uni-
verse contains a hundred billion galaxies, they are certainly no accident. Yet we
have only vague theories of how they came into being.

We can only guess that substantial primordial fluctuations existed at the dawn of
time when the Universe was intensely hot. Surviving through enormous expansion
until the Cosmos had appreciably cooled, the fluctuations seeded the formation of
small protogalaxies. The protogalaxies then collided to form the larger galaxies now
observed in clusters throughout the ambient Universe. The earliest galaxies appear
to have formed within no more than a billion years after the birth of the Cosmos.

We will assemble the individual concepts that have been offered in partial expla-
nation of galaxy formation. These do not yet fit neatly together; nor do they provide
clear answers to many questions. But they provide a plausible path through the maze
and may serve as a guide until a more complete theory of galaxy formation is devel-
oped.

13:1 The Inhomogeneous Universe

Averaged over sufficiently large scales, the Cosmos appears homogeneous and
isotropic. Its mean density is everywhere the same; the kinds of structures we see
differ little from each other. Yet, on small scales the Universe is far from homoge-
neous. Structure is apparent everywhere (Fig 1.12).

The range of velocities we observe reflects similar inhomogeneity. On the largest
scales the Universe is expanding. On smaller scales, individual galaxies, small
groups, and large clusters of galaxies remain gravitationally bound rather than tak-
ing part in the expansion.

What determines these differences in scale? How did the clusters, stretching
across vast regions ever manage to aggregate in an explosively expanding Universe?
How could this global expansion have been locally reversed so that matter would
assemble itself into the clumpy structures ubiquitous today?



556 13 The Formation of Cosmic Structures

13:2 Primordial Seeds

In a classical paper written in 1946, E. M. Lifshitz showed that galaxy formation in
homogeneous, isotropic expanding universes appears impossible unless we invoke
substantial primordial fluctuations (Li46). Only if there were pre-existing inhomo-
geneities could we explain a propensity for collapse. Galaxy formation might be
particularly simple if primordial seeds were present.

A quarter century later, E. R. Harrison (Ha70a) and Ya. B. Zel’dovich (Ze72)
proposed that primordial fluctuations, present in the Cosmos since the earliest
epochs, would survive the drastic expansion of the Universe to provide the seeds
around which galaxies would later form once the expansion had sufficiently slowed.
During the early era of rapid expansion, these fluctuations persist because pressures
cannot propagate across cosmic horizons.

What Harrison had in mind when he made his proposal, well before Guth’s
(Gu81) inflationary theory had been introduced, were density fluctuations that were
beyond each others’ horizons and would grow as if they were separate universes.
He argued that the amplitude of these fluctuations composed of a superposition of
components having different wavelengths λ should decrease as λ−1. This would
prevent the formation of structures larger than any we observe in the Universe today
(Ha70a). Fluctuations at small wavelengths could initially have been large, but were
no great concern because they would eventually be damped out by diffusion and
drag. Zel’dovich further postulated that the magnitude of the density fluctuations
δρ/ρ, which throughout the radiation-dominated era would have equaled 4δT/T ,
should be of order 10−5 to 10−4. These were sufficiently large to promote the aggre-
gation of matter and formation of clusters of galaxies despite the continuing cosmic
expansion following the decoupling of matter from radiation. They also were small
enough to avoid widespread formation of massive black holes, which are observed
to be relatively rare (Ze72). Observations of the microwave background largely bear
out the order of magnitude of the fluctuations that Zel’dovich postulated but leave
us no closer to explaining their origins.

13:3 The Seeds of Structure

In the inflationary model, the Universe goes through a rapid expansion during which
neighboring portions of space disappear over each other’s event horizons, carrying
their locally imprinted density and velocity fluctuations with them. Once inflation
comes to a halt, and all the energy in the inflationary fields is converted into mat-
ter and radiation, these fluctuations persist until previously isolated regions start to
enter each other’s particle horizons to begin locally interacting again. During both
the radiation- and matter-dominated eras, the Hubble radius RH = c/H , which
we encountered in equation (11–80), remains directly proportional to the age of
the Universe, in conformance with (11–56). It continues to grow as the cosmic ex-
pansion slows down. Fluctuations are smoothed out through the establishment of
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pressure equilibrium and dissipative effects, first in small regions and progressively
over larger volumes.

Let us now see whether the inflationary sequence can help us to understand the
formation of the clusters of galaxies and voids that constitute the small-scale in-
homogeneities of the Universe. One possibility worth examining is whether thermal
fluctuations at the extreme temperatures of the Planck era could have provided seeds
of a magnitude (δρ)/ρ ∼ 10−5 that Zel’dovich postulated.

Energy fluctuations within a volume V just before onset of inflation at epoch
toi, i.e., just before the region becomes causally isolated from the rest of the Uni-
verse, can be derived from equation (4–118). If the temperature dependence of the
enclosed energy density is proportional to aoiT

4, as (12–38) implies, then

〈(∆E)2〉1/2

〈E〉 =
(kT 2)1/2

〈E〉
(
∂〈E〉
∂T

)1/2

=
(4kaoiT

5V )1/2

(aoiT 4V )
=
(

4kT
aoiT 4V

)1/2

,

(13-1)
where aoi is a constant whose magnitude judging by (12–38) is of order N1/2a/2,
where N is the number of particle species whose fluctuations we assume here to be
uncoupled and to add in quadrature, and a is the radiation constant.

We saw in Section 12:6 that the temperature at onset of inflation was
Toi ∼ 1028 K, and that the diameter of a region in causal contact at the time was
∼10−25 cm, corresponding to a spherical volume defined by the Hubble radius Roi

at toi , Voi ∼ 5× 10−76 cm3 . Substituting these values into (13–1) indicates that the
root mean square mass–energy fluctuations for radiation over this volume would be
of the order of

(δρ)/ρ ≡ 〈(∆ρ)2〉1/2/〈ρ〉 = 〈(∆E)2〉1/2/〈E〉 ∼ 10−5 (13-2)

providedN1/4 is of order unity.
Although fluctuations roughly of this magnitude are observed in the cosmic mi-

crowave background radiation, equation (13–1) also requires the fluctuations to be
proportional to (T 3V )−1/2. We therefore need to follow the development of the
fluctuations through the inflationary phase, reheating, and the initially relativistic
and subsequently radiation-dominated eras that follow. The end of inflation releases
vacuum energy that reheats the Universe to roughly the same temperature as at on-
set, Toi . So, a volume V of the same size as Voi at onset of inflation, would have
fluctuations of similar amplitude right after reheating. The subsequent evolution of
the fluctuations, however, requires additional analysis, for which we first need to
define a few concepts.

In the radiation-dominated era, radiation and particles are strongly coupled and
behave as a fluid. Fluctuations in this fluid can be described by a superposition
of standing-wave Fourier components of wavelength λ or spatial wave number
k = (2π/λ)εk in comoving coordinates. We assume that the phases of the different
frequency components as well as their orientations in space are uncorrelated. Such
fluctuations are said to be Gaussian. The volume element in wave number space is
d3k = 4πk2dk, reminiscent of the partition function (4–65) but — because these
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waves are acoustic, i.e., longitudinal — lacking the factor 2 that (4–65) included for
the two states of polarization.

For a fluctuation with wave number k the amplitude of the density devia-
tion, ∆ρk, from the mean value 〈ρ〉, can be positive or negative. The probability
P (|∆ρk|2) for the square of this amplitude to have the value |∆k|2 is called the
power spectrum of the fluctuations. The normalized standard deviation, i.e., the
square of the mass density contrast δρ/ρ, then is obtained by integrating over the
probability of occurrence |∆k|2 of a fluctuation with wave number k,

(
δρ

ρ

)2

≡ 〈(∆ρ)2〉
〈ρ〉2 ∝

∫ kmax

0

P (|∆k|2)k2dk . (13-3)

If the most probable value of |∆k|2 is proportional to kn, or λ−n, that is,

if P (|∆k|2) ∝ kn, then (δρ)/ρ)2 ∝ kn+3
max ∝ λ

−(n+3)
min for n > −3 . (13-4)

Here kmax is the maximum wave number and λmin is the corresponding minimum
wavelength of the fluctuations. For a standing wave with wavelength λ, regions
of maximum density are separated by a distance λ, the space between them having
lower density. A density enhancement, therefore, has a volume Vλmin of order λ3

min,
and for the fixed mean density 〈ρ〉 its mass M is proportional to Vλmin .

δρ

ρ
∝ λ

−(n+3)/2
min ∝ V

−(n+3)/6
λmin

∝M−(n+3)/6 . (13-5)

The spectrum postulated by Harrison and Zel’dovich has n = 1.

13:4 Evolution of Inhomogeneities

Given the existence of fluctuations, we need to ask how they evolve as the Universe
expands. For a homogeneous isotropic space the Einstein field equations of general
relativity reduce to (11–45), (11–46):

8πGρ
c2

= −Λ + 3
(
ȧ2 + kc2

c2a2

)
(13-6)

and

8πGP
c4

= Λ−
(

2aä+ ȧ2 + kc2

c2a2

)
, or

dρ

dt
+ 3
(
P

c2
+ ρ

)
ȧ

a
= 0, (13-7)

where, as before, G and Λ are the gravitational and cosmological constants, k is the
Riemann curvature constant, and ρ and P are the mass density and pressure of the
Universe. Dots indicate differentiation with respect to world time.

We can rewrite equation (11–62), which is equivalent to (13–6) in terms of the
deviations from a flat universe that fluctuations induce,
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(1 −ΩT ) ≡ 1 − (ΩΛ + ΩM +Ωr) = Ωk ≡ − kc2

H2a2
. (13-8)

Here,ΩT is the total density parameter summed over the mass of radiation, baryonic
and dark matter, and dark energy, and Ωr is the density parameter due to radiation,
which was neglected in (11–62), where we had assumed a pressure P = 0.

ΩT =
(

(ρr + ρDM + ρB + ρΛ)
ρcrit

)
≡
(

8πG
3H2

)
ρT . (13-9)

While ΩΛ appears to dominate this equation today, it was negligible at early times
when the radiation and mass densities were far higher whereas a cosmological con-
stant would have remained unchanged. Multiplying (13–8) by a2ρcrit, we obtain

(ΩT − 1)ρcrita
2 ≡ a2δρT =

3kc2

8πG
= constant , (13-10)

where δρT is the deviation from the density of a flat universe. Fluctuations cannot
have been damped on scales large compared to the distance that pressures prop-
agated at the speed of sound cs in a Hubble time 1/H . Rather, on superhorizon
scales, density fluctuations would have continued to expand precisely as in a homo-
geneous universe of density ρT + δρT .

While equation (13–10) tells us that (δρT )a2 is constant, (11–54) shows that
the overall density ρT of the Universe in the radiation-dominated era, also kept
the product ρT a

4 very nearly constant. Accordingly, as long as the Universe was
radiation-dominated,

δρ

ρ
=
a2

a2
i

(
δρi

ρi

)
∝ a2

a2
i

M
−(n+3)/6
i , (13-11)

where we have made use of (13–5) and dropped the subscript T since the radiation
density is tantamount to the total density. The subscript i denotes initial values at
the onset of the radiation-dominated era; values without subscript refer to any later
epoch during this era. The mass Mi in this equation refers to the mass scale, domi-
nated by radiation, for which the initial fluctuation has a density contrast (δρi)/ρi.

We should still note that the Universe may exhibit density fluctuations of differ-
ent kinds. As noted in (13–11) the density contrast δρ/ρ, which is always a positive
quantity, increases in proportion to a2 during the radiation-dominated era, for both
positive and negative values of δρ. For a globally flat universe, local values of ΩT

then deviate from unity, local values of Ωk deviate from zero, and local values of
the Riemann curvature constant fluctuate between k = 1 or −1, in passing from one
locale to another.

Such fluctuations are called curvature fluctuations. A four-dimensional universe
with curvature fluctuations has the appearance of a three-dimensional spherical hy-
persurface, with wrinkles protruding into a fourth dimension. It is as though we
were viewing a four-dimensional orange, whose surface irregularities extend into
the fourth dimension.
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A different type of universe, which originally has the same value ofΩT through-
out, but with different ratios of Ωr, ΩDM , ΩB , and ΩΛ in different regions, is said
to initially have isocurvature fluctuations, because the initial curvature is identical
throughout. Only later, when the density of radiation has sharply decreased relative
to dark or baryonic matter, will overall curvature fluctuations show up, and then only
if the radiation and matter densities have insufficient time to redistribute themselves
homogeneously.

During the radiation-dominated era, the curvature k and cosmological constant
Λ in (13–6) can be neglected. Problem 11–16 then tells us that the particle horizon
roughly equals the Hubble radius.

The particle horizon monotonically grows during this era, revealing progres-
sively increasing portions of the Universe that were beyond view and beyond causal
contact ever since onset of inflation. It is as though we were initially viewing just a
tiny portion of a vast, enormously detailed map, remote regions of which remained
hidden from us. As time went on, small ponds, then lakes, then seas, and finally
entire oceans on this map would come into view to be discerned. Similarly, as the
cosmic particle horizon grows, perturbations of ever-increasing size are said to “en-
ter” the horizon — and thus come into view.

The rest-mass of matter the horizon already encloses when a perturbation having
a scale equal to the Hubble radius RH = c/H comes into view, is predominantly
that of dark matter, MDM ∼ (4π/3)ρDM (c/H)3. While ρDM ∝ a−3 use of equa-
tion (11–55) tells us that (c/H)3 ∝ a6, so that MDM ∝ a3 and, from (13–11), the
fluctuations of matter and matter density have contrast(

δM

M

)
=
(
δρ

ρ

)
∝M

2/3
DMM

−(n+3)/6
i . (13-12)

If dark matter, baryonic matter, and radiation are thoroughly mixed throughout the
radiation-dominated era, the initial mass spectrum expressed in terms of Mi is also
a good representation of the mass spectrum of its different components. As the per-
turbation enters the particle horizon, the dark matter has not yet begun to flow and
aggregate relative to its surroundings. Hence, it does not yet exert a gravitational
tug that will eventually redistribute the ambient plasma and its coupled radiation
field. The left side of (13–12) accordingly remains a good approximation to the
density contrast in both the dark and baryonic matter. This simplification permits us
to rewrite the mass spectrum for fluctuations. Dropping all subscripts,(

δM

M

)
∝M2/3M−(n+3)/6 = M (1−n)/6 . (13-13)

By concentrating on increasingly large fluctuations, matched in size to the grow-
ing particle horizon at the time they enter it, we have shown that equation (13–13)
holds for fluctuations on all scales. For the Harrison–Zel’dovich spectrum, which
has n = 1, (13–13) tells us that the amplitudes of density and matter fluctuations
are independent of mass. This independence is called scale invariance.
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13:5 The Coupling of Radiation and Matter

Let us return to Tables 12.1 and 12.3 where we displayed the evolution of the num-
ber densities of photons, the radiation temperatures, and the densities of baryons as
functions of red shift z to show how they attained their currently observed values.
The temperature at decoupling is also displayed. As the Cosmos cools through the
temperature range from 104 and 103 K, the density of photons capable of ionizing
hydrogen drops by more than 50 orders of magnitude. As Fig. 13.1 shows, around

Fig. 13.1. The ratio of electrons to hydrogen atoms as a function of red shift for the assumed
parameters ΩT = 1.0, T0 = 2.725K,ΩB = 0.04, ΩΛ = 0.73, a helium abundance by
mass, Y = 0.24, and a Hubble constant H0 = 70 km s−1 Mpc−1. Courtesy of Sara Seager,
who provided this updated version of an earlier plot by Seager, Sasselov, and Scott (Se99).

4000 K or z ∼ 1465 the ionization rate per atom drops precipitously, while the
recombination rate changes much more slowly. Electron and ion densities progres-
sively decline, although a low level of ionization persists forever.

We can understand this in terms of equation (4–72). At temperature T  hν/k
the number density of photons ni with energies above the ionization energy for
hydrogen, hνi, is

ni ∼
∫ ∞

νi

8πν2

c3
e−hν/kTdν. (13-14)

The ionization rate per atom then is
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− 1
nH

dnH

dt
= nicσi, (13-15)

where σi is the ionization cross-section at the ionization edge ∼10−17 cm−2. Since
both the number of photons in this temperature range and the ionization cross-
section rapidly drop above the ionization edge, use of this cross-section suffices.
At 104 K, nicσi ∼ 82 s−1. By 4000 K, the rate has dropped to 1.7 × 10−9 s−1, and
at 3000 K it is 2.4 × 10−15 s−1, meaning that the ionization rate drops below the
Hubble expansion rate which dominates the photon cooling.

As Table 9.2 and equation (9–5) show, the compensating recombination rate is

neαc ∼ 3 × 10−13

(
104

T

)1/2

xnH s−1 , (13-16)

where x is the ionization fraction x ≡ ne/nH , and αc is the sum of recombination
coefficients to all excited states except the ground state, which produces an ionizing
photon and, therefore, does not lead to permanent recombination. Below 4000 K,
x rapidly declines. At red shift z ∼ 103, it is ∼10%. By z ∼ 900, as Fig. 13.1
indicates, x has dropped to below 2%. From Table 12.1, we can obtain the hydrogen
density at this epoch as nH ∼ 200 cm−3, so that ne ∼ 4 cm−3 . Then neαc ∼
2.4 × 10−12 s−1, and the age of the Universe is ∼1013 s. Electrons and protons
thus continue to combine for a little while longer, with essentially no competing
ionization until the ionization fraction drops to ≤10−4. There the recombination
rate also drops below the Hubble expansion rate and x remains at a value between
10−4 and 10−5.

13:6 Cooling of Gas After Decoupling

Given that the adiabatic constants for radiation and atomic matter, respectively, are
γ = 4

3
and 5

3
, we might expect from equations (4–129) that, after decoupling, the ra-

diation temperature would drop in proportion to (1+z), whereas the gas temperature
would drop faster, in proportion to (1 + z)2. However, even when decoupling is al-
most complete, the gas can still be heated by photons, even as it cools adiabatically,
because the photon number exceeds the number of atoms by a factor of ∼109. The
heating is indirect. The photons can only share their energy through Thomson scat-
tering off the very small fraction x of electrons that have not combined with protons
to form atoms. But the Thomson scattering cross-section is sufficiently high, and
the photon energy density ρrad = aT 4 is large enough, so that the energy gained by
the electrons through scattering can be shared in subsequent collisions with atoms
to keep the gas heated despite appreciable cooling through cosmic expansion.

For a nonrelativistically moving electron, the apparent temperature of the mi-
crowave background radiation at an angle θ relative to the electron’s direction of
motion is T (θ) = T (1 + (V/c) cos θ), where the low velocities permit us to ne-
glect the factor γ(V ) in equation (5–49). Here T is the rest-frame temperature at
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any particular red shift z. Referring to the coordinate system of Fig. 5.8, except that
we designate the polar angle by θ rather than θ′, we can see that the net momen-
tum transferred to an electron per unit time by radiation incident from an annular
element of solid angle 2π sin θdθ is

dp

dt
=
aT (θ)4

4π
σe
V

c
(cos θ)2π sin θdθ . (13-17)

Here σe is the Thomson scattering cross-section, and the term (cos θ) gives the non-
cancelling momentum component directed opposite to the motion. This produces a
drag force F obtained by integrating over all angles

F =
∫
aT 4σe

2
cos θ

(
1 + 4

V

c
cos θ
)

sin θdθ =
4aT 4σeV

3c
. (13-18)

The work done on the radiation bath by the motion of the electron per unit time
is FV = 4aT 4σeV

2/3c. If the temperature of the electrons is Te, the mean
square velocity is 〈V 2〉 = 3kTe/me , where me is the electron mass and k
is the Boltzmann constant. The work done on the radiation bath then becomes
FV = 4aT 4σekTe/mec, and represents the energy loss of the electrons. If the
electrons and radiation were in thermal equilibrium, the heating of the electrons by
the radiation would just equal the loss of energy from the electrons to the radiation.
So, when the gas and radiation temperatures differ, the energy exchange between
the two is

dE
dt

=
4akT 4σe

mec
(T − Te) . (13-19)

For an ionization fraction x  1, the electrons share their energy with ∼1/x
atoms, so that the temperature of the atoms changes at a rate

dTa

dt
=
(

x

1 + x

)
2
3k
dE
dt

=
(

x

1 + x

)
8aT 4σe

3mec
(T − Te). (13-20)

The heating rate is a sensitive function of the radiation density and the relative
fraction of atoms and electrons but remains substantial until the epoch z ∼ 200
when the radiation temperature is still several hundred degrees. At lower red shifts,
however, radiative heating becomes negligible and the gas does adiabatically cool
in proportion to (1 + z)2.

13:7 Photon Drag

Before decoupling, radiation and matter form a tightly bound fluid. The radiation
scattered by an electron per unit time has energy

dE
dt

= aT 4cσe. (13-21)
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As (13–18) shows, the drag on electrons then reduces any systematic velocity v of
atomic matter with respect to the ambient radiation bath, at a rate(

1
v

)
dv

dt
=
d lnv
dt

=
4aT 4xσe

3mHc
, (13-22)

where, for simplicity, we have acted as though hydrogen were the only major con-
stituent and have neglected corrections to account for the admixture of helium.

For largely neutral gas, the main mode of interaction between electrons and
atoms is charge exchange, in which an incident unbound electron exchanges places
with an electron originally bound to its hydrogen nucleus. If the impinging electron
has substantial momentum, it transfers this to the nucleus to which it now becomes
bound. The charge exchange cross-section is ∼10−15 cm2 , large compared to most
other atomic cross-sections. In Section 13:5, we saw that at z ∼ 900 the ionization
fraction is x ∼ 2 × 10−2 and the density of neutral atoms is ∼2 × 102 cm−3. An
electron moving with speed (3kT/m)1/2 ∼ 2 × 107 cm s−1 then interacts with an
atom roughly every 2.5×105 s, which is rapid compared to the time scale of cosmic
evolution.

PROBLEM 13–1. Using Tables 12.1 and 12.3, Fig. 13.1, and the work of Section
11:12, convince yourself that the time constant for damping motion is only of order
2 × 107 s at red shift z = 104, much shorter than the age of the Universe at that
time, roughly 2 × 1011 s. By comparison, at z ∼ 800, the damping time constant
has increased to ∼7 × 1013 s because both the radiation density and the ionization
fraction have dropped. The damping time is then considerably greater than the in-
stantaneous age of the Universe ∼2 × 1013 s, and matter can move almost freely
through the radiation background.

The radiation drag experienced by matter before decoupling is referred to as Silk
drag or Silk damping. It efficiently damps out small-scale turbulence and oscillations
(Si68).

PROBLEM 13–2. (a) Using Tables 12.1 and 12.3 convince yourself that at z ∼ 104

a photon can travel though the plasma no more than a distance of ∼1018 cm, or for
a time ∼1 yr, before being Thomson scattered. Compare this distance to the scale
of the cosmic horizon at this epoch to see that matter and radiation act as a tightly
coupled fluid. (b) Show that the speed of sound in this photon/baryon plasma can be
obtained from (9–25), (4–43), (4–125) and (4–129), and is

cs =
(
∂Pr/∂T + ∂PB/∂T

∂ρr/∂T + ∂ρB/∂T

)1/2

=
(

(4/3)ρrc
2 + (5/3)(1 + x)ρBkT/mH

(4ρr + 3ρB)

)1/2

.

(13-23)
The mass density of dark matter does not enter this equation because it does not
affect the dependence of pressure on density. (c) Show that well before decoupling,
when ρr = aT 4

0 (1 + z)4/c2 � (3H2
0/8πG)ΩB(1 + z)3 = ρB , the speed of sound
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remains essentially constant at cs = c/
√

3 ∼ 1.7 × 1010 cm s−1. As Table 12.1
indicates, this is the situation at z ∼> 104. Show also that at decoupling, where
(z + 1) ∼ 1100, the radiation pressure still dominates and, although the Universe
is now matter dominated, the baryonic term ρB in the denominator of (13–23) is
still somewhat smaller than ρr . Convince yourself that the speed of sound just be-
fore decoupling is ∼ [(4/3)(aT 4

0 (1+z)]1/2/[(3H2
0/8πG)ΩB +4aT 4

0 (1+z)/c2]1/2

∼ 1.4 × 1010 cm s−1 , while after decoupling it is (5(1 + x)kT/9mH)1/2

∼ 4 × 105 cm s−1. Figure 13.1 can be used to obtain x ∼ 0.2.

13:8 Oscillations Around the Decoupling Era

Before decoupling, Silk damping firmly couples matter to radiation, giving rise to a
plasma that can oscillate — contracting in response to gravitational self-attraction,
rebounding as the radiation pressure rises. Such oscillations are acoustic waves. To
see this we need to look more carefully at the gas dynamics. We may use the same
approach and notation as in Sections 9:3 and 10:3 but will have to keep in mind that
we now are dealing with a perturbed fluid comoving with an expanding universe.
We begin with the continuity equation

∂ρ

∂t
+ ∇ · (ρv) =

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0 , (13-24)

where ρ is the mass density. We also need the Euler equation

∂v
∂t

+ (v · ∇)v +
∇P
ρ

+ ∇φ ≡ d

dt
v +

∇P
ρ

+ ∇φ = 0 , (13-25)

and the Poisson equation
∇2φ = 4πGρ . (13-26)

As in Chapters 9 and 10, we again consider a perturbed fluid with density ρ =
ρ0 + ρ1, pressure P = P0 + P1, velocity v = v0 + v1, and gravitational potential
φ = φ0 + φ1, where subscripts 0 and 1, respectively, indicate the unperturbed and
perturbed states.

We are interested in conditions around the decoupling era, where the Universe
is already mass dominated. We take the unperturbed velocity to be given by the
Hubble flow. Then, at any epoch t, the unperturbed conditions in the adiabatic flow
are

ρ0(t) = ρ0(t0)
(
a(t0)
a(t)

)3

, v0 =
ȧ

a
r,

∂P

∂ρ

]
S

= c2s, ∇φ0 =
4πGρ0(t)

3
r ,

(13-27)
where t0 refers to the present era, and the scale factor a satisfies (13–6) and (13–7).
The third equality corresponds to (9–25), with cs the speed of sound, and the fourth
represents the force field in the Hubble flow.
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Provided we restrict ourselves to regions well within the Hubble radius, where
wavelengths are short with respect to RH , we can carry out a perturbation analy-
sis using a Newtonian approximation. This restriction implies that we do not have
to worry about fluctuations within which expansion velocities approach or exceed
the speed of light. Nor do retardation effects and their accompanying causal uncer-
tainties arise for regions small compared to the Hubble radius, where signals can
propagate in time intervals short compared to the age of the Universe.

In carrying out the Newtonian approximation, it is useful to first identify the
unperturbed solutions of equations (13–24) to (13–26). These, respectively, reduce
to

dρ0/dt+ (ȧ/a)ρ0∇.r = 0 ,

(ä/a) + 8πGρ0/3 = 0 ,

both consistent with (13–6) and (13–7) under Newtonian conditions, where pressure
terms are small and the cosmological constant can be ignored. The unperturbed
Poisson equation is

∇2φ0 = 4πGρ0 .

With these primary expressions identified, we can proceed to examine the smaller
terms in the first-order perturbed equations (Ko90*). The perturbed continuity equa-
tion becomes

∂ρ1

∂t
+ 3

ȧ

a
ρ1 +

ȧ

a
r · ∇ρ1 + ρ0∇v1 = 0 . (13-28)

where ȧ/a, ρ0, ρ1 , and v1 all refer to time t. The perturbed first-order Euler equa-
tion is

∂v1

∂t
+
ȧ

a
(v1 + r · ∇v1) +

c2s
ρ0

∇ρ1 + ∇φ1 = 0 , (13-29)

The first-order perturbations of the potential obey the Poisson relation

∇2φ1 = 4πGρ1 . (13-30)

These three equations can be simplified by postulating that the perturbations in the
density contrast δ ≡ ρ1/ρ0, velocity v1, and potential φ1, all exhibit an identical
form, a superposition of sinusoidal components with wave number k in the volume
of interest V .

ϕ(r, t) = (2π)−3

∫
ϕke

−ia(t0)k·r/a(t)dV . (13-31)

Here ϕ stands for δ, v1, or φ1. Since r[a(t0)/a(t)] is seen to be a comoving co-
ordinate, k is a corresponding comoving wave number, and the wavelength of the
oscillations expands with the Universe. Alternatively, if r is taken to be a vector
whose physical length is measured in megaparsecs, [a(t0)/a(t)]k has to be con-
sidered a physical wave number with dimensions given in reciprocal megaparsecs,
Mpc−1. The corresponding physical wavelength λ = 2π(a(t)/a(t0)k) then has the
same units of length as r.
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PROBLEM 13–3. Show that, with (13–31), equations (13–28) to (13–30) reduce,
respectively, to (13–32) to (13–34). Using the notation δ̇ ≡ dδ/dt = (∂δ/∂t)+v.∇δ
throughout, these read:

δ̇k − ia(t0)k
a(t)

· vk = 0, δ̈k − i
(a0

a

)
k · v̇k +

(
ȧ

a

)
δ̇k = 0 , (13-32)

where vk is the perturbed velocity component having wave number k,

dvk

dt
+
(
ȧ

a

)
vk − ik

(
a(t0)
a(t)

)(
c2s + φk

)
δk = 0 , (13-33)

and

φk = −4πGρ0

k2

(
a(t)
a(t0)

)2

δk . (13-34)

Further show that these three equations can be combined to yield a differential
equation for the evolution in density contrast, δk:

δ̈k + 2
(
ȧ

a

)
δ̇k +

[
(csk)2

(
a(t0)
a(t)

)2

− 4πGρ0

]
δk = 0 . (13-35)

In deriving these results, it is useful to remember that we are dealing with acoustic,
i.e., longitudinal, waves and that this affects the calculation of divergences.

We can construct any arbitrary perturbation by superposing Fourier components
of the form (13–31). Accordingly, equations (13–32) to (13–35) will hold for any
perturbation if the individual terms are summed over wave number components k.
The velocity components included in these equations can be either transverse to or
aligned with r and k and represent, respectively, rotational or irrotational motions.
However, only the irrotational modes affect the evolution of the density contrast, as
equation (13–32) indicates.

It is important to note that the mass density ρ in equations (13–27) to (13–35)
refers to the sum of the densities of dark matter ρDM and baryonic matter ρB , and
that the dark matter might have several different components. When both baryonic
and dark matter are present, and the dark matter may comprise several different
weakly interacting constituents, we can more generally write separate equations of
the form (13–35) for each component i,

δ̈ik + 2
(
ȧ

a

)
δ̇ik +

⎡
⎣(csik)2

(
a(t0)
a(t)

)2

δik − 4πGρ0

∑
j

ρj

ρ0
δjk

⎤
⎦ = 0 , (13.35a)

where csi is the speed at which sound propagates through the ith component. ρj/ρ0

is the fractional mass density of the jth component. Not knowing the nature of the
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dark matter we can only make assumptions about the rate at which sound propagates
through it or — if it has several constituents — the speed of sound in each.

Notice that when there is no cosmic expansion, ȧ/a = 0, we recover equation
(10–9) and consequently also the Jeans length (10–13) and Jeans mass (10–17).

In the matter-dominated cosmological model with Ω0 = 1, (11–58) tells us
that ȧ/a = 2/3t, so that (13–6) yields 4πGρ0 = 2/3t2. We can then identify two
different regimes. For large values of k (i.e., small wavelengths) gravitational effects
can be neglected in (13–35) and (13–35a), and baryonic density perturbations will
oscillate. For Ω0 = 1, a(t)/a(t0) = (t/t0)2/3, the oscillation takes on the form

δ(t) ∝ e±iωt with ω = 3csk[a(t0)/a(t)] . (13-36)

Equation (10–12) shows that oscillating waves propagate at a fraction of the
speed of sound. The maximum distance they can travel in a Hubble time is ∼cs/H .
If we consider this to be the time required to propagate half a wavelength, to ef-
fect maximum condensation or maximum rarefaction, the longest observable wave-
length has twice this dimension ∼2cs/H . At z = 104, where cs ∼ c/

√
3, this

maximum wavelength is 2c/[H
√

3] ∼ 1.6 × 1022 cm, or just over 5 kpc for the
Hubble constant listed in Table 12.3. The baryonic Jeans length at this epoch is
c2[π/(3aT 4G)]1/2 ∼ 20 kpc, and thus appreciably larger than the Hubble radius.
This tells us that none of the fluctuations entering the particle horizon at this or ear-
lier epochs steadily contract, but rather will oscillate. Even just before decoupling,
at z ∼ 1100, the Jeans length still is roughly comparable to the Hubble radius.

Regions of excess density tend to expand, setting up pressure gradients in the
radiation-coupled fluid that provide a restoring force to imposed oscillations. Be-
cause of the tight coupling between radiation and matter, the density oscillations are
also temperature oscillations with heating and cooling, respectively, marking the
compressed and rarefied phases of a standing sound wave. In the absence of strong
viscous damping the oscillations continue until decoupling of matter from radiation
at the epoch of recombination.

As already mentioned in Chapter 12, the term recombination epoch is unfortu-
nately misleading. It implies that there was a prior epoch when electrons and pro-
tons had been combined as neutral hydrogen. In modern cosmology no such epoch
ever existed. Electrons and protons never combined into atoms until after ∼400,000
years of continuing expansion, when the temperature finally fell below 4000 K.

Oscillating modes that happen to be at maximum or minimum density contrast
at decoupling, when radiation becomes free to escape a density inhomogeneity, cor-
respond to peaks in the spatial power spectrum observed in the temperature distri-
bution across the sky. A wave that completes half an oscillation by decoupling, and
is thus caught at an extremum, sets the physical scale of the first peak in the power
spectrum. Both maxima and minima contribute to the peaks in the power spectrum,
and successive peaks thus correspond to integral multiples of this oscillation pe-
riod. Because the speed of sound is independent of the wavelength, the period of
the oscillation is proportional to the wavelength, and successive peaks in the power
spectrum correspond to acoustic waves with wavelengths that are integer fractions
of the wavelength — i.e., integer multiples of the wavenumber — at the first peak.
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At decoupling, (z + 1) ∼ 1100, the speed of sound obtained in Problem 13–2
is ∼1.4× 1010 cm s−1, so that the maximum wavelength that can appreciably grow
in a Hubble time is λmax ∼ 2cs/[H0(z + 1)3/2] ∼ 3.2× 1023 cm ∼ 110 kpc. The
dimension of either the rarefaction or the condensation part of this wave, however,
is just half the wavelength, λmax/2. From equation (11–31) we see that the angle
δmax subtended by this half wavelength at decoupling, viewed from our distance
today, is

δmax ∼ λmax

2[a0σ(χ)/(z + 1)]
∼ cs

(z + 1)1/2c
∼ 0.015 radians ∼ 0.85◦ . (13-37)

The first peak in the power spectrum should correspond to roughly this angular
extent.

In terms of the spherical harmonics defined in Section 6:25, we can associate
a feature of angular extent δmax on the sky with the first harmonic �1 ∼ π/δmax .
Higher harmonics should then be given by

�n ∼ n�1, where �1 =
π

δmax
∼ 210 . (13-38)

The actually observed value of the microwave background fluctuation peak lies
close to �1 ∼ 220, in reasonable agreement with our rough estimate. The peak is
broad 100 ≤ � ≤ 350, with a peak temperature amplitude ∆T ∼ 75µK (Pa03). On
larger scales than this (i.e., � < 90 or equivalently θ > 2◦) patches of the sky will
have been out of causal contact at decoupling. Fluctuations on those scales should,
therefore, reflect the unprocessed primordial spectrum. In conformance with the hy-
pothesis of Zel’dovich in Section 13:1, we should expect to see fluctuations of order
10−5 in the surface brightness and temperature of the microwave background radi-
ation on these larger scales. We will discuss the fluctuation spectrum in more detail
in Section 13:16. In the meantime, however, a glance at Fig. 13.8 may elucidate the
extent to which observations support the theoretical structure we just established.

13:9 The Jeans Criterion

Thus far, we have focused our attention on small wavelength oscillations — oscilla-
tions with large wave numbers. Returning to (13–35) we see that, for small physical
wave numbers, [a(t0)/a(t)]k2  [a(t0)/a(t)]k2

J = (2π/λJ)2 ≡ 4πGρ0/c
2
s, wave-

lengths become longer than the Jeans length,

λJ = cs

(
π

Gρ0(t)

)1/2

= cs

[
π

Gρ0(t0)

(
a(t)
a(t0)

)3
]1/2

, (13-39)

which we note is the same as the Jeans length in a nonexpanding medium. In this
regime, terms in k2 can be neglected and, for a flat space, where ȧ/a = 2/3t and
ρ0 = 3H2

0/8πG, (13–35) yields
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δ̈k +
(

4
3t

)
δ̇k −

(
2

3t2

)
δk = 0 . (13-40)

PROBLEM 13–4. Show that this has a power-law solution of form δ = Atn for the
density contrast

n(n− 1) +
4
3
n− 2

3
= 0 (13-41)

meaning that both n = −1 and n = 2/3 are solutions.

Fig. 13.2. The baryonic Jeans mass MJB and the baryonic mass within the Hubble radius
MHB as a function of red shift. Based on a drawing by E. W. Kolb and M. S. Turner (Ko90).

The first of these is a decaying mode that dies out, whereas the second contin-
ues to grow. However, in contrast to the exponential growth of a Jeans mass in a
non-expanding interstellar cloud, the growth of a cosmologically expanding excess-
density region proceeds at merely the 2

3
power of time. This is slow because the

cosmic expansion works against gravitational contraction.

PROBLEM 13–5. (a) Knowing the Jeans length for the plasma from (13–39) obtain
the baryonic Jeans mass given by (10–17) as MJB = (4π/3)ρB(t)(λJ/2)3 and
show that it increases as ∼(z+1)3/2 from low red shifts to the epoch of decoupling,
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by assuming that the temperature of the baryons rises roughly as (z + 1)2 over this
epoch. (b) Show also that, for H0 = 70 km s−1 Mpc−1, ΩT = 1, ΩB = 0.044 and
ΩM = 0.31,MJB rises dramatically, by many orders of magnitude, as one proceeds
to higher red shifts. The era of full coupling of radiation to matter is reached over
a narrow redshift range about (z + 1) ∼ 1, 100, where the speed of sound rather
abruptly rises from ∼2.5×105 to ∼1.4×1010 cm s−1, as seen from Problem 13–2.
(c) Show that the baryonic Jeans mass after decoupling is ∼5 × 104M� and that
this is well within the Hubble radius c/H ∼ 3.5 × 1023 cm at this epoch. (d) In
contrast, show that the MJB just before decoupling is higher by the rise in c3s, a
factor of ∼1.8×1014, for a total baryonic mass of ∼9×1018M�, and that the Jeans
length abruptly rises to ∼1.5 Mpc, which exceeds the Hubble radius RH = c/H at
that epoch by a factor of ∼13. Figure 13.2 illustrates this evolutionary sequence. (e)
Finally, show that, before decoupling, MJB diminishes in proportion to (1 + z)−3

as one goes farther back in time, and that the Hubble radius declines in the same
proportion, so that the baryonic mass within the horizon is always three orders of
magnitude below the Jeans mass.

Because the Jeans length diminishes for low ratios of c2s/ρ, contraction of con-
densations is most likely to be induced by dark matter (Ki05). Though collisionally
decoupled from ordinary matter and radiation, and contributing neither to the pres-
sure nor the speed of sound, dark matter dominates density ρ0 in (13–35) and hence
may be expected to lower the Jean length and Jeans mass. However, very little is
known about the physics of dark matter.

13:10 Condensation on Superhorizon Scales

At first glance, large-scale initial fluctuations imprinted on the Universe before infla-
tion might appear incapable of growing, since they would extend beyond the particle
horizon and apparently be out of physical contact and unable to contract. This view,
however, is false and we need to understand why.

Let us consider fluctuations present in the earliest phases of the Universe, when
the expansion of the Universe may have been slow just before onset of inflation.
At this early epoch, the gravitational potential from any mass condensation reaches
out to a particle horizon that may be at much greater distances than the horizon
encountered later, during the decoupling era. The gradient of this initially estab-
lished gravitational potential can be envisaged in terms of lines of force marking the
gravitational force field. As inflation progresses and the Universe expands at expo-
nentially increasing rates, these lines of force remain frozen in comoving space. No
dissipative mechanism exists to wipe them out. Thus, throughout inflation and the
post-inflationary period, matter in widely separate regions of the Universe remains
gravitationally coupled even though separated by many times the distance to the
instantaneous Hubble radius. Matter and radiation will keep flowing, albeit slowly,
along the primordially imprinted gravitational lines of force regardless of the cir-
cumstance that the attracting center lies outside the particle horizon. Perturbations
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on such superhorizon scales, therefore, continue to grow. At a speed of sound cs,
which we saw to be a significant fraction of the speed of light c, fluctuations can
grow appreciably during the Hubble time just before decoupling. Fluctuations at
substantially longer wavelengths than RH will not significantly grow. The fraction
of a wavelength the fluid can move in unit time cs/λ diminishes with increasing
wavelength. Because fundamental oscillations quite generally are accompanied by
higher harmonics, these harmonics more readily grow and leave a pronounced mark
on the spatial fluctuation spectrum in the microwave background radiation seen
in Fig. 13.8. We may, therefore, expect to see significant spatial structure in the
microwave background spectrum that peaks on a scale comparable to the particle
horizon at decoupling, which currently subtends an angle of order ∼1◦ on the sky.
(Hu97)*.

Let us still return to the discussion on the potential seeds of structure that we
left unsettled in Section 13:3. Extrapolating back in time, we note that the comov-
ing diameter of a region subtending 1◦ on the sky is ∼1026 cm today. In Section
12:7, we estimated that the end of inflation occurred around z ∼ 1027.5, so that
this region would have spanned a diameter of 1/30 cm at that epoch and a vol-
ume Vei ∼ (1/30)3 cm3 . Judging from (13–1) and (13–2) a region of this size
reheated to Toi ∼ 1028 K (i.e., 1015 GeV) would have had thermal fluctuations
of order (δρ)/ρ ∼ 10−5(Voi/Vei)1/2 ∼ 10−40.5 at that epoch. But (13–11) sug-
gests that these fluctuations should have grown in proportion to a2 between the end
of inflation and the end of radiation domination (i.e., by a factor of 1048) making
(δρ)/ρ ∼ 107.5 — many orders of magnitude greater than observed in the mi-
crowave background. Although this is disconcerting, we are dealing with several
parameters that still are uncertain by many orders of magnitude, the temperature
and number of particle species at reheating, the red shift at end of inflation, etc.
However, the indications at least are that readily explained fluctuations at primor-
dial times could account for the seeds around which cosmic structure eventually
evolved.

13:11 A Swiss-Cheese Model

Let us now turn to the question of how curvature fluctuations of the type that lead
to acoustic oscillations or eventual collapse may be incorporated into a general rel-
ativistic model of the Universe. We will look into this question in some detail with
a model that is simple but that, nevertheless, permits us to gain quantitative insight
into the effects of Riemann curvature k, a cosmological constant Λ, and other fac-
tors. Given the rate at which current models of the Universe are changing in response
to observations, it is worthwhile having such a simple model with which the effects
of different factors, such as the influence of quintessence, might be estimated an-
alytically, without the need for a full simulation with more powerful, but possibly
less transparent, computer models.

In Chapter 5, we saw that empty space surrounding an isolated mass M is char-
acterized by the Schwarzschild metric, equation (5–62),
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ds2 =
(
c2 − 2MG

r

)
dt2−

(
1 − 2MG

rc2

)−1

dr2−r2(sin2 θ dφ2+dθ2). (13-42)

This metric defines the trajectories of particles and the paths along which light
beams propagate in an empty Universe surrounding a point mass. The significance
of this metric, however, is far greater, as demonstrated in a powerful theorem derived
by the mathematician George D. Birkhoff in 1923 (Bi23). Birkhoff showed that a
metric of precisely the Schwarzschild form must hold in empty space surrounding
any spherically symmetric mass distributionM , even when this empty space itself
is embedded in a larger, spherically symmetric distribution of matter. Moreover, he
showed that this metric must be static, invariant in time.

In Chapter 11, on the other hand, we saw that the evolution of a simply con-
nected, homogeneous, and isotropic three-dimensional space is described by the
quite different Friedmann–Robertson–Walker (FRW) metric (11–18). This metric is
spherically symmetric around arbitrarily selected points

ds2 = c2 dt2 − a2(t){dχ2 + σ2(χ)[dθ2 + sin2 θ dφ2]} , (13-43)

where dχ is the comoving element of space and σ(χ) takes on the form sinχ, χ, or
sinhχ, depending on whether the Riemann curvature constant of the three-space is
k = 1, 0, or −1.

Equations (13–42) and (13–43) taken together permit us to describe the gravita-
tional field of a spherically symmetric galaxy in an inhomogeneous Universe filled
with similar galaxies. Consider such a galaxy inside a concentric spherical vacuole
— a bubble of empty space embedded in an ambient isotropic, homogeneous, ex-
panding universe (Fig. 13.3). In two ground-breaking papers Einstein and Straus
(Ei45) showed how such galaxies fit into a Universe with zero pressure, P = 0.
Since the pressure in empty space surrounding galaxies and clusters of galaxies is
currently quite low, this model helps to describe the Universe observed today.

Within a well-defined radius, rve, the central mass M is surrounded by vac-
uum and, as Birkhoff’s theorem requires, the Schwarzschild metric applies. Outside
this empty region, the FRW metric describes a homogeneous, isotropic, expanding
space. The spherical boundary between these two regions expands at a rate com-
mensurate with the overall cosmic expansion. As the external universe expands, its
density, ρe , drops. Correspondingly, the vacuole radius expands in a way that keeps
the gravitational mass of the central condensation M , divided by the vacuole vol-
ume V , at a density ρv = M/V which at all times stays exactly equal to ρe. In
effect, the ambient universe becomes gravitationally unaware of the existence of the
embedded mass, and equations (13–6) and (13–7) ensure a uniform expansion of
the ambient universe.

Einstein and Straus noted that, in this fashion, any number of spherical mass
concentrations, each enveloped in its own nonoverlapping spherical vacuole could
be embedded in an otherwise homogeneous, isotropic substratum, as sketched in
Figs. 13.3 and 13.4. They proposed this as a suitable description of structure ob-
served in the Universe. Because of the vacuoles surrounding the mass distributions,
their model is often referred to as a Swiss-cheese model.
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Fig. 13.3. Spherical mass distribution in an ambient universe. A spherical mass M is en-
veloped in a concentric sphere of empty space — a vacuole embedded in a homogeneous,
isotropic, external space of Riemann curvature constant ke. The interior of M may also be
homogeneous and isotropic, but with a different curvature constant, ki . The surface Svi sep-
arates the interior of the mass from the surrounding vacuum; the surface Sve separates the
vacuum from the external universe. The respective radii of these two surfaces are rvi and rve.

Let us see how the Einstein–Straus fitting of the two metrics works. At a radial
position rv in the vacuole surrounding a mass M , the Schwarzschild metric (13–42)
can be rewritten as

ds2 = c2(1 − 2MG/rvc
2) dt2v −

dr2v
(1 − 2MG/rvc2)

− r2v dΩ
2, (13-44)

where dΩ2 is the increment of solid angle, rv is a radial coordinate, θ and φ are
angular coordinates, and tv is proper time, measured by a freely falling observer,
instantaneously at rest at a point (rv, θ, φ) = constant.

In a universe with cosmological constant Λ, Pirani correspondingly showed that
the Schwarzschild metric in the vacuole reads (Pi54):

ds2 = −
(

1−2MG

rvc2
−Λr

2
v

3

)
c2 dt2v+

(
1−2MG

rvc2
−Λr

2
v

3

)−1

dr2v+r
2
v dΩ

2. (13-45)

The metric in the external universe retains the form (13–43) even with the inclusion
of the cosmological constant, but the expansion rate of the universe given by a(t) is
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Fig. 13.4. Swiss-cheese model of the Universe. Spherical mass distributions M , potentially
representing spherical clusters of galaxies each encapsulated in its own vacuole, are embed-
ded in an external matrix of homogeneous, isotropically distributed matter of density ρe. As
the universe expands the volume V of each vacuole grows to keep the density M/V = ρe.
In the limit, the Universe can be entirely filled with individual spherical clusters of various
sizes, with virtually no homogeneous matrix in between.

then given by (13–6) and (13–7) with the cosmological constant included. For now,
we will disregard the cosmological constant, but will return to it later.

A convenient feature of proper time tv is that it readily permits observers at
different radial positions within the vacuole to compare clock rates as shown by
equation (5–60). Setting dθ = 0, dφ = 0, we find that the ratio of proper times at
an arbitrary radial position rv within the vacuole, and at the vacuole’s boundary to
the external ambient Universe rve is

dtv
dtve

=
(1 − 2MG/c2rv)1/2

(1 − 2MG/c2rve)1/2
. (13-46)

In the limit rve = ∞, this reduces to the first of the two expressions (5–60).

PROBLEM 13–6. Substitute the results of Problems 11–1 to 11–3 into equation
(11–18), to show that the metric (13–43) can be expressed as

ds2 = c2 dt2e − a2(te)
[

dχ2

(1 − keχ2)
+ χ2 dΩ2

]
, (13-47)

where a(te) is the ambient scale factor, te is the time measured in the external uni-
verse, and ke is the Riemann curvature constant in the external universe. (Note that
the parameter χ, as used here and in the remainder of this chapter, plays the role of
r = a(te)σ(χ) in equations (11–18) and (13–43).)
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In Section 5:13 we saw that the radius r of a sphere is defined in terms of the
square root of the surface area of the sphere, r ≡ (S/4π)1/2. To obtain the radial
distance between spheres with radii r and r+∆r, for∆r  r, in the vacuole where
space is defined by the Schwarzschild metric, we can set the intervals dΩ and dtv
equal to zero. The radial separation then is the interval

|∆s| =
∆r

(1 − 2MG/rvc2)1/2
. (13-48)

Similarly, in the ambient Universe defined by the Friedmann–Robertson–Walker
metric the radial separation becomes

|∆s| =
a(te)∆χ

(1 − keχ2
o)1/2

, (13-49)

where χo is the comoving radius of Sve. We now note that points lying within the
surface Sve, which separates the spherically symmetric vacuole from an ambient
FRW Universe, have to be identified, respectively, in terms of the Schwarzschild
and FRW coordinates; and the metric at each point must be continuous across Sve.
But because rve and re, at Sve are defined as (Sve/4π)1/2, this will happen when
rve = re at a time te = tve, where tve is the proper time measured within the
vacuole at the interface Sve and te is world time, as defined in Section 11:3.

As the Universe expands, the surface separating the vacuole from the ambient
Universe increases to Sve +∆Sve = 4π(rve +∆rv)2 = 4π(rve +∆re)2.

We now see what happens when Sve grows by a radial increment ∆rv = ∆re.
Crossing the intervals ∆s of equations (13–48) and (13–49) at the speed of light
requires respective time increments

∆tv =
∆rv

c(1 − 2MG/rvc2)1/2
(13-50)

and

∆te =
ae(t)∆χ

c(1 − keχ2
o)1/2

≡ ∆re

c(1 − keχ2
o)1/2

. (13-51)

Because the unit of time, in either domain, is the time required by light to traverse a
distance c, we can arbitrarily set ∆rv = ∆re = c to compare unit time intervals in
the two domains

dtv
dte

]
ve

=
(1 − keχ

2
o)1/2

(1 − 2MG/rvec2)1/2
. (13-52)

As Schücking (Sc54) first remarked, the clock rates across Sve change as a func-
tion of time and differ from each other. Combining expressions (13–46) and (13–52)
we obtain the general expression contrasting clock rates at arbitrary points rv and
re,

dtv
dte

=
(
dtv
dtve

)(
dtve

dte

)
=

[1 − 2MG/(rvc
2)]1/2[(1 − keχ

2
o)1/2]

[1 − 2MG/(rvec2)]
. (13-53)
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These comparisons between proper time tv and world time te hold for freely
falling observers at rest at locations rv and comoving, fundamental observers in
the ambient universe. We should however note that, in comparing clock rates with
observers at greater distances in the universe beyond the interfaceSve, the additional
time dilatation arising from cosmic expansion must also be considered.

Substitution for dtv in equation (13–44) permits us to write the metric in the
vacuole as

ds2 = c2 dt2e(1−2MG/rvc
2)
[

(1 − keχ
2
o)

(1 − 2MG/rvec2)2

]
− dr2v

(1 − 2MG/rvc2)
−r2v dΩ2 .

(13-54)
As Schücking (Sc54) noted, somewhat modified metrics of this kind exist also

for models of the Universe characterized by a cosmological constant. We can see
from the form of (13–45), that we can obtain the expressions characterizing a uni-
verse with cosmological constant, by replacing terms of the form 2MG/(rc2) by
[2MG/(rc2) − Λr2/3], in equations (13–46), (13–48), (13–50), and (13–52) to
(13–54).

We may still note that no cylindrically symmetric Swiss-cheese models appear
to exist. An expanding or contracting FRW universe cannot be mated to any cylin-
drically symmetric static metric across a surface without disturbing this symme-
try (Se97). This is in contrast to the spherically symmetric cases we have so far
discussed, where an important feature is the static character of the Schwarzschild
metric.

13:12 Birkhoff’s Theorem and “Why Galaxies Don’t Expand”

Let us now look at an important consequence of Birkhoff’s theorem and its require-
ment that the metric be static in the empty space surrounding a central spherical
mass aggregate M , which could be an isolated star, spherical galaxy, or spherical
cluster. Being static, the space does not expand. Even when the vacuole surrounding
a galaxy grows as the surrounding Universe expands, the space within the vacuole
remains static. The metric (13–54) has no time-dependent terms corresponding, for
example, to the scale factor a(te) that signifies the cosmic expansion in (13–47). As
the universe expands, the surface Sve is pulled along with it, revealing in its wake
a static Schwarzschild space of progressively larger radius rve. It is as though in-
creasing portions of an underlying Schwarzschild space were being uncovered as
the expanding Universe peels away from the mass M .

The static character of the Schwarzschild metric which, as (13–45) shows, also
holds when a cosmological constant is included, tells us at once that galaxies like the
Magellanic Clouds that orbit larger galaxies like the Milky Way do not participate
in the cosmic expansion. They travel along trajectories that are Newtonian in the
limit MG/rvc

2 and Λr2v  1. Even when MG/rv ∼ c2, close to the surface of a
neutron star or a black hole, where the curvature of space becomes appreciable and
the trajectories followed by particles and photons no longer approximate Newtonian
trajectories, the space is still static and isolated from the cosmic expansion.
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Birkhoff’s theorem answers the question of why the Universe can expand glob-
ally, while stars and galaxies orbit each other along Newtonian trajectories, appar-
ently heedless of the cosmic expansion.

13:13 Curvature Fluctuations

The Universe we observe appears to be rather close to being Euclidean, or flat, hav-
ing a value ke = 0. As equation ( 13–8) tells us, regions of somewhat higher density
than the mean may, therefore, be represented by domains with positive Riemann
curvature constant, k = +1, and regions of lower density may be thought of as
domains with negative curvature, k = −1. The Swiss-cheese model permits us to
embed spherical, dense, homogeneous, isotropic domains with curvature ki inside
less dense, homogeneous, isotropic, external regions with curvature ke, provided
they are separated by a concentric spherical vacuole. The mass of the internal do-
main, again, has to equal the mass the vacuole would have contained if filled at the
density of the external universe. The boundary conditions at the surface Svi sepa-
rating the internal domain from the vacuole are of the same form as those prevailing
at Sve. In full analogy to equation (13–54) we can therefore write the metric in the
vacuole as

ds2 = c2 dt2i (1−2MG/rvc
2)
[

(1 − kiχ
2
o)

(1 − 2MG/rvic2)2

]
− dr2v

(1 − 2MG/rvc2)
−r2v dΩ2.

(13-55)
Similarly all the other relations, (13–46) to (13–53), still hold with subscripts i re-
placing subscripts e.

We can now consider a sphere with radius a(t)χ and curvature constant ki em-
bedded in an external universe with curvature constant ke < ki. At very early times
in the expansion of the universe the densities (13–9) in the two regions are the same,
ρi = ρe. The two domains interface at surfaces Svi ∼ Sve separated by a negligibly
thin vacuum shell. The radii of these shells can be taken to be a(ti)χo and a(te)χo,
respectively. Initially, the expansion rate of the external domain will be only slightly
faster than that of the internal sphere because the curvature terms in equations
(13–6) and (13–7) are also all but negligible at these epochs. As the expansion
proceeds, the curvature terms do become significant, the expansion of the exter-
nal domain becomes progressively faster than that of the internal sphere, and the
thin vacuum shell develops into a sizeable vacuole. The clock rates at one and the
same comoving radial coordinate χo, respectively, interior and exterior to the two
vacuole surfaces, are related by (Ha92), (Ha95)

dti =
(

1 − kiχ
2
o

1 − (2MG/rvic2)

)−1/2

dtv

]
vi

=
(

1 − keχ
2
o

1 − kiχ2
o

)1/2( 1 − (2MG/c2χoai)
1 − (2MG/c2χoae)

)
dte. (13-56)
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This makes the rate of evolution of the inner and outer homogeneous, isotropic
domains dependent upon the time evolution of ai and ae specified by (13–6) and
(13–7).

PROBLEM 13–7. Show, by differentiating the following three expressions with
respect to time, that they are solutions of equations (13–6) and (13–7) for matter-
dominated, zero-pressure, P = 0, Λ = 0 universes:

t =
am

c

[
a

am

(
am

a
+ 1
)1/2

− coth−1

(
am

a
+ 1
)1/2]

for k = −1, (13-57)

t =
2
3
am

c

(
a

am

)3/2

for k = 0, (13-58)

t =
am

c

[
(2n+ 1)π

2
− tan−1

(
am

a
− 1
)1/2

− a

am

(
am

a
− 1
)1/2]

,

for k = +1 and n = 0, 1, 2, ... . (13-59)

Here,

am =
8πGρa3

3c2
(13-60)

is the scale factor at maximum expansion of the k = +1 domain, which can be
seen, with the help of equations (11–11) and (11–17), to be a constant since it is
proportional to the total mass enclosed by a comoving region in a matter-dominated
universe.

Because am is constant during the matter-dominated, zero-pressure era, it is a
suitable standard of length for epochs during which the primary contributor to the
mass density is matter, rather than radiation or a cosmological constant. Table 12.3
shows that the Universe was matter dominated after z ∼ 103. Even if ΩΛ ∼ 0.7
today, the Universe must have been matter dominated before z ∼ 2 when the matter
density would have been (z + 1)3 > 27 times higher than today. So, equations
(13–57) to (13–59) should be instructive for studying the era characterized by red
shifts 2 ≤ z ≤ 103, during which the formation of galaxies and clusters took place.

The solutions to equations (13–57) to (13–60) are plotted in Fig. 13.5 and pro-
vide a direct comparison of the evolutionary rates in models with different Riemann
curvature constants k, but with identical initial matter density ρ for the early stages
of matter-dominated evolution. For k = +1, Fig. 13.5 shows only the first oscilla-
tory period, for which n = 0 in (13–59). For t ∼> am/c, the physics of collapse for
regions with k = 1 becomes more complex.

Figure 13.5 also shows that at epochs ∼>am/c, the Universe is curvature domi-
nated, meaning that the expansion rate in (13–6) is largely determined by the cur-
vature term, rather than by the density of matter or radiation, which initially were
almost homogeneously distributed throughout the Universe.
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Fig. 13.5. Rates of expansion in zero-pressure, Friedmann–Robertson–Walker (FRW) uni-
verses with Λ = 0 all of which have the same density at some early time, t. The scale factor
is measured in units of Ra ≡ am the maximum scale factor for a universe with Riemann
curvature constant k = +1. The unit of time is Ra/c ≡ am/c. For the open universe,
k = −1, the decreasing density parameter Ωo is indicated at various epochs. Beyond epoch
Ra/c = am/c ∼< 1 the universe is curvature dominated. Its expansion rate is determined by
the Riemann curvature constant k rather than by the density of matter or radiation.

PROBLEM 13–8. (a) Convince yourself that equations (13–57) and (13–59), re-
spectively, are just a different way of writing equations (11–74) and (11–72). Notice
that the maximum value of a in (11–72) occurs for x = π, where a = 2a(+o) ≡ am,
and world time t = πa(+o)/c = πam/2c. Similarly the epoch of minimum exten-
sion after collapse is t ∼ 2πa(+o)/c = πam/c.

(b) At early epochs, the Universe was very dense and the Riemann curvature
term in equations (13–6) and (13–7) was negligibly small. Equations (11–72) and
(11–74) should therefore give identical growth rates in the limit t → 0. By expand-
ing the trigonometric and hyperbolic functions in these two equations, convince
yourself that by setting parameters y = x and a(+o) = a(−o) we obtain identical
expansion rates at these early epochs.

PROBLEM 13–9. Let the epoch of primordial collapse and the formation of the
earliest stars have occurred in a k = +1 domain when the expansion of the universe
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had sufficiently slowed, at a scale factor a ∼ am. Equation (11–72) places this time
of collapse at t+ = πa(+o)/c = (π/2)am/c. The first stars are believed to have
formed at red shift (z + 1) ∼ 20. If this collapse occurred in a k = +1 domain
embedded in either a k = 0 or a k = −1 universe, estimate either from equations
(11–71) to (11–74) or from (13–57) to (13–60), or a combination of these, the scale
factor in the ambient universe at the initial epoch of collapse and also today, at
z = 0. How would the required sizes of the vacuoles surrounding the k = +1
regions today compare to those of the voids seen in Figs. 1.12 and 13.6?

13:14 Primordial Collapse and the Density Parameter Ω0

Problem 13–9 and Fig. 13.5 show that a universe which initially has the same density
everywhere, but has embedded domains of Riemann curvature k = +1, 0, or − 1,
respectively, would fragment into regions with scale factors roughly in the ratio of
1 : 1.8 : 2.3 at the epoch of initial collapse t+ = πam/2c of the k = +1 domain.

If this collapse occurred at red shift (z + 1) ∼ 20 the scale factor in k = 0
domains today would be at least a factor of ∼1.8 × 20 = 36 larger than in the
k = +1 domains, which could not have grown after onset of collapse. The scale
factor in k = −1 domains would be a factor of 46 larger. In a k = 0 universe, the
voids in Fig. 13.6 would then have to be at least a factor of ∼36 times larger than the
populated regions and the mean density of the universe would have to be of order
104 to 105 times larger in the collapsed regions than in the ambient universe. This
ratio is in rough agreement with observations. Highly massive clusters of galaxies,
more massive even than the Pisces cluster of Fig. 13.7, can have masses ∼1049 g
and radii of order 2 Mpc, i.e., mean densities of ∼4 × 10−26g. The matter density
of a galaxy is of the same order ρM ∼ 10−25g cm−3 . In contrast the cosmic matter
density is ∼3 × 10−30 g cm−3 .

These densities might be compatible with a k = −1 universe, but the age of
that model would then be far too short. The ages of the oldest stars in the Galaxy
suggest that the Universe is well over 1010 yr old today. This age is compatible with
a curvature constant k = 0 traced back to early times, as in Tables 12.1 and 12.3,
which were based on extrapolations with equations (11–55) and (11–56) for such
a Euclidean universe. But, as Fig. 13.5 and equations (13–57) and (13–58) show, a
scale factor of order ae ∼ 40am is reached far more quickly in a k = −1 universe
than in a k = 0 model. This would make a k = −1 model younger than the age of
the oldest stars.

In a universe that maintains ΩT = 1 throughout its evolution, regions with k =
+1 have to be balanced by regions k = −1 at early times, when the cosmological
constant Λ can be neglected. Later, however, Λ can dominate the expansion, as it
does today. As (13–6) shows, the effect of a positive cosmological constant on the
expansion rate has the same sign as curvature k = −1 except that its influence on
the expansion persists, whereas that of the k = −1 domain diminishes as 1/a2.
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Fig. 13.6. The distributions of galaxies and voids in a ±1.5◦ wide declination strip about
the celestial equator, out to red shifts of roughly z = 0.2. The red shift of the galaxy con-
centrations is given by the radial distance, on a scale indicated along the vertical axis. The
right ascension is given in degrees; zero indicates a right ascension of zero hours, and the
hour angle increases by an hour every 15◦. The largest filamentary structures definitively ver-
ified in such surveys stretch over distances of order 80 Mpc. Filaments longer than this may
constitute chance interconnections of smaller features (So04). Compare the structures seen
here to those on scales a factor of 6 smaller, in Fig. 1.12, and note both the similarities and
differences. Courtesy of Dr. Michael Blanton and the Sloan Digital Sky Survey team (B�03).

At first glance it would appear that the k = 0 universe also runs into difficul-
ties because the matter density of the Universe is well below the critical density;
ΩM < 1, whereas k = 0 requires Ω0 = 1. This originally led to the postulate, now
borne out by observations, that there is an additional source of mass in the Universe
provided by either a cosmological constant Λ or a less-well-defined, variable mass
density termed quintessence, either of which could contribute a density parameter
ΩΛ making Ω0 = ΩM + ΩΛ = 1 (Pr95).

In summary, we see that the Swiss-cheese model leads to a number of insights. It
provides a formalism in which stars, galaxies, and clusters can remain stable, while
the external universe expands. It shows how regions of minute initial overdensity,
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implying a local Riemann curvature k = +1, can collapse on time scales that are
compatible with observations in an ambient universe with k = 0. And it leads to
density contrasts compatible with those observed for galaxies and clusters, today.
We saw in Problem 13–5 that the Jeans mass at decoupling — the smallest mass
that can collapse at that epoch — is ∼5 × 104M�, roughly the mass of a globular
cluster. But, as Problem 13–5 also shows, the total mass within the Hubble radius at
that epoch is ∼1012 times higher, indicating that larger aggregates, such as galaxies
and clusters of galaxies, can also collapse at that time. We will return to the question
of initial collapse in Section 13:22, where we will attempt to establish a relation
between the primordial fluctuation spectrum of Section 13:3 and the mass spectrum
of observed astronomical condensations.

13:15 Inhomogeneities in the Microwave Background Radiation

Equations (11–72) and (11–74) allow us to estimate the density contrast between
k = −1, 0 and +1 domains at z ∼ 103, the era of decoupling, if we assume that a+

reached maximum value at the epoch of first star formation (z + 1) ∼ 20.

Fig. 13.7. Mass distribution in the Pisces cluster of galaxies shown in Fig. 1.11. The con-
centration of mass was derived from gravitational lensing of light from background galaxies.
Note that most of the mass resides not in individual galaxies shown as spikes, but rather in a
more broadly distributed hump of dark matter emitting no light. The mass enclosed within a
radius of ∼150 kpc is ∼2 × 1014M� (Ty98) (courtesy of J. A. Tyson, 1997).
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PROBLEM 13–10. Clusters of galaxies have by now been detected out to dis-
tances z ∼> 3 (St98). Consider a space with curvature ki = +1 with mass equiv-
alent to that of a large cluster of galaxies, such as the highly massive cluster
A3627, with M ∼ 1049 g (Kr96). Its radius today is of order 2 Mpc. Let this clus-
ter be part of a Swiss-cheese universe in which the external space has curvature
ke = 0. Take the size of the cluster today to reflect the size it would have reached
at maximum expansion to a scale factor am at (z + 1) = 20, as in Problem
13–9. (a) Calculate the density contrast for matter at z ∼ 103, right after decou-
pling, by calculating the relative values of the scale factors a−, a0, and a+, and (b)
show that radiation escaping the k = +1 domain at that time would have suffered a
red shift, or equivalently a temperature shift, of order ∼10−5 in climbing out of the
potential well and into the ambient universe during that era. This is of the order of
the temperature fluctuations observed in the microwave background radiation. This
redshifting of radiation, which we will discuss further in Section 13:18 is called the
Sachs–Wolfe effect (Sa67a).

13:16 The Microwave Background Temperature Fluctuations

The microwave background radiation is virtually isotropic. In Section 5:9, we dis-
cussed the dipole anisotropy arising from our own motion relative to the back-
ground. But once this dipole component is subtracted out, the observed deviations
from anisotropy are remarkably small and are generally expressed as deviations∆T
from the mean temperature T ∼ 2.725K. Along any given direction n = (θ, φ) the
normalized temperature fluctuations are of order ∆T (n)/T ∼ 10−5. Since the ra-
diation appears to emanate from a sphere that envelops us, we can best express the
fluctuations as superpositions of spherical harmonics with axes oriented along dif-
ferent directions, n. From Section 6:25, we then have (Hu02)

∆T (n)
T

=
∑

,m

a
mY
m(n) ; a
m =
∫
∆T (n)
T

Y ∗

m(n)dΩ) , (13-61)

where Y
m(n) is given by (6–192).
As in Section 13:3, we will assume that the standing waves giving rise to the

temperature fluctuations are Gaussian; the phases of the different harmonics con-
tributing to a fluctuation are uncorrelated; their polar directions θ = 0 and azimuthal
angles φ = 0 are randomly distributed across the sky. Current observations indicate
that the cosmic microwave background radiation (CMBR) fluctuations indeed are
Gaussian to the accuracy that measurements permit.

We saw in Section 13:3 that the squares of the amplitudes are proportional to
the wave number k, for a Harrison – Zel’dovich spectrum n = 1. But k is directly
proportional to the wavenumber m in the function eimφ. This can be seen from
Fig. 6.18, where the number of azimuthal segments on a sphere is given by m. A
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Fig. 13.8. The cosmic microwave background angular power spectrum obtained during the
first year of operations of the Wilkinson Microwave Anisotropy Probe mission, WMAP. (a)
Upper panel: The designation TT refers to the temperature square of the temperature fluctu-
ations |∆T�|2 defined by equation (13–63) and plotted here as a function of �. The peaks in
the plot reflect the acoustic oscillations of matter just before its decoupling from radiation.
The units on the abscissa are in angular wave number � ∼ 180◦/θ� , where θ� is the angular
extent of a detected oscillation on the sky. The prime peak of this plot ranges around angular
scales of 1◦. The solid line tracing the data points is consistent with a cosmologicalmodel that
assumes the existence of cold dark matter and a cosmological constant — a ΛCDM model.
The shaded band represents the cosmic variance for this model, an uncertainty that arises
from the limited number of independent large-scale statistical samples one can obtain on the
sky, given that the entire celestial sphere subtends only 4π steradians. (b) Lower panel: The
designation TE refers to the degree of polarization of the electric vector in the background
radiation cross correlated with temperature. Note that this is a plot of (� + 1)C�/2π, lacking
the additional factor of � of the cross-correlation in the upper panel. As explained in Section
13:27, anisotropic Thomson scattering of the background radiation by free electrons produces
this linear polarization at optical depths τ ∼< 1. The highest peak in this plot shows correla-
tion on much larger angular scales than in the TT plot. This tells us that the scattering takes
place at red shifts z ∼ 20 ± 10 — much lower than the red shift z ∼ 1, 100 at which the TT
correlations are observed. After Bennett et al. (Be03).
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measure of amplitude a
m may therefore be defined as |a
m|2 = |a
|2|m|. The
angular power spectrum C
 is defined as the ensemble average over the entire sky
of the mean square amplitudes |a
m|2,

C
 ≡ 〈|a
m|2〉 =
1

2�+ 1


∑
m=−


|a
m|2 ∼ 1
2�+ 1

|a
|2

∑

m=−


|m|. (13-62)

From equation (6–194) we see that the different values of � and m modulate the
functions Y
m without changing their amplitudes. On small sections of the sky and
for high spatial frequencies, the spherical harmonics can be represented as a super-
position of sinusoidal components. The amplitudes of these components can then
be deduced by autocorrelating the modulation of the CMBR surface brightness ob-
served along circular sweeps across the sky. Multiplying a sine wave a
 sin �θ by
itself displaced by a variable phase α, i.e., by a
 sin(�θ+α), leads to a sinusoidally
modulated autocorrelation product of amplitude a2


 , with peak power for α equaling
integer multiples of π/�. In terms of the equivalent spherical harmonics the temper-
ature fluctuations are given by

|∆T
|2 = 〈∆T ∗∆T 〉

|∆T
|2 ∼ |a
|2
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∑
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|m|
∫ π
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∑
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=
(
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2π

)
. (13-63)

Here, the top expression indicates that the amplitudes are derived from the auto-
correlation function. Asterisks denote the complex conjugate. For the last equal-
ity on the right, we have made use of equation (6–194) to obtain the products∫

sin θdθY
mY
∗


′m′ as δ

′/2π, the sweeps across the sky being represented as
changes in coordinate θ alone. The final term shown in (13–63) is the quantity plot-
ted in the upper panel of Fig. 13.8. A more rigorous derivation of this important
expression is due to Abbott and Wise (Ab84).

The Wilkinson Microwave Anisotropy Probe, WMAP mission, an all-sky survey
at wavelengths of 3.2, 4.9, 7.3, 9.1, and 13 mm, conducted observations from which
the surface brightness or temperature power spectrum across the sky were deduced,
as shown in Fig. 13.8.

Knowing the distance to the surface of last scatter — the surface from which the
microwave background radiation originates — this angular power spectrum can be
compared to the power spectrum (13–3) for the mass density contrast in the radiating
surface.

The prediction by Harrison (Ha70a) and Zel’dovich (Ze72) that the spectrum
of fluctuations should be scale invariant seems to be borne out by the observations.
The spectral index n derived from measurements with the Wilkinson Microwave
Anisotropy Probe is n ∼ 0.93 ± 0.3 for the scalar part of the density fluctuations.
This appears to vary somewhat when measured on different scales, and may also
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be augmented by a smaller component due to gravitational waves, often referred
to as a tensor component (Be03). Whether the data are strictly compatible with the
Harrison–Zel’dovich spectrum will have to await more precise observations.

The actually observed microwave background spectrum is highly complex and
the derived value of n has to be culled out from a fluctuation spectrum that records
the entire history of the decoupling of matter from radiation as well as the sub-
sequent aggregation of matter into gravitationally bound clumps. In the next few
sections we will see how these processes become imprinted on the microwave back-
ground fluctuation spectrum.

13:17 The Three-Dimensional Power Spectrum of Galaxies and
Clusters

All structure in the Universe may originate from primordial fluctuations antedating
inflation. If so, fluctuations that give rise to microwave background inhomogeneities
should also leave their mark on the distribution of galaxies and clusters. This dis-
tribution must reflect not only the relative amplitudes of the primordial fluctuations,
but also their decline at high spatial frequencies through Silk damping. Figure 13.9
shows the power spectrum P (k) of the microwave background radiation, clusters of
galaxies, and other cosmic structures, indicating a seamless evolution from seeding
by primordial fluctuations to smaller-scale structures shaped by subsequent evolu-
tion. P (k) is the same function we had previously called P (|∆k|2) to emphasize
that it referred to fluctuations.

13:18 The Observed Imprint of Oscillations

Where an acoustic wave produces a compression before decoupling, the density of
both the baryons and photons is increased, producing a gravitational potential well.
During compression the radiation temperature rises. If decoupling occurs just as the
compression reaches its maximum, the radiation flows out of the region and cools
back to its original temperature on expanding to its original volume. But now it
also experiences further cooling because it has to climb out of the gravitational well
created by the dark matter and baryons. This redshifts, or equivalently cools the
radiation. A region in which matter is more concentrated, therefore, appears cooler
on a temperature map of the microwave radiation. Likewise a rarefied region appears
warmer. This effect is called the Sachs–Wolfe effect (Sa67a).

The Sachs–Wolfe effect imprints its own signature on the power spectrum.
Acoustic waves that have gone through half a compression cycle contribute to a
deviation from temperature uniformity, as do waves that have undergone half of a
rarefaction cycle. But waves that have gone through a complete cycle are back where
they started and are neither at peak compression nor peak rarefaction. They, there-
fore, produce less of an imprint on the power spectrum than waves caught at their ex-
trema. For this reason, only the odd half-integer frequencies, with � = �1, �3, �5 . . .
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are expected to exhibit strong peaks in the power spectrum. This is roughly borne
out by Fig. 13.8, where the second, third, and fourth peaks fall at wave numbers �
roughly at multiples 3 : 5 : 7 of � ∼ 160. Only the first peak lies at a rather higher
wave number � ∼ 220.

Shorter wavelength fluctuations are more readily damped by the Silk drag and
through diffusion than are longer-scale wavelengths, because it takes longer both for
radiation and sound waves to propagate across larger fluctuations. Because of this,
the peaks in the power spectrum are progressively lower at high values of �, as seen
in Fig. 13.8.

Fig. 13.9. Three-dimensional power spectrum P (k) of the microwave background spectrum,
galaxies from the Sloan Digital Sky Survey with mean red shifts z ∼ 0.1, clusters of galaxies,
Ly-α forest absorbers, and weak-lensing sources. Note the slope n ∼ 1 of the solid line fit at
low wave numbers, corresponding to the Harrison–Zel’dovich postulate and the correspond-
ingly anticipated power spectrum of the microwave background fluctuations. At higher wave
numbers, where Silk damping plays an increasingly prominent role, the spectrum turns over
and the slope progressively declines through n = −1 to −2 at the highest wave numbers
(Te04).
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The astrophysics literature, unfortunately, sometimes refers to the peaks in the
power spectrum as Doppler peaks. This is misleading, since the acoustic waves are
neither expanding nor contracting at their extrema where they make their major
imprint on the power spectrum. Nonetheless, the misnomer has stuck.

A number of effects other than acoustic oscillations also leave an imprint on
the microwave background power spectrum, increasing the complexity of correctly
interpreting observations. In one way or another each provides information on the
distribution of matter along the line of sight to the surface of last scatter. One such
effect is the Sunyaev–Zel’dovich effect described in Section 6:23. Another is grav-
itational deflection of light by clumpy mass distributions along the line of sight, as
expected from the discussion of Section 5:14. A third effect is large-angle Thomson
scattering off ionized intergalactic clouds along the line of sight, leading to a polar-
ization of radiation as explained in Sections 6:15 to 6:17 and called for by equation
(6–114). A fourth effect we will encounter later is the Rees–Sciama effect — a red-
shifting of radiation passing through massive expanding clusters on its way from the
surface of last scatter.

An immediate result of the constancy of the slope n ∼ 1 of the power spec-
trum P (k) in Fig. 13.9, at low wave numbers, is the derivation of an upper limit to
neutrino masses. Equation (9–95) specifies a minimum mass that neutrinos would
require if they were to account for the dark matter in galaxies. Similar considera-
tions hold for mass aggregates on all scales. The good agreement of the slope of the
power spectrum with that predicted by Harrison and Zel’dovich tells us that neutri-
nos are not diffusing out of low-mass galaxies while staying trapped in large clusters
of galaxies. Now, if the masses of neutrinos were higher than ∼0.23 eV they would,
indeed, find themselves trapped in the largest mass aggregates, and would then also
contribute significantly to their masses. If so, P (k) would not have the observed
constant slope at low wave numbers. Hence mν < 0.23 eV appears to be an upper
limit to neutrino masses. It is then also possible to sum over all the relic neutrino
and antineutrino species, by using (4–74 ) and (12–38) to scale the number densities
of neutrinos to those of photons in the microwave background. Such arguments lead
to the upper limit to the neutrino density parameter Ων < 0.015 cited in Table 13.1.

13:19 Oscillations and Fundamental Cosmological Parameters

As we have seen, the physics determining the microwave background oscillations is
rich. Equation (13–23) for the speed of sound, which also determines the size of the
longest wavelength oscillations, is a strong indication of the value of ΩB , given that
Ωr is already known from the temperature of the microwave background radiation.

A good part of the celestial sphere can be examined for telltale signs of phys-
ical conditions at the time of decoupling. The imprint on radiation left by its pas-
sage across the Universe on its way to reaching us, also provides valuable data.
Microwave background observations, therefore, are a gold mine of information on
a variety of fundamental properties of the Universe. A tabulation of best-fit cos-
mological parameters obtained through the Wilkinson Microwave Anisotropy Probe



590 13 The Formation of Cosmic Structures

Table 13.1. A Compilation of “Best Fit” Cosmological Parameters.a

Description Symbol Value Uncertainty

Total density parameter ΩT 1.02 ±0.02
Dark energy density parameter ΩΛ 0.73 ±0.04
Baryon density parameter ΩB 0.044 ±0.004
Baryon density (cm−3) nB 2.5 × 10−7 ±1× 10−8

Matter density parameter ΩM 0.27 ±0.04

Light neutrino density parameter Ων < 0.015 95%CLb

CMB temperaturec TCMB 2.725 ±0.002
CMB photon density (cm−3) nν 410.4 ±0.9
Baryon-to-photon ratio η 6 × 10−10 ±3× 10−11

Scalar spectral index (on a ∼ 20 Mpc scale) ns 0.93 ±0.03

Tensor-to-scalar ratio (on a ∼500 Mpc scale) r < 0.9 95% CLb

Thickness of decoupling zone (FWHM) ∆zdec 195 ±2
Hubble constant km s−1 Mpc−1 H 71 +4/-3
Age of the Universe (Gyr) t0 13.7 ±0.2
Red shift at matter-radiation equality zeq 3233 +194/-210
Age at decoupling (kyr) tdec 379 +8/ − 7
Sound horizon at decoupling (deg) θs 0.598 ±0.002
Sound horizon at decoupling (Mpc) rs 147 ±2
Red shift at decoupling zdec 1089 ±1

Age at reionization (Myr 95%CLb) tr 180 +220/-80
Red shift at reionization zr 20 +10/-9
Reionization optical depth τ 0.17 ±0.04

a Based on a larger compilation by Bennett et al. (Be03) derived from the WMAP, COBE,
and other microwave background surveys, as well as statistical surveys of galaxies.
b CL = confidence level.
c Cosmic Microwave Background Explorer (COBE) data.

mission, other cosmic microwave background (CMB) surveys, and statistical sur-
veys of galaxy distributions, is provided in Table 13.1 (Be03).

One important conclusion that jumps out from the WMAP data is that the cur-
vature of the Universe is vanishingly small. The Universe appears to be flat with
Riemann curvature constant k = 0. This assertion is based on the finding that the
first peak in the microwave background power spectrum lies at �1 ∼ 200.

Let us recall that equations (13–37) and (13–38) derived the location of this peak
by attributing it to acoustic oscillations at the speed of sound expected in a decou-
pling gas at a temperature ∼ 3000 K and red shift z ∼ 1100. We then derived the
angular scale of the largest oscillations expected by dividing half this wavelength
λmax/2 by the comoving distance R at which its radiation was emitted. Determin-
ing the angle in this way is correct only if the universe is flat. In a curved universe,
equation (11–30) tells us — in somewhat different notation — that the observed
angular diameter would not have been λmax/2R, but rather λmax/(2Rσ(χ)). For
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a positively curved universe, χ is the angle subtended by a segment of length R on
the three-dimensional surface of a four-dimensional sphere, as seen from the cen-
ter of that sphere; and σ(χ) = sinχ is always less than unity. The observed angle
subtended by an acoustic oscillation of wavelength λmax would, therefore, appear
larger in a positively curved universe than in flat space. Similarly, if the Universe had
negative curvature, k = −1, σ(χ) = sinhχ ≥ 1, and the observed angle would ap-
pear smaller. The agreement between the calculated and observed angles subtended
by acoustic oscillations, therefore, indicates that the Universe cannot be appreciably
curved over distances comparable to those at which we observe the surface of last
scatter. The Universe appears to be close to flat, if not actually flat with k ≡ 0.

The Hubble radius at decoupling, given in Table 12.3, is ∼220 kpc, a few times
larger than the radius of the cluster of Problem 13–10 at that epoch. Such a comoving
region’s diameter would subtend an angle comparable to the angular range of 1◦ on
the sky in which the cosmic microwave background radiation exhibits its strongest
fluctuations. This suggests that primordial curvature fluctuations evolved to give rise
to mass concentrations comparable to those of clusters of galaxies observed today,
and also are responsible for the microwave anisotropy peaks in Fig. 13.8.

13:20 The Rees–Sciama Effect

Rees and Sciama first considered the wavelength shifts experienced by the cosmic
microwave background radiation on traversing a spherical density inhomogeneity
on its way to reaching Earth (Re68a). This is a complex problem involving a variety
of competing effects that make contributions of comparable magnitudes. Both blue
and red shifts are possible. Viewed in terms of the Swiss-cheese model, radiation
that passes solely through the empty regions of a vacuole, bypassing the massive
inner domains, undergoes a less complex history than radiation that passes through
both the vacuole and the inner k+ region. Passage of radiation through one or more
vacuoles on its way to reaching Earth, can lead to CMBR wavelength shifts com-
parable to those produced by density inhomogeneities in the surface of last scatter.
This particular type of perturbation is called the Rees–Sciama effect (Re68a).

PROBLEM 13–11. Consider the cluster of Problem 13–10. By (z + 1) ∼ 20 the
radius of the central homogeneous, overdense sphere has expanded to its full extent
∼2 Mpc, whereas the radius of the vacuole continues to expand. The expansion rate
at the vacuole surface is governed by the Hubble constant and is∼12,500 km s−1. Its
expansion during the interval taken by light to traverse it can be significant. Consider
the microwave background radiation that passes through the inhomogeneity, and
qualitatively estimate the factors that contribute to the induced wavelength shifts.
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13:21 Formation of the Largest Structures

Let us look now at the geometric shape of condensations that gravitational collapse
may induce. A commonly accepted starting point in the discussion of structure for-
mation is the assumption that condensation has taken place around primordial fluc-
tuations that bias where a new galaxy or cluster of galaxies forms. The concept of
bias, b, can be quantified and is particularly important. A hint at how the largest
scale structures formed comes from observations. As we survey the disposition of
galaxies on the very largest scales, we see them aggregated into sheets— sometimes
referred to as walls or filaments — that intersect and appear to enclose empty re-
gions called voids. Where the walls surrounding the voids intersect, galaxies have
concentrated to form major clusters, as in Fig. 13.6. The origins of both the walls
and the clusters can be explained by the dynamics of free fall. The epoch of col-
lapse comes sufficiently early for the density parameter ΩΛ to have been negligible
compared toΩM .

PROBLEM 13–12. Neglecting cosmic expansion, show that the free-fall collapse
time for a thin sheet of uniform initial density ρo is only

tff = (2πGρo)−1/2 , (13-64)

in contrast to the free-fall time for a sphere of the same initial density, for which we
had previously found equation (10–4), tff = (3π/32Gρo)1/2 (Dr96).

The tendency for an arbitrary, irregularly shaped region, therefore, is to collapse
more readily along one dimension, into a sheet rather than into a spherical aggregate.
This will be true even in the presence of cosmic expansion. Once such sheets are
formed, mass concentrations on the lines where these sheets intersect would again
collapse one-dimensionally along the intersecting lines to form clusters of galaxies.
It is worth noting that no particular scale is favored by the free fall. Collapse on all
scales takes equally long, and is solely determined by the density.

The initial mass density ρo may be expressed in units of the critical density
3ΩMH

2/8πG to yield the free-fall collapse time

tff = (4/3ΩMH2)1/2 = (3/ΩM)1/2ta, (13-65)

where ta is the age of the matter-dominated Universe at the epoch of collapse
(11–58). A high matter-density accelerates collapse. Isolated regions with appre-
ciably higher density than the ambient universe collapse faster than regions of lower
density.

When gravitational collapse does occur, flattened regions, often called pancakes,
are favored. The roughly spherical galaxies and clusters of galaxies that we observe
today are the result of smaller-scale fragmentation and relaxation of higher-density
domains that may once have resided within lower-density sheets or walls. As those
low-density walls of galaxies continue to slowly collapse, they will most probably
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break up to form new clusters of galaxies or be gravitationally pulled into the nearest
previously formed cluster, making it even larger. Thus, the clusters we see today are
not a final product. Galaxies are continually merging into them, adding both mass
and angular momentum to keep the cluster stirred up. Æons from now, the walls
and voids are unlikely to survive. Clusters of galaxies will remain, but will exhibit
increasingly compact cores as the galaxies within them collide, merge, and become
progressively more massive.

13:22 Press–Schechter Condensation

In depicting the Swiss-cheese models of galaxies and clusters of galaxies, we re-
frained from discussing how the central condensations contract once they have
reached their maximum dimensions. Let us now look at the actual process of col-
lapse.

Observations out to great distances permit us to determine the sizes of galaxies
and clusters at early times. They generally are smaller and less massive than the
galaxies and clusters observed today, which appear to have been accreting matter
continuously over the æons since the first stars formed.

In 1974 Press and Schechter suggested a way to understand the successive for-
mation of increasingly extended mass condensations in an expanding FRW universe
with primordial inhomogeneities (Pr74). They postulated that a locally overdense re-
gion of gravitationally interacting particles initially condenses to produce relatively
small aggregates. These aggregates then would act like a new generation of indi-
vidual particles of larger mass that would condense into a next generation of larger
aggregates remaining embedded in a much more extended, but less overdense region
collapsing more gradually. Press and Schechter proposed that, in this fashion, a suc-
cession of generations of aggregates of ever-increasing size and mass would form.
They proposed that this process would generate a self-similar mass spectrum of ag-
gregates, independent of the original mass spectrum within the overdense region.
Rather than considering condensations to be in equilibrium with their surroundings
as the Einstein and Straus Swiss-cheese models did, Press and Schechter envisaged
a system continually out of equilibrium, evolving to form condensations of progres-
sively larger masses.

This approach is consonant with the considerations of Section 13:4, where we
found that small fluctuations enter the particle horizon at early times, while larger
ones, within which the small fluctuations may be embedded, only appear as the
particle horizon further expands. We also found that the mass spectrum should be
scale invariant, i.e., self-similar.

The distribution of aggregates with different masses in the Press–Schechter de-
piction is related to the total number n∗ of aggregates by

n∗ ≡
∫ ∞

0

n(m)dm . (13-66)

The mean mass is
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m∗ ≡ n−1
∗

∫ ∞

0

n(m)mdm ≡ ρ/n∗ , (13-67)

where ρ is the mean density. The gas of aggregates, however, can be further char-
acterized by a lumpiness specified by a probability distribution function. Let us
assume, as we did in Sections 13:3 and 13:4, that the primordial cosmic fluctuations
are Gaussian. The density contrast δ ≡ (δρ)/ρ associated with a volume element V
then has a probability distribution,

p(δ, V ) =
1√
2πσ

exp−
(
δ2

2σ2

)
, (13-68)

where σ2 = 〈δ2〉 is the standard deviation of the density contrast. For a randomly
distributed set of particles, the variance of mass in a given volume is proportional to
the volume, and the standard deviation per unit volume, written as σ, is

σ ≡ 〈δ2〉1/2 =

[〈M2〉 − 〈M〉2]1/2

M
. (13-69)

Because the early Universe is close to flat, and is matter dominated at decou-
pling, an overdense volume, with density contrast δ, expands only until it reaches
its maximum size at a scale factor am, given by equation (13–60). As (13–6) shows,
the decelerating cosmic expansion ȧ2/a2 drops to zero at a smaller value of a when
ρ is high. Accordingly, when the density within the overdense region varies from one
location to another, the most overdense regions reach their maximum size early in
the expansion, while less overdense domains reach maximum size later. Since most
of the mass in the Universe is in the form of dark matter, the overdense domains
correspond to dark matter haloes to which baryonic matter becomes attracted.

Once a halo reaches maximum size it begins to contract and, being lumpy rather
than perfectly homogeneous, it relaxes to eventually give rise to a bound virialized
aggregate. Thereafter, this aggregate acts as a point mass, gravitationally attracting
other haloes that have also formed within an even larger ambient overdense region
— which, in turn, eventually also collapses and fragments.

The probability P that a halo will already have reached maximum size and be-
come bound by a time t1 depends on whether its original density contrast δ was
sufficiently high, δ > δ1.

P =
∫ ∞

δ1

p(δ, V )dδ =
1
2

(
1 − 2√

π

∫ δ1/
√

2σ

0

e−t2dt

)
≡ 1

2

(
1 − erf

δ1√
2σ

)
,

(13-70)
where the integral in the middle expression is the error function erf. Because we are
assuming the fluctuations to be Gaussian, we can take advantage of equation (13–5)
and set σ2 = AM−(3+n)/3, where A is some constant. Then

δ1√
2σ

=
δ1√
2A

M (3+n)/6 ≡ 1√
2

(
M

M1

)(3+n)/6

. (13-71)
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Here, we have replaced the density contrast δ1 by the mass scale M1 to which it
refers at time t1,

M1 ≡ (A/δ21)3/(3+n) . (13-72)

From (13–10) we know that a2δρ is constant, and during the matter-dominated era,
a3ρ is constant as well. This makes δ ∝ a ∝ (1 + z)−1, where we have invoked
(11–56). Hence A must be proportional to (1 + z)−2 and M1 ∝ (1 + z)−6/(n+3).
In terms of its value today, M0, we can set

M1 = M0/(z + 1)6/(n+3) (13-73)

at red shift z.
That a volume with density contrast δ1 has already condensed does not prevent

it from becoming part of a larger, more massive volume of lower density contrast δ2
that condenses out at time t2. So V , the fraction of the volume that becomes self-
bound with masses above M , by some maximum time or cosmic age, tmax, is the
time-derivative of P .

dP

dtmax
=

−1√
π
e−t2max (13-74)

Let us denote the number density of haloes less massive than M at red shift z by
n(M, z). Then the number density of haloes of mass M between M and M + dM
at epoch z is

dn(M, z)
dM

= − ρ

M

dP

dM
. (13-75)

dn(M, z)
dM

=
1√
8π

(
1 +

n

3

) ρ

M2

(
M

M1

)(n+3)/6

exp

[
−1

2

(
M

M1

)(n+3)/3
]
,

(13-76)
where we have substituted (13–71) in (13–70). Figure 13.9 suggests that n = −1 for
the largest cosmic structures, and that this gradually diminishes further to n = −2.
If we choose n = −1.5 to represent the scale of clusters of galaxies

M2

ρ

dn(M, z)
dM

=
3(z + 1)
4
√

2π

(
M

M0

)(1/4)

exp

[
−(z + 1)2

2

(
M

M0

)1/2
]
. (13-77)

To represent haloes of lower mass, a value of n closer to −2 needs to be invoked.
Figure 13.10 shows the computed evolution of these halo number densities in terms
of red shift.

As Press and Schechter recognized, the process they described results in the cap-
ture of only half of all the mass in the Universe, because the underdense regions in
a nearly flat universe carry another half of the mass and do not spontaneously con-
dense. However, the two authors proposed that this mass would eventually accrete
onto previously formed aggregates, essentially doubling the masses of all those con-
densations. This seems to be borne out by computer simulations, and the right side
of (13–76) should therefore be multiplied by a factor of 2.
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Although (13–76) includes a number of simplifying assumptions its overall va-
lidity appears to be borne out by observations. Structure formation is a continuing
process. Clusters of galaxies are still growing as galaxies from their surroundings
are gravitationally attracted and fall in. Within the Galaxy, we are also witnessing
the capture of matter tidally stripped from smaller companions. And, as we will
see later, in Fig. 13.16 and Section 13:33, in densely populated regions of clusters,
we can witness the merger of fully developed galaxies triggering the widespread
formation of massive young stars and a spectacular rise in luminosity.
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Fig. 13.10. The comoving number density n(M, z) of haloes less massive than M , plotted
in terms of the product M2ρ−1(dn/dM) as a function of M . Here ρ is the mean density
of the Universe. The flattening of the curves, out to masses of order ∼>1014M� at low red
shifts, indicates that n(M) is approximately proportional to 1/M , for masses in this range, in
today’s Universe. The two dotted curves designated z = 10.07 and z = 0 depict the fractional
amounts of mass in each mass range that the Press–Schechter formalism condenses out by
the corresponding red shifts. Solid lines represent an analytical fit to extensive numerical
simulations indicated by the individual symbols. The vertical dotted line is drawn at a mass
just slightly less than 2×10−10h−1M� , where h is 0.7 for today’s Hubble constant H0 = 70
km s−1 Mpc−1. For this mass value, the solid lines show that by z = 10.07 only ∼10−3 of
the mass had condensed out in haloes as massive as ∼1.5 × 1010hM�, whereas by z = 0
about half of the mass had condensed into haloes at or above this mass. Courtesy Volker
Springel (Sp05).

In arriving at (13–76), we neglected the influence of the cosmological constant
Λ. But observations indicate that Λ currently is so small, that it could not have
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played a major role in structure formation. Some structure is definitely observed
even at red shift z ∼> 6. For constant Λ, the ratio of ΩΛ/ΩM ∼ 2.7(z+ 1)−3 at that
epoch would have been less than 1%.

13:23 The Internal Structure of Dark Matter haloes

In the Press-Schechter hierarchical depiction of structure formation, density fluctu-
ations lead first to the formation of small aggregates that later seed the formation of
larger structures or merge to form more massive aggregates. These aggregates are
dominated by dark matter and generally are referred to as dark matter haloes. The
internal distribution of matter within these haloes has been studied through com-
puter simulations that start out with a large number of randomly arranged masses
and follow their subsequent evolution. Navarro, Frenk, and White (Na96, Na97) car-
ried out a series of such simulations and discovered that, independent of the initially
assumed halo mass, initial density fluctuation spectrum, or value of the cosmolog-
ical parameters assumed, the mass density distribution generally tended toward a
universal profile:

ρ =
ρ0

(r/rs)(1 + r/rs)2
, (13-78)

where ρ0 is some characteristic density and rs a scale radius. This so-called NFW
profile is named after the three authors. Other models have also been suggested
(Me05). The observed density profiles in galaxies and clusters of galaxies are in
rough, though not entire, agreement with these various models, but an analytic ex-
planation of how the observed profile arises is still lacking.

13:24 Protogalactic Cooling

Until now, we have acted as though gravitational collapse must obviously lead to
galaxy formation. However, collapse can just as readily lead to a rebound if there
is no way to dissipate kinetic energy. An important question is how the collapsing
primordial gas manages to cool itself rapidly enough to form galaxies and even-
tually stars. In today’s Universe, as we saw in Chapter 10, much of the cooling is
done by impurities — carbon atoms, CO, H2O, or dust grains. The early Universe
had none of these; carbon and oxygen were synthesized only later in stars. Figure
12.5 indicates that primordial baryonic matter consisted of ∼76% hydrogen and
∼24% helium by mass, with negligible amounts of deuterium, lithium, and beryl-
lium. As Fig. 13.11 shows, cooling rates due to these primordial atomic or ionic
constituents drop to extremely low values once the temperature of the Universe falls
below 104 K. However, as Fig. 13.12 indicates, hydrogen molecules are formed in
trace quantities by the time the temperature has dropped to 1100 K, at z ∼ 400. Two
principal reactions are responsible.
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Fig. 13.11. Cooling rates for primordial atomic and ionic constituents. The rates are given as
a function of temperature for a primordial composition of gases in collisional equilibrium.
The heavy solid line shows the total cooling rate. The cooling is dominated by collisional ex-
citation and re-emission (short-dashed lines) at low temperatures and by free–free emission
(thin solid line) at high temperatures. Long-dashed lines and dotted lines, respectively, show
the contribution of recombination and collisional ionization. The assumed primordial com-
position is 76% hydrogen and 24% helium by mass, with no ionizing background (We97a).

e− + H → H− + hν ,

H− + H → H2 + e− . (13-79)

in which e− acts as a catalyst, and

H + H+ → H+
2 + hν ,

H+
2 + H → H2 + H+ (13-80)

in which H+ is the catalyst. A variety of competing reactions can also destroy H2,
but a fractional abundance of order n(H2)/n(H) ∼ 3 × 10−5 ensues.

13:25 Formation of the First Stars

Current belief is that the first condensations gave rise to stars with several hundred
solar masses (Ha96). These are commonly referred to as Population III stars. Ini-
tially, the abundance of H2 is too low to effectively cool the condensation, and the
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temperature rises adiabatically in accord with (4–129). The density also increases
and competing reactions among the prime constituents H, e−, H+, H−, H2, and H+

2

lead to an increasing fractional abundance of H2. Eventually as the collapse pro-
gresses, a shock ensues as infalling matter piles up. At the shock, the temperature
abruptly rises to the virial value and reaches 200 to 500 K, well above the tempera-
ture of the microwave background at this epoch, z ∼ 20 to 30. H2 rotational states
are collisionally excited and radiate away energy in spontaneous transitions to the

Fig. 13.12. Cooling and heating rates as a function of red shift in a volume enclosing the in-
nermost 12% of the baryonic mass of a spherical aggregate collapsing to form a Population III
star. Compton scattering of electrons in close thermal contact with the microwave background
radiation can heat the gas as long as the temperature of the microwave background radiation
exceeds that of the gas. Radiative excitation of molecular hydrogen by the background radi-
ation also is a strong source of heating at high red shifts. Radiation released in the formation
of hydrogen atoms is indicated as recombination. Free–free emission (Bremsstrahlung) by
ambient plasma is a minor sources of heating. Initially, when the microwave background
temperature exceeds the gas temperature in a collapsing cloud, all four mechanisms act to
heat the collapsing cloud. But as the gravitational collapse heats the gas, and its temperature
rises above that of the background — at red shifts indicated by the vertical tick marks on the
plot — H2 radiative transitions and Compton scattering start to cool the gas. The units of the
cooling rate Λ/ρ are ergs s−1 g−1. Courtesy of Haiman, Thoul, and Loeb (Ha96).
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ground rotational state. The epoch at which this takes place is shown by the tick
marks in Fig. 13.12. The cooling by H2 thereafter lowers the temperature so that
further collapse continues until a star forms and can begin to burn its nuclear fuel.

This roughly outlines how the first stars may have formed. Incisive observations
will be required to show whether this view is correct.

13:26 Population III Stars

Can the Population III stars be directly observed? To date they have not been found.
The oldest, most distant quasars known all have appreciable metallicities. So, they
must already represent quite a late stage of evolution. The most metal-poor stars
found in the Galaxy, having iron abundances thousands of times lower than the
Sun, also exhibit at least some admixture of heavy elements, as Fig. 8.12 illustrates.
These stars generally are members of the Galactic halo — a tenuous aggregate of
stars evenly distributed around the Galaxy’s center and ranging out to far greater
distances than stars belonging to the disk. In the Sun’s neighborhood, within the
Galaxy’s disk, metal-poor stars are virtually absent. The metal abundance of most
stars in our neighborhood is rather similar to that of the Sun. The metallicity of the
interstellar gas appears to have changed only slowly, judging by the age of some of
the stars that appear to have formed when the Galaxy was young. These observations
suggest that metal production was much higher at early cosmic epochs than it is
today. The high abundance of heavy elements in the hot gas gravitationally trapped
in galaxy clusters is also consistent with this view. These pieces of observational
evidence suggest that stars formed at early epochs were far more massive than stars
formed today. They copiously produced heavy elements, and explosively ejected
them into their environments (La98).

As the earliest stars formed, H2 was the principal coolant. But the lowest ex-
cited state of H2 is a rotational state that lies at ∼500 K above the ground state.
To begin radiating away energy the temperature of adiabatically collapsing gas
had to reach a temperature of this order. The Jeans mass corresponding to such a
high temperature is significantly higher than it is for stars forming today from gas
that contains impurities excitable at far lower temperatures. Figure 13.2, equation
(13–39), and Problem 13–5 all are consistent with more detailed simulations sug-
gesting that the first generation of stars was very massive, the initial mass function
reaching masses of order ∼1000M� (Ab02, He02).

In Chapter 12 we saw that primordial chemical evolution stops at mass 7 amu
in the early universe, because nuclei with mass 8 are unstable. The triple-α process
does not take place because densities are too low. In massive Population III stars,
however, this process can go forward.

Studies of nonrotating extremely massive stars show that the proton–proton re-
action is unable to produce sufficient heat to stop such stars from contracting before
their central temperatures rise to>108 K, where the triple-α process sets in as shown
in Fig. 13.13.
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Once carbon is formed, the CNO cycle can start to supply sufficient heat to stem
further contraction. Hydrogen keeps burning in the compact hot core until fully
exhausted. For stars with masses in the range ∼100 – 140 M�, further contraction
then produces a pulsational instability — an electron–positron pair instability — at
central temperatures where collisions between photons just begin to form electron–
positron pairs.

Fig. 13.13. Reactions of importance in nucleosynthesis during early stages of an evolving
universe and in Population III stars. The exergonic directions are indicated, although rates
are often rapid in both directions. The most important reactions are numbered and have bold
arrows. The broken boxes for mass 5 and 8 indicate that all nuclides of this mass are very
unstable. Reactions beyond these two mass values would not have occurred in the early Uni-
verse, but are believed to have taken place in Population III stars. Sometimes competing re-
actions lead from one nucleus to another (after (Wa67), (Co95)). Reprinted with permission
from Science c©1995 American Association for the Advancement of Science.
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At threshold, the photons’ energy is converted into electron–positron pairs with
little kinetic energy. As a result, the pressure suddenly drops, and the ensuing col-
lapse raises the temperature to where even–even nuclei form through the successive
addition of alpha particles to oxygen. The heat released as neon, silicon, sulfur, and
magnesium are formed produces a rebound and initiates pulsations that eject the
outer layers of the star before its interior collapses to form a black hole. In stars
with masses 140 − 260M� elements as massive as the iron group are formed and
a single pair-production pulse may disrupt the star, ejecting all matter and leaving
no remnant. Stars of all other masses below ∼500M�, however, appear to remain
stable. Figure 13.14 shows the ultimate fate of stars with such high masses (He02).

The ejecta of these very massive stars are predominantly enriched in the even–
even nuclei carbon and oxygen, and heavier elements neon, magnesium, silicon, and
sulfur reaching up to the iron group formed in the equilibrium process described in
Chapter 8. With the extremely energetic explosions expected from such stars, their
ejecta may have been able to escape even a massive halo to emerge as constituents
of extragalactic space. Indeed, an excess of silicon has been detected in X-ray emis-
sion from the hot gases pervading large clusters of galaxies, whose gravitational
potential retains any matter ejected from member galaxies (Ba05). Pair instability
supernovae, however, do not appear to form the r-process elements evident in lower-
mass Galactic stars with extremely low metal abundances. This suggests that stars
of lower mass, in the range 8 – 40 M� may also have formed primordially (Tu04).
Their explosive ejecta might more readily have been retained in a massive halo and
would ultimately have become incorporated in a later generation of low-mass, low-
metallicity stars like CS 22892-052 (Fig. 8.12). Population III stars in both of these
high-mass ranges would generate sufficient numbers of ionizing photons to reionize
intergalactic space.

13:27 Reionization

As the Population III stars light up, their high masses make them highly luminous
and hot, generating vast outflows of ultraviolet radiation, which reionize the gas
within the larger gaseous halo of which the Population III star may be a part. This
may interfere with further formation of nearby Population III stars that were about
to form or, alternatively, may generate shocks that promote the collapse and for-
mation of such stars. The complex outcomes of these processes have not yet been
satisfactorily determined. Undoubted, however, is the further penetration of ionizing
radiation, once it breaks out of a dense halo, and spreads into the ambient Universe.
The epoch during which this occurs is referred to as the reionization era.

The lower panel of Fig. 13.8 reveals a relatively high optical depth for Thomson
scattering, τ ∼ 0.17, on large angular scales. This may appear surprising since we
saw, in Section 13:5 and Fig. 13.1, that the ionization fraction should have rapidly
dropped after decoupling. It suggests that some process must have reionized the
universe, at least partially at later times at red shifts around z ∼ 20±10 (Ko03). The
estimate for this red-shift range comes in part from the large angular scales — low
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� values — over which the correlation between polarization and temperature of the
cosmic microwave background is observed. Regions over which sizeable scattering
anisotropies can be observed must be associated with late epochs and low red shifts,
because they require a large Hubble radius to stretch across substantial regions over
the sky.

Two epochs of reionization may have taken place, one around z ∼ 20 ± 1
produced by the copious emission of ultraviolet radiation by Population III stars,
leading to partial ionization. The other, at z ∼ 6, coinciding with the formation
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Fig. 13.14. The fate of very massive primordial stars. Stars with masses ranging up to
1000M� may have been common during the epoch of first gravitational collapse, when the
prime baryonic constituents were hydrogen and helium, with trace admixtures of deuterium,
3He, lithium, beryllium, and boron. Calculations on nonrotating stars indicate that stars with
masses below 10M� would have lost mass during the asymptotic giant branch phase, their
remnants ending up as white dwarfs. Stars with initial masses 10 − 100M� would form an
iron core and collapse into a neutron star, at the lower end of this mass range, and into a black
hole at the higher end. Very massive stars 100− 1000M� undergo an electron–positron pair
instability. In the 100 − 140M� range and possibly also above 500M� these pulsations can
shed significant mass from the star’s outer layers. In the 140 − 260M� range, the entire star
may disrupt leading to the dispersal of elements rich in even–even nuclei. The extremely high
ultraviolet luminosities of these stars could have been responsible for the reionization of the
intergalactic medium. Courtesy of Alexander Heger (He02).
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of quasars, leading to full ionization. The evidence for this second ionization stage
comes from observations of quasars at z ∼ 6. These indicate that the Universe at
that epoch contained at least a small but widely distributed component of neutral
hydrogen, which is totally lacking in the ambient universe observed today. To see
how this conclusion arises we need to refer to the Gunn–Peterson effect.

13:28 The Gunn–Peterson Effect

If a distant quasar emits ultraviolet radiation at wavelengths short of the Lyman-α
transition, intergalactic neutral hydrogen along the line of sight to the quasar will
resonantly scatter radiation redshifted to the wavelength of the Ly-α transition at
1216 Å. The spectrum of the quasar should, therefore, exhibit a sharp cut-off that
stretches from 1216 Å in its own rest–frame to shorter wavelengths. The depth of
this absorption can provide information on the amount of intergalactic hydrogen at
different distances along the line of sight, as first suggested by Gunn and Peterson
(Gu65).

To see this quantitatively, we make use of (7–57) with the added oscillator
strength f introduced in (7–59), and take the absorption cross-section for Ly-α to
be σ = 2π2e2f/mc, where e and m are the electron charge and mass and σ has
dimensions of area multiplied by frequency. The path length L over which a column
of neutral hydrogen with number density nH provides unit optical depth at red shift
z is

L =
∆ν

nHσ
=

mc∆ν

2π2e2fnH(z)
, (13-81)

where σ/∆ν is now a cross-section with dimensions of area. As it traverses inter-
galactic space radiation from the quasar is progressively redshifted with distance �
at a rate

−∆ν
ν

=
1
c

∆v

∆�
d� =

1
c
H0(1 + z)3/2d� , (13-82)

or

d� = − c

H0

∆ν

ν

1
(1 + z)3/2

. (13-83)

During this transit, the number density changes with z as nH(z) = nH(0)(1 + z)3,
as long as hydrogen atoms are not formed or destroyed through ionization or other
processes. The optical depth of the line at red shift z then becomes

τ =
|d�|
L

=
2π2e2fnH(0)(1 + z)3/2

mH0ν
. (13-84)

The spectra of three distant quasars shown in Fig. 13.15 exhibit broad absorption
troughs at red shifts z ∼> 6. These are not observed in the spectra of quasars at lower
red shifts, indicating that the intergalactic medium was largely neutral at early times
when the first quasars formed, but then became fully ionized as ultraviolet radiation
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from these quasars progressively reionized extragalactic space during this second
reionization epoch.

Fig. 13.15. The Gunn–Peterson effect observed in the emission from three quasars at red shift
z ∼ 6. Radiation from the quasars is strongly absorbed at wavelengths short of the red-shifted
Ly-α emission and appears to be totally absorbed short of the Lyman limit. Dashed vertical
lines indicate the positions of various potential emission lines at the respective red shifts of
the quasars. (Courtesy of Fan et al. (Fa01).)
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Out to distances of order z ∼ 3 the Gunn–Peterson effect has also been observed
for singly ionized helium whose Ly-α transition lies at 304 Å(Re97). Ionizing neu-
tral helium requires more energetic photons of which fewer exist. Reionization of
helium will consequently have taken longer, with traces of neutral helium persisting
until z ∼ 3.

PROBLEM 13–13. For atomic hydrogen, the oscillator strength for the Ly-α tran-
sition is f = 0.416. What number density nH(0) would suffice to produce optical
depth τ = 1 at z = 6, for a Hubble constant H0 = 70? Show that even a very low
fraction of neutral hydrogen atoms in a flat universe with ΩB = 0.04 suffices to
produce unit optical depth.

13:29 Quasar Strömgren Spheres

The copious emission of ionizing radiation by quasars leads to the formation of
ambient Strömgren spheres.

PROBLEM 13–14. The number density of ambient hydrogen atoms surrounding
a quasar at z = 6 is (z + 1)3 higher than the mean cosmic hydrogen density to-
day. Using Table 9.2, (a) convince yourself that all but the most energetic ionizing
photons are absorbed over distances of order 1 kpc, so that the Strömgren sphere
should be almost fully ionized. (b) Show also that the recombination time in the
sphere greatly exceeds the age of the Universe at that epoch; once established, the
Strömgren sphere persists. (c) Under these conditions, show that the size of the
Strömgren sphere can serve as a measure of the total number of ionizing photons
the quasar has emitted into the ambient Universe in the course of its existence. (d)
Show that Thomson scattering by free electrons is negligible for radiation transit-
ing the fully ionized sphere. (e) As (13–83) shows, photons emitted at wavelengths
short of Lyman-α become redshifted by the cosmic expansion, on passing through
the Strömgren sphere. Show that the radius of the Strömgren sphere d� can be es-
timated from (13–83), by measuring the frequency range ∆ν short of Ly-α in the
quasar’s rest-frame, in which continuum radiation from the quasar is able to pass
through the ionized sphere, emerge into the surrounding neutral gas redshifted to
a frequency below Ly-α where the neutral gas cannot absorb it, and hence able to
traverse the rest of the Universe to reach us today.

Observations of the continuum emission short of Ly-α thus should provide
a measure of the total ionizing radiation emitted by a quasar. Such observations
of quasars at different red shifts should provide a history of the growth of their
Strömgren spheres over time, and determine the epoch at which the spheres began
to touch and the intergalactic medium became fully ionized (Me04).
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13:30 Formation of Supermassive Black Holes

Once a Population III star forms, it is highly luminous and generates much of its flux
in the ultraviolet. This dissociates molecular hydrogen over vast regions, extending
well beyond the radius of the fully ionized circumstellar Strömgren sphere expand-
ing around the star. H2 is dissociated by photons streaming out of the Strömgren
sphere with energies in the range 11.2 – 13.6 eV. Photons with energies above
13.6 eV ionize hydrogen atoms, and those below 11.2 eV lack the energy to dis-
sociate H2. The dissociation occurs in two steps. A molecule is first raised into an
excited electronic state H∗

2. From this it can decay into the vibrational continuum
of the ground electronic state. The vibrational continuum is a state in which the
vibrations are so energetic that the molecule is torn apart; it dissociates.

H2 + ν → H∗
2 → 2H . (13-85)

Deprived of molecular hydrogen, a region lacks all coolants that could lower
the temperature below 104 K. The only regions that may still collapse under these
conditions are extremely massive domains for which the necessary Jeans mass is in
place even at such high temperatures (Br03).

PROBLEM 13–15. The Jeans mass of a halo at temperature T is approximately
given byMJG/r ∼> 3kT/mH , where r is the radius of the halo enclosing the mass.
Show that at a red shift z ∼ 25 the density of the halo is high enough for MJ to be
below 3 × 109M� even if the temperature is as high as 104 K. This can be shown
by calculating r and then comparing the density ∼3MJ/4πr3 to the mean ambient
density ρ0(1 + z)3, where the current value ρ0 is noted in Tables 12.1 and 13.1.
Calculate the free-fall time of such a collapse and the approximate age and red shift
of the Universe when the halo finally collapses into a black hole.

Although a halo with a mass of 109M� could collapse under such conditions, it
would not fragment into lower-mass stars in the absence of coolants, because none
of the fragments would have masses as high as a Jean mass. For these reasons, it
is now generally believed that supermassive black holes formed after the Popula-
tion III stars had dissociated molecular hydrogen over large regions and the only
other available coolant, atomic hydrogen, would not function at temperatures be-
low 104 K. In order to rid itself of angular momentum, such a massive collapsing
cloud might have to break up into two masses initially spinning about each other,
and forming two black holes, rather than one. Eventually, all the angular momentum
could be dissipated through interaction with ambient matter or radiated gravitational
waves, and the pair would coalesce into a single black hole.

13:31 Accretion Disks Around Supermassive Black Holes

Ambient matter is gravitationally attracted to supermassive black holes. A straight
infall, however, is prevented if the material has appreciable orbital angular momen-
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tum about the central mass. It may then merely make a close pass by the black hole.
However, if the hole already is orbited by an accretion disk, infalling matter can be
trapped. These disks can grow through accretion of gas, dust, and even stars that are
tidally disrupted on close passage by the black hole. Since the inner portions of the
accretion disk orbit the black hole more rapidly than the outer portions, the viscous
drag due to this velocity gradient transports angular momentum outward. Magnetic
fields in the disk can also promote the outward transport of angular momentum. As
matter at the inner edge of the disk continues to lose angular momentum, it inex-
orably spirals into the black hole as described in Section 5:19, adding to the hole’s
mass and angular momentum. Most supermassive holes, accordingly, appear to be
spinning at close to the maximum permitted rate discussed in Section 5:23.

13:32 The Masses of Galaxy Bulges and Central Black Holes

Many galaxies are found to have supermassive black holes at their centers. Their
masses range from ∼106M� for the black hole at the center of the Milky Way
to ∼>109M� in galaxies such as M82. The existence of these massive objects is
inferred both from the orbital velocities of stars in their immediate environs and
from reverberation mapping. This second observational technique is particularly
useful when the continuum emission from the immediate environs of the black hole
is so bright that individual orbiting stars cannot be readily discerned. One then looks
for the time delay between a brightness variation of the continuum emitted near the
black hole and a corresponding variation in the broad emission lines emanating from
gas rapidly swirling about the black hole at greater distances. The time delay tells
us the radial distance r of the broad emission line region, BLR. The widths of the
spectral lines imply an orbital velocity v. The mass of the black hole can then be
estimated as M ∼ v2r/G, where G is the gravitational constant. An advantage is
that the BLRs in distant galaxies with active galactic nuclei, AGNs can be hundreds
of times closer to the central black hole than individual stars that could be resolved
to determine their Doppler shifts.

Massive black holes appear to have formed very early in the formation of cosmic
structures. Quasars and various types of galaxies with active nuclei, some of which
are observed at red shifts beyond z ∼ 6, all appear to harbor massive black holes.

One interesting aspect of these black holes is that they seem to be present in
every galaxy that exhibits an elliptically shaped bulge of stars. The bulge looks very
much like a miniature elliptical galaxy roughly confined to a radius of 0.5 kpc from
the central nucleus. The mass of the bulge, determined from the observed disper-
sion of stellar velocities, is found to be closely related to the mass of the galaxy’s
central black hole. The velocity dispersion σ in the bulge tends to be of order σ0 =
200 km s−1 and the observed mass relation between bulge and black hole is (Tr02)

log10(MBH/M�) = 8 + 4 log10(σ/σ0) . (13-86)

The source of this relationship is still obscure.
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13:33 Growth Through Merging

The earliest formed galaxies observed at high red shifts are more abundant but also
smaller than those observed nearby. Today’s galaxies appear to have formed through
the merger of these smaller younger galaxies. This merging continues to this day.
Ultraluminous galaxies exhibiting massive bursts of star formation sometimes have
two nuclei and appear to be merging, perhaps along lines indicated in Fig. 13.16.
Smaller satellite galaxies are likely to be tidally disrupted, their matter pulled into

Fig. 13.16. Merger of Galaxies in a computer simulation (Mi96).

larger parent galaxies.
The Galaxy is still interacting with other members of the Local Group. In par-

ticular, the Milky Way is gravitationally disrupting the Sagittarius dwarf galaxy, a
small satellite system of stars. Four globular clusters, respectively designated M54,
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Terzan 7, Terzan 8, and Arp 2, originating in this dwarf galaxy are usually cited as
Galactic clusters, indicating that the Galaxy is still accreting metal-poor stars that
spent most of their histories in a different, lower-mass system.

The ages and chemical histories of the component galaxies from which the
Milky Way formed may have ranged widely. The angular momenta about the
Galaxy’s center would also vary, depending on how the merger took place. This
complicates attempts to establish primordial chemical abundances in the earliest-
born stars within the Galaxy. It also becomes difficult to establish reliable genealo-
gies of stars that might have formed early with relatively small abundances of heavy
elements — as contrasted to later generations, progressively enriched with material
processed by their forebears.

13:34 Chemical Evolution of Galaxies and the Intracluster
Medium

The gradual chemical enrichment of galaxies comes about through the ejection of
material processed in the interior of stars. Red giants and asymptotic giant branch
stars, AGBs, eject considerable amounts of material, seen in dust clouds emanating
from these stars. The gas and dust is propelled away by the star’s radiation pressure
acting on the dust. The dust eventually aggregates in clouds that, on cooling, give
birth to new chemically enriched stars. Novae and other cataclysmic variables also
enrich the interstellar medium with heavy elements.

Supernova outbursts contribute to the enrichment of heavy chemical elements.
However, the blast from these stars can be sufficiently powerful to propel ejecta out
of the parent galaxy, thus producing much of the iron that is routinely observed in
the X-ray emission spectra from hot gases in clusters of galaxies. A crude estimate
suggests that ∼90% of the heavy elements found in the Galaxy were ejected from
low-mass evolved stars, and only ∼10% exploded from supernovae.

The hunt for stars that exhibit abundances of heavy chemical elements many
thousands of times lower than the Sun, has permitted the identification, in the
Galaxy, of low-mass stars that must have been formed when the Universe was very
young and consisted of almost pure hydrogen. The heavy elements found in these
stars are magnesium, silicon, calcium, and titanium which, compared to their pres-
ence in the Sun, have a higher abundance relative to iron. Although 48Ti, having
22 protons and 26 neutrons must be produced through some other process, Mg, Si,
and Ca all are produced by the e-process, discussed in Section 8:12. This process
is associated with massive Population III stars that explode as supernovae of type
SN II, isolated massive stars that collapse and then explode. The finding of these
α-elements in significant quantities in the hot gases that pervade clusters of galaxies
indicate that enormous supernova explosions propelled some of their ejecta out into
the intracluster medium, where they became trapped in the cluster’s gravitational po-
tential (Ba05). Traces of the same elements shown in Fig. 8.12 for low-mass highly
depleted Galactic stars, further indicate that these stars constitute a somewhat later
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generation formed from gases slightly enriched with matter ejected from a precursor
Population III (Tr04, Ry96).

13:35 Formation of Our Own Galaxy

In our own galaxy we do have some additional clues about how the initial birth
took place. Much of the information lies in the separate components we can iden-
tify (Bu00a). An essentially nonrotating halo containing around 170 globular clus-
ters may extend out as far as 100 kpc. The clusters orbit the Galactic center along
spheroidally distributed Keplerian trajectories. Nested within the central ∼25 kpc of
the halo, we find stars and open star clusters concentrated in two apparently coplanar
flattened disks, respectively called the thick disk and thin disk. The concentration of
stars here is much higher than in the halo. In their common midplane an even thinner
disk of gas and dust clouds forms the extreme disk. The matter in these three disks
has sufficient rotational speed around the Galactic center to keep the disks from
plunging into the center. In the innermost parts of the Galaxy there is a bar-shaped
aggregate of stars.

Near the Sun, the stars rotate about the Galactic center in nearly circular orbits
at speeds of ∼200 km s−1. Their velocity components perpendicular to the plane
are only ∼20 km s−1 constraining them gravitationally to a realm no more than
∼300 pc above or below the plane. Stars belonging to the thick disk, on average,
have lower circular velocities about the galactic center, but maintain their distance
from the center through a compensating higher-velocity component perpendicular
to the plane that permits them to reach distances of ∼1 kpc from the plane.

The metallicities of the stars in these different components are a hint to the his-
tory of their origins. In general, we expect stars richer in heavy elements to have
been formed more recently, and metal-poor stars to have been formed earlier. This
would be particularly true if all the matter we now find in the Galaxy had always
been part of it. But it is possible that some Galactic stars were gravitationally cap-
tured through tidal disruption of smaller companion galaxies in which the history
of heavy element production was very different. A one-to-one correspondence be-
tween metallicity and date of birth would then no longer hold. Nevertheless, despite
such caveats, we find that globular cluster stars are metal poor.

Judged by their Hertzsprung–Russell diagrams, the ages of most globular clus-
ters, inferred from the masses of stars that by now have turned off the main sequence,
are ∼12 Gyr — though certain globular clusters appear to be much younger. The
thick disk has a metallicity similar to that of globular clusters, while stars in open
clusters within the thin disk have appreciably higher concentrations of heavy el-
ements and ages of ∼1 Gyr. Even younger stars are found forming in the dusty
regions within the extreme disk. The central bulge seems to contain a mixture of
stars of different ages and metallicities.

An early picture of the history of the Galaxy was compiled by Eggen, Sandage,
and Lynden-Bell, who noted the orbital parameters of the very oldest stars. These
stars are deficient in metals, and this gives them an excessively large ultraviolet
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Fig. 13.17. Age of stars and their orbital characteristics. Angular momentum about the Galac-
tic center, eccentricity e of the orbits about the center, the velocity |W | in km s−1 perpendic-
ular to the Galactic plane, and height zmax risen above the plane. Large values of δ(U − B)
are associated with old stars in the Galaxy (after Eggen, Sandage, and Lynden Bell (Eg62),
see text).

magnitude relative to more recently formed metal-rich stars. The difference between
U andB magnitudes, δ(U −B), increases with increasing age (Eg62). As indicated
in Fig. 13.17, the three authors found that the oldest stars in the Galaxy have highly
eccentric, low angular momentum orbits with high velocities perpendicular to the
Galactic plane. This suggests an initial, almost radial collapse toward the center. As
pointed out by Oort (Oo65) the angular momentum per unit mass, measured about
the Galactic center, is a factor of eight lower for highly metal-deficient RR Lyrae
stars than for disk or spiral arm stars in the neighborhood of the Sun. Von Hoerner
(vo55) found that globular clusters have orbital characteristics similar to the halo
stars. The disk population seems to have had a different origin, apparently due to
material that fell into the Galaxy at later epochs. This would be consistent with
material from the Magellanic stream — gas orbiting the Galaxy along trajectories
similar to those of the Magellanic Clouds — and other aggregates of gas falling into
the plane of the Galaxy even today. Large-scale mergers observed in other galaxies
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suggest that either gradual or catastrophic aggregation of matter could have further
influenced the structure and chemical composition of the Galaxy.

13:36 Radioactive Dating

An approximate sequence for heavy element production in the Galaxy can be ob-
tained on the assumption that carbonaceous chondrites represent material from
which the Solar System was formed. The chondrites can be analyzed for their
content of thorium and uranium isotopes, 232Th, 235U, and 238U. These elements
are formed in the r-process (Section 8:12) in a ratio 1.6 : 1.6 : 1. Their α decay
half-lives are 1.4 × 1010, 7.1 × 108, and 4.5 × 109 yr, respectively. The present
232Th : 238U Solar System ratio shown in Table 1.1 is 3.7:1. The 238U : 235U ratio
is 1 : 0.007.

PROBLEM 13–16. Current estimates of the age of the Galaxy are ∼ 11 × 109 yr.
If a fraction x of the uranium and thorium was formed in the birth of the Galaxy
and (1−x) was formed continuously between the birth of the Galaxy and the Solar
System’s birth ∼5 × 109 yr ago, show that x < 10%. If all the metal formation had
taken place continuously at an even rate, show that the Galaxy would have to be
>25 Gyr old.

Answers to Selected Problems

13–1. Equation (13–22) provides the reciprocal of the damping time when used
with values for the radiation density from Table 12.1 and the ionization fraction
from Fig. 13.1. Table 12.3 provides ages as a function of red shift. Where the tables
do not provide the required information, obtain the extrapolated values using the
scaling relations of Section 11:12.

13–2. (a) Photons can only travel a distance neσe before being scattered. Table
12.1 shows that the hydrogen density today is nH ∼ 1.6 × 10−6 cm−3. For a
fully ionized gas at z = 104, the electron density would be z3 times higher, ne ∼
1.6 × 106 cm−3, and photons could only travel a distance (neσe)−1 ∼ 1018 cm
before being scattered.

(b), (c) Because we have a mixture of radiation and matter there is no single
value of γ that can be used with the last expression on the right of (9–25). We must
use the expression ∂P/∂ρ instead, noting that ρ = ρr + ρB . For the radiation-
dominated era Pr = aT 4/3, ρr = aT 4c−2, and because of radiation domina-
tion, the adiabatic expansion in (4–129) has to be used with γ = 4/3 to obtain
ρB ∝ 1/V ∝ T 3. After decoupling, the baryonic pressure PB = nkT =
ρBkT (1 + x)/mH dominates the behavior of matter. The main results to be shown
can be directly derived from (13–23).
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13–5 (a) Using the speed of sound given in (13–23), the Jeans length of (13–39), and
recognizing that dark matter dominates the mass density, the baryonic Jeans mass
MBJ after decoupling becomes

MBJ ∼ π

6
ρB(t0)(z + 1)3

[(
5kTB(t0)(z + 1)2

9mH

)1/2(
π

GρM (t0)(z + 1)3

)1/2
]3

(b) During decoupling, as seen in Problem 13–2, the speed of sound falls
from cs(before) ∼ 1.4 × 1010 cm s−1 to cs(after) ∼ (6kTB(t)/9mH)1/2

∼ 2.5 × 105 cm s−1 at ∼3000 K. For ρM (t0) = (3H2
0/8πG)ΩM (t0)

∼ 3 × 10−30 g cm−31, this makes MBJ (after) ∼ 2.5 × 103M�, while
MBJ(before) ∼MBJ (after)[cs(before)/cs(after)]3 ∼ 5 × 1017M�.

(c) The Hubble radius at z ∼ 1100 is c/(H0(z + 1)3/2) ∼ 3.5 × 1023 cm.
The radius enclosing MBJ (after) is λJ/2 ∼ 1.5× 1019 cm. The mass in a Hubble
sphere, therefore is considerably higher than the Jeans mass after decoupling. While
the Hubble radius remains almost unchanged, the Jeans length increases by a factor
of 5.6× 104 to ∼800 kpc, as one goes back in time from the decoupled to the fully
coupled regime.

(d) From (c) it is apparent that the volume containing the Jeans mass before
decoupling is larger than the Hubble sphere.

(e) The Jeans length during the radiation-dominated epoch diminishes as
(1+z)−2 with increasing red shifts, so that the volume of the sphere of radius λJ/2
declines as (z + 1)−6, while the enclosed baryon density increases as (z + 1)3.
This leads to an overall decline in the enclosed baryonic mass in proportion to
(z + 1)−3. During the same epoch, H ∝ (1 + z)2, the Hubble radius declines
as c/H , and ρB ∝ (1 + z)3. So, the mass within the Hubble radius diminishes
as (4π/3)ρB(c/H)3 ∝ (1 + z)−3 with increasing red shift. The enclosed baryonic
mass within a Hubble sphere is always less than the Jeans mass during the radiation-
dominated epoch. Figure 13.2 illustrates this sequence of events.

13–6. Substitute d�2 = r2dΩ2 + (1− kr2/a2)−1dr2 from (11–7) and (11–14) into
the expression on the left in (11–18). Then introduce a new variable r = a(te)ψ,
with ψ = σ(χ) and σ(χ) = sinχ, χ or sinhχ depending on whether k = 1, 0 or
−1.

13–8. (a) This can be done, for example, by substituting the expressions (11–72)
and (11–74), respectively, into (13–59) and (13–57). (b) Note that the parameters
x  1, y  1 in equations (11–72) and (11–74) correspond to early times. The
equality of densities as well as expansion rates at early times, when the curvature
term k was negligibly small, implies that the quantitiesa(+o) and a(−o) must assume
the same value in equations (11–72) and (11–74). Similarly, expanding x−sinx and
sinhy − y shows that the parameters x in equation (11–72) and y in (11–74) also
must have a one-to-one correspondence because for small values, x  1, y  1,
the times t then agree.
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13–9. The scale factor at the time of maximum expansion in the k = +1 domain
is obtained by first setting the time for this epoch the same for all three domains,
k = 0,±1. Then, according to (11–72), x = π for the maximum scale factor of a+,
and t− = t+ = t0 = a(+o)π/c = (π/2)am/c. Because a(−o) = a(+o) = am/2, we
then obtain from (11–74) y ∼ 2.42, from the expansion sinh y = y+y3/3!+y5/5!+
. . . and a− = 2.3am by virtue of the expansion cosh y = 1+y2/2!+y4/4! . . .. From
(13–58) we also have a0 = 1.77am. Since we postulated that the collapse occurred
at (z +1) = 20, today’s scale factor in a flat universe would be a0 ∼ 35am, and the
corresponding time would be ∼ 45πam/c.

13–10. (a) From Problem 13–9, we have a scale factor a = 1.77am in the k = 0
ambient medium, at (z + 1) = 20, when the k = +1 domain reaches maximum
expansion. (13–58) then tells us that, at this epoch, the age of the universe measured
in the k = 0 ambient universe is t20 = (2/3)(am/c)(1.77)3/2. At decoupling,
(z+1) ∼ 1100, the scale factor and the radius of the vacuole are 55 times smaller in
the k = 0 space, a1100 = 0.0322am and t1100 = (2/3)(am/c)(1.77/55)3/2. Setting
t+ equal to this in (11–72), we obtain x ∼ 0.3773 which yields a+ ∼ 0.0320am,
less than 1% lower than the radius of the vacuole in the k = 0 domain. The density
contrast then is ∼1.02. (b) Recalling that the red shift, or ratio of wavelengths, is
proportional to the ratio of time intervals required to traverse a wavelength at the
speed of light,∆t = λ/c, we can use equation (13–56) to calculate the red shift. We
note that the cluster radius today aχo is of order 10−3 the distance to the horizon,
implying that the term [(1−keχ

2
o)/(1−kiχ

2
o)]1/2 must have a value no greater than

∼(1+10−6). In contrast, forM = 1049 g, aiχo ∼ 2×1023 cm and,∆a/a ∼ 10−2,
the term [1 + (2MG(ae − ai)/c2χoaeai)] ∼ (1 + 7.5 × 10−5). This conforms to
the order of the observed microwave background fluctuations.

13–11. Radiation traversing portions of the vacuole devoid of matter do not par-
ticipate in the cosmic expansion. However, both on entering and exiting the vac-
uole, radiation encounters an expanding interface that is comoving with the external
medium. The transition across these two surfaces results in a red shift that just equals
the red shift that radiation bypassing the vacuole experiences in traversing the same
distance. Changes in clock rates at interfaces between the vacuole and the homoge-
neous k = 0 and enclosed k = 1 regions can result in either a blue or red shift. For
radiation of a given frequency, each increment of time dt can be considered the unit
required for one wavelength to pass by. In regions where dt is large, the wavelength
will be large in the same proportion. Ratios of time increments dt provided by equa-
tions such as (13–52) and (13–46) thus translate into proportions of wavelengths
at transition boundaries or across regions with varying gravitational potentials. For
radiation bypassing the central k+ condensation, the wavelength shift due to entry
into and exit from the vacuole is thus determined by the respective ratios dtv/dte]ve

on entry and on exit given by (13–52), and the gravitational field within the vac-
uole giving rise to a gravitational wavelength shift dtv,in/dtv,out obtainable from
(13–46). We then have

dtve,in

dtve,out
=

[
dte
dtv

∣∣∣∣∣
in

] [
dtv,in

dtv,out

] [
dtv
dte

∣∣∣∣∣
out

]
=

(1 − 2MG/re,in)
(1 − 2MG/re,out)

,
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which gives rise to a red shift. A ray traversing a distance ∼2 Mpc through the vac-
uole, finds that the vacuole has expanded by ∼ 2.5×1023 cm by the time it exits. For
M ∼ 1049g and re,in = 2 Mpc, the red shift then amounts to ∆λ/λ ∼ 10−5, and
the apparent temperature fluctuation is in the same proportion. For radiation passing
centrally through the homogeneous interior condensation, a comoving expansion or
contraction of the interior k+ medium can, respectively, result in a corresponding
blue or red shift.

13–12. The expression (9–91) derived previously for the force field generated by
the disk of a galaxy can be used here and leads directly to the result if we note that
z̈ = −2πσG. Successively integrating with respect to t leads to z0 − zf = πσGt2

where zf << zf , and the subscripts, respectively, refer to the initial and final disk
heights measured from the central plane. But σ = 2z0ρ0, the factor 2 reflecting the
disk stretching from −z0 to z0. Hence, t = (2πρ0G)−1/2.

13–13. To produce significant optical depth at z = 6 the atomic hydrogen density
nH(0), today, would have to be ∼1.5×10−13 cm−3. This has to be compared to the
number density in a flat universe with ΩB = 0.04, which is nH(0) ∼ 2 × 10−7. A
neutral fraction as low as 10−6 would suffice to produce unit optical depth at z = 6.
At z = 0 an amount roughly 20 times higher would be needed ∼2 × 10−5.

13–15. Following the procedure suggested, the radius of a Jeans mass of 3×109M�
is r ∼< 1.5 × 1022 cm. The mean density of the mass is then ρ ∼> 3 × 10−26 g
cm−3, which is comparable to the ambient cosmic mass density of dark and baryonic
matter at that red shift. The free-fall time at this density given by (13–64) is of order
250 Myr, which is considerably longer than the age of the Universe at z ∼ 25. The
approximate red shift at final collapse at age ∼250 Myr is z ∼ 15.

13–16. For continuous formation of 232Th and 238U at rates dnT /dt and dnU/dt,
respectively, since a time t in the past, the present abundance ratio R should be

R =
[∫ t

0

dnT

dt
2−t/τT dt

] [∫ t

0

dnU

dt
2−t/τU dt

]−1

where τT and τU are the half-lives, in Gyr, and 2−t/τ = e−0.693t/τ. At t ∼ 27 Gyr,

R =
14
4.5

1.6
[1− e−0.693t/τT ]
[1− e−0.693t/τU ]

= 3.7 ,

but this does not agree with the 238U : 235U ratio. If a fraction x of the material had
been generated at time t = 11 Gyr, when the Galaxy may have formed, and (1− x)
had been generated between 11 and 5 Gyr ago, the ratio would be

R = 1.6
[
x
e−0.693t/τT

e−0.693t/τU
+ (1 − x)

τT
τU

[
e−3.45/τT − e−0.693t/τT

e−3.45/τU − e−0.693t/τU

]]
= 3.7 ,

which suggests x ∼ 8% of the uranium and thorium having formed at the birth of
the Galaxy and 92% formed at a steady rate between that time and the formation of
the Solar System ∼ 5 Gyr ago.



14 Life in the Universe

14:1 Introduction

Since historic times, we have wondered where we came from and where life origi-
nated. As it became apparent that the Earth was just one planet orbiting the Sun, that
the Sun was just one star among ∼1011 in our galaxy, and that the Galaxy itself was
only one such object among ∼1011 similar systems populating the Universe out to a
cosmic horizon, with perhaps countless more lying beyond, it became clear that life
on other planets, near some other star, in some other galaxy was possible. The cos-
mological principle (Section 11:3) also makes this idea philosophically attractive. It
would suggest that life is some general state of matter that prevails throughout the
Universe. The probability of finding some form of life, however primitive, on other
planets either within the Solar System or around nearby stars seems very high from
this point of view. Nevertheless, we are unable to predict where life should exist,
mainly because we do not yet understand the thermodynamics of living organisms
and what different forms life may take.

14:2 Thermodynamics of Biological Systems

Thermodynamics distinguishes between three types of systems. Isolated systems ex-
change neither energy nor matter with their surroundings. Closed systems exchange
energy but not matter, and open systems exchange both matter and energy with their
surroundings. Biological systems are always open, but in carrying out some of their
functions, they may act as closed systems.

Biological processes also exhibit a well-defined time dependence. As we saw in
Section 11:18, some physical processes could take place equally well whether time
runs forward or backward. If we viewed a film of a clock’s pendulum, we would not
be sure whether the film was running forward or back. Only if the film also showed
the ratchet mechanism that advances the hands of the clock, would we be able to tell
whether it was running in the right direction. The pendulum motion is reversible but
the action of a ratchet is an irreversible process. Biological processes are invariably
irreversible.

In an irreversible process, entropy, a measure of disorder, always increases. If a
cool interstellar grain absorbs visible starlight and re-emits the radiation thermally,
it does so by giving off a large number of low-energy photons. In equilibrium the



618 14 Life in the Universe

total energy of emitted photons equals the energy of the absorbed starlight; but the
entropy of the emitted radiation is larger. The increased entropy is a measure of
the disorder associated with a large number of low-energy photons moving in un-
predictable arbitrary directions. The initial state of a single photon carrying a large
amount of energy is more orderly and, hence, characterized by a lower entropy.

Biological systems thrive on order. They convert order in their surroundings into
disorder. In doing so, however, they also increase their own internal degree of order.
The entropy in the surroundings increases, the internal entropy can decrease, but
the total entropy of system plus surroundings always increases. The second law of
thermodynamics states that the overall entropy change in the entire Universe, in any
process, is always positive.

It may seem strange that biological systems can increase their internal order
in this way, but actually we encountered a similar process in the alignment of in-
terstellar grains (Section 9:13). We saw that the randomly directed kicks from the
formation of hydrogen molecules on a grain’s surface tended to orient the grain rel-
ative to the ambient magnetic field; it ends up spinning with its major moment of
inertia axis lying along the direction of the field. An oriented set of grains shows
greater order than randomly oriented dust. The decrease in the grains’ entropy is
produced through the absorption of low-entropy, high-momentum kicks, and the
ultimate dissipation of heat through emission of high-entropy, roughly isotropic,
infrared radiation.

These interstellar dust grains are in a state of stationary nonequilibrium. Such a
state is characterized by transport of energy between a source at high temperature
(the heat of formation of molecular hydrogen) and a sink at low temperature (the
Universe). There is no systematic change of the system in time, although statistical
fluctuations in the orientation, angular momentum, and other properties of the grains
do take place.

We may hope that the study of stationary nonequilibrium processes will lead to
a better understanding of the behavior of biological systems (Pr61). Most biological
processes follow this pattern. When a plant absorbs sunlight — photons whose en-
ergy is typically ∼2 eV — and thermally re-emits an equal amount of energy in the
form of 0.1 eV photons, it is acting as a stationary nonequilibrium system.1 Pendu-
lum clocks are also stationary systems. Low-entropy energy in the form of a wound-
up spring is irreversibly turned into high-entropy heat. As Schrödinger pointed out
(Sc44), living organisms and clocks have a thermodynamic resemblance.

Nonequilibriumcharacterizes virtually all astrophysical processes. Energy flows
out of highly compact sources into vast empty spaces. Any biological system sta-
tioned near one of these sources could make good use of this energy flow. It would
therefore seem that the conditions necessary for the existence of life in one form or
another would be commonplace. Maybe life does abound in the Universe; perhaps
we only fail to recognize it.

1 The photochemistry of green plants is a complex process that also involves the buildup of
large molecules.
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In his science fiction novel The Black Cloud, Fred Hoyle (Ho57) speculated that
interstellar dust clouds might be alive. From a thermodynamic viewpoint the situa-
tion would be ideal. We know that dust clouds absorb perhaps half of the starlight
emitted in a spiral galaxy like ours. The grain temperatures are so low that a max-
imum increase in entropy can be produced. What is uncertain, however, is whether
the grains are not too cold to make good use of the available energy. At the 10 to
20 K temperatures that might be typical of interstellar grains, the mobility of atoms
within the grains is so low that the normal characteristics we associate with life
might be ruled out (Pi66).

A thermodynamically similar scheme was suggested by Freeman Dyson (Dy60)
who proposed that intelligent civilizations would build thin shells around stars to
trap starlight, extract useful energy, and then radiate away heat in the infrared. So
far, infrared astronomical observations have not identified such structures, though
they probably would have if they were common.

Our experience on Earth is that life will proliferate until stopped by a lack of
resources or excessive toxins. It would perhaps be surprising if no form of life had
adapted itself sufficiently to make use of the huge outpouring of energy that goes on
in the Universe and is apparently just going to waste.

A search for unknown forms of life might concentrate on striking examples of
nonequilibrium. A Martian astronomer, for example, would find only two pieces of
evidence for life on Earth. The first is a radio wave flux that would correspond to a
nonequilibrium temperature of some millions of degrees. This is produced by radio,
television, and radar transmitters. The second is an excess of methane, CH4, which is
very short-lived in the presence of atmospheric oxygen. It is converted into CO2 and
H2O. Its nonequilibrium concentration, which could be spectroscopically detected
from Mars, is rapidly replenished by methane bacteria that live in marshes and in
the bowels of cows and other ruminants (Sa70b). Some terrestrial CH4, however, is
known to also emanate from mid-ocean volcanic vents, today, and this process could
have been more prevalent in earlier times, making CH4 a somewhat ambiguous
marker of life. Consequently, oxygen molecules, O2, ozone, O3, and water are also
major biomarkers of current interest as a search for molecular indicators of life on
planets outside the Solar System, the exoplanets, is being planned (De02a).

Water certainly is a necessary ingredient for all life on Earth. The search for life
elsewhere accordingly tends to concentrate on planets able to sustain water in liquid
form. This requires the planet to be sufficiently far from its parent star so that water
on its surface will not evaporate, yet sufficiently near that it will not freeze. This
range of distances and temperatures is referred to as the habitable zone around the
star.

14:3 Organic Molecules in Nature and in the Laboratory

Granted that we do not specifically know how to search for exotic forms of life,
could we not find indications of extraterrestrial life in a form familiar on Earth? All
terrestrial living matter contains organic molecules of some complexity — proteins
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and nucleic acids, for example — and we might expect to find either traces of such
molecules or at least of their decay products.

We know of two quite distinct locations in which complex molecules are
found. There may be many more. First, observations of interstellar molecules by
means of their microwave spectra have revealed the existence of such organic
molecules as hydrogen cyanide, methyl alcohol, formaldehyde, and formic acid.
Larger molecules, such as the sugar glycolaldehyde, CH2OHCHO, have also been
found to be quite prevalent in interstellar space. Infrared observations similarly have
shown the existence of the even larger, polycyclic aromatic hydrocarbon molecules.
Increasingly complex organic molecules continue to be discovered (Ho01).

Many of these molecules have been synthesized in the laboratory under simu-
lated interstellar conditions, and the mechanisms involved are being studied quan-
tum chemically. Not only the formation, but also the stability of these molecules
needs to be understood for the harsh conditions of interstellar space, where prevail-
ing ultraviolet radiation continually threatens to destroy larger molecules. If we are
to unravel the origins of life, all this attests to the central importance of understand-
ing the basic chemical processes active in environments quite different from those
found on Earth.

Second, an analysis of a meteorite — a carbonaceous chondrite — that fell
near Murchison in Australia on September 28, 1969, showed the presence of many
hydrocarbons and of 17 amino acids, including six that are found in living matter
(Kv70). One such amino acid was alanine. It has the form

Alanine :

O
‖

CH3—CH—C—OH
|

NH2

(14–1)

All organic acids are marked by the group of atoms

O
‖

—C—OH

and amino acids contain the additional characterizing amino group NH2.
Contamination by terrestrial amino acids seems to be ruled out by three features

of these observations.

(a) Alanine can occur in two different forms: one in which the CH3, NH2,
COOH, and H surrounding the central carbon atom are arranged in a configura-
tion that causes polarized light to be rotated in a left-handed screw sense; the other
in which polarized light would be rotated in the opposite sense. These are, respec-
tively, labeled L- and D-alanine. The symbol L stands for levo — left — and D for
dextro — right.

All amino acids can be chemically derived from alanine. If derived from L-
alanine such an acid is called an L-amino acid, and if derived from D-alanine, a
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D-amino acid. All amino acids found in proteins in terrestrial living matter are L-
amino acids. Although not all of them rotate light in a left-handed screw sense, they
all can be structurally derived from L-alanine.

The Murchison meteorite showed D- and L-forms in essentially equal abun-
dances. These amino acids are therefore very unlikely to have been biogenic con-
taminants.

On Earth, amino acids are overwhelmingly in the left-handed form. Why this
should be is a mystery. Chemically, the right- and left-handed forms are equally
probable. They are mirror images of each other. Perhaps evolutionary considera-
tions have played a role. It might be that primitive life existed in a racemic mixture
— having both L and D forms — and that the L-form won out in a competition
for raw materials essential to life. It might also have been impossible for racemic
life to exist in an effective way. The search for nutrients would be inefficient. A
bolt in search of a nut is more readily satisfied if all nuts and bolts have a right-
handed thread; trying to match nuts and bolts from a racemic mixture would be
vexing.

(b) A second distinctive feature of the Murchison material was that the ratio of
carbon isotopes 13C to 12C was about twice as high as normally found in terrestrial
material. This too indicated that contamination could be ruled out.

(c) Finally some of the amino acids found in the material consisted of nonprotein
amino acids. They could not have been contaminants.

The Murchison meteorite more recently has also been shown to contain traces
of more than a dozen types of sugar-related organic compounds, molecules with a
number of OH groups attached to their carbon structure. These polyhydroxylated
compounds, or polyols, including sugars, sugar alcohols, and sugar acids are essen-
tial to all recognized forms of life. They are components of nucleic acids, discussed
in Section 14:5 below, and are also found in cell membranes and can be a source of
energy. It is possible that these and other organic compounds delivered to the young
Earth billions of years ago through infall of interplanetary matter played a role in
the origin of life (Co02).

We still have to ask how these molecules arise. Is their fabrication simply
achieved under normal astrophysical conditions? The answer to this seems to be
“Yes.”

A series of experiments that had their foundations in the work of S. L. Miller
(Mi57a), (Mi59) has shown that amino acids and other molecules found in living
organisms can be produced artificially if mixtures of gases such as ammonia NH3,
methane CH4, and water vapor H2O are irradiated with ultraviolet radiation, sub-
jected to electrical discharges or shocks, or to X-ray, gamma-ray, electron or alpha-
particle bombardment. Experiments by two groups have also shown that amino acids
form when different mixtures of water, ammonia, methanol, carbon monoxide, car-
bon dioxide, and hydrogen cyanide, HCN, are frozen under high vacuum conditions
onto a surface at a temperature of only 12 to 15 ◦K and irradiated by ultraviolet radi-
ation (Be02), (Ca02). Thus far, the laboratory-produced molecules have all resulted
in racemic mixtures.
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Since the laboratory experiments approximate conditions known to prevail on
interstellar grains, there is a possibility that the amino acids originated well before
the Solar System formed. They could then have become part of the protosolar neb-
ula, and eventually found their way into asteroids and comets and their meteoritic
fragments that continue to bombard Earth. The simplest of the amino acids, glycine,
NH2CH2COOH, has been found in the hot molecular cores of three interstellar re-
gions, where the molecules exhibit rotational temperatures (∼100 K) with column
densities of order 1014 molecules cm−2 (Ku03). However, laboratory simulations
suggest that, once formed, the amino acids may also be rapidly destroyed by ultra-
violet radiation in space (Eh01). A precarious balance may, therefore, be involved,
in which amino acids can only survive if well-shielded inside a dark cloud or a larger
body, such as a comet or meteorite.

Because all the gases that are used in the cited experiment are abundant in the
Universe, where high-energy irradiation is also common, accounting for the pres-
ence of prebiotic molecules no longer seems difficult. This should be true not only
in the Solar System, but also in other circumstellar or planetary environments.

Although biogenic molecules are readily formed by energetic bombardment,
they are also readily destroyed by it. Such a molecule captured into Earth’s atmo-
sphere might therefore be destroyed unless it were rapidly removed to a safer place.
On Earth, rain could have washed molecules out of the atmosphere and into the
oceans where they would be shielded from destructive irradiation by a protective
layer of water.

We note that the conditions for forming life — or highly ordered biogenic
molecules — are those that seem thermodynamically favorable (Section 14:2).
There is a source of low-entropy energy in solar ultraviolet or cosmic-ray irradi-
ation and a possibility of converting this energy into a higher entropy form through
collisions with atmospheric molecules or through radiation at long wavelengths.

14:4 Origins of Life on Earth

Before we can make a rough guess about the origins of life on Earth, we should
know something about the Earth’s atmosphere and oceans during the æons immedi-
ately following the birth of the Solar System.

The origin of water on Earth is still under debate. The deuterium abundance on
Earth differs widely from that of the Sun, the planets Jupiter and Saturn, and the
comets. The solar D/H ratio is ∼2× 10−5. Jupiter and Saturn exhibit similar ratios.
On Earth this ratio is ∼1.5× 10−4. Spectroscopic studies of water sublimated from
comets show considerably higher D/H ratios ∼3.8 × 10−4. This level is similar to
the abundance ratio observed in the Martian mantle, suggesting a cometary origin
for water on Earth and Mars. The only other source of deuterium that seems to
closely match that found on Earth is in clays associated at submicrometer scales with
organic materials in carbonaceous meteorites. The water on Earth may, therefore,
have its origins in a few giant impacts either with comets or asteroidal bodies that
had D/H ratios comparable to those of the carbonaceous chondrite clays, having
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originated in the same part of the Solar System, the asteroidal belt. This conclusion,
however, is still quite uncertain (Ro01).

When the Earth formed ∼4.5 billion years ago, its initial atmosphere was de-
void of molecular oxygen. The most prevalent atmospheric molecules were those
strongly reduced by abundant hydrogen — methane, ammonia, water, and ethane.
Uncertainty persists on precisely when the earliest forms of life originated on Earth.
There is common agreement that life existed when bacterial fossils formed in the
1.9-billion-year-old Gunflint Formation of Ontario, in Canada (Mo05). But it may
have flourished appreciably earlier. Studies of ancient rocks, soils, and microfossils
show that atmospheric O2 dramatically increased roughly 2.3 billions years ago.
This oxygen is thought to have been produced by cyanobacteria, the only organ-
isms existing at the time capable of photosynthetically producing O2. The overall
reaction of interest is

CO2 + 2H2O → CH4 + 2O2 .

The CH4 is photolyzed, destroyed by sunlight, and the hydrogen escapes to space,
leaving a higher concentration of O2. Although the first evidence for cyanobacteria
dates back 2.7 billion years and possibly earlier, the rise in oxygen did not take place
until 400 million years later. Initially, some of the oxygen may have been quickly
depleted in oxidizing minerals on the Earth’s surface but, whatever the reason, the
production of oxygen eventually appears to have overtaken the depletion, leading to
a rapid change from a reducing to an oxygen-rich atmosphere (Ka01, Ca01).

The earliest forms of life coexisted with the earlier reducing atmosphere and
were anaerobic. Presumably the very first organism to be formed found itself in a
rich environment of large organic molecules (Op61a, b) that had been built up by
ultraviolet radiation, lightning in thunderstorms, and other sources of low-entropy
energy. Such an organism could feast and procreate at will, until the supply of or-
ganic molecules dwindled. Those organisms that obtain energy by breaking down
pre-existing molecules are called heterotrophs. Clearly they would be at a disad-
vantage compared to autotrophs, organisms which in addition could also make use
of energy in other forms; autotrophs that make use of sunlight are called photoau-
totrophs. The autotrophs probably soon took over. Initially they must have been
anaerobes, but with the escape of hydrogen these were at a disadvantage compared
to aerobes from which all the higher organisms later evolved. When the oxygen con-
centration in the atmosphere became roughly one percent of its present abundance,
respiration should have become a more efficient process than fermentation and the
aerobes may have originated at that time.

Living organisms naturally suffer genetic mutations — alterations in the code
that defines the makeup of the progeny. The mutation rate can be artificially in-
creased through X-ray and other destructive bombardment. The aerobes probably
arose from anaerobes through mutations. Able to thrive on atmospheric oxygen,
they soon became the dominant form of life. Anaerobes today proliferate only where
atmospheric oxygen is somehow excluded.

The balance between stability and mutability appears particularly important to
the success of life. Without mutability a species cannot adapt to changes in its en-
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vironment, but without some stability, higher forms could not evolve either. In Dar-
win’s theory of survival of the fittest, these fittest are likely to be produced through
occasional mutations of rather stable forms.

The death of individuals also appears essential in order that life may evolve. Yet,
for life to evolve optimally, each fit individual should attempt to survive — resist
death. Presumably there is an optimal eugenic life span that varies from species to
species. Some male spiders are devoured immediately after mating. For humans, a
longer life span may be desirable because they are needed to help rear the young.

A grouping of primitive cellular life led to symbiotic multicellular forms carry-
ing out complementary, specialized tasks. Ultimately the process led to the higher
forms of life encountered today. Even now, however, symbiotic relations are widely
encountered between fungi and plants. Symbiotic associations between fungi and
animals may also be pervasive (B�00). Interestingly, irreversible thermodynamics
should play a role not only in helping us understand the metabolism of life, as in
Section 14:2. It is likely that the growth of more highly organized life forms and
relationships can also be described using the methods of irreversible thermodynam-
ics.

14:5 The Chemical Basis of Terrestrial Life

All life on Earth contains rather similar organic compounds. The proteins, including
the enzymes acting as biological catalysts are formed from a set of 20 ubiquitous
amino acids, and, more rarely, from one of at least two additional ones discov-
ered to date (Sr02, Ha02). All organisms also carry the genetic information required
for their propagation in the form of RNA or DNA chains. RNA stands for ribonu-
cleic acid, DNA for deoxyribonucleic acid. Both RNA and DNA are long-chain
molecules, each built from four different basic building blocks, three of which are
common to both RNA and DNA. DNA is characterized by sequences of the four
nitrogen-containing bases, adenine (A), guanine (G), cytosine (C), and thymine (T).
RNA substitutes uracil (U) for thymine. Though genetic information is generally
handed down from generation to generation by means of the DNA code, primitive
life is believed to have sprung up reliant on RNA. RNA sequences consisting of
triplets of these bases or nucleotides — AAC, UGC, GGC,. . . — provide an alpha-
bet that could have spelled out a set of genetic instructions to determine the charac-
teristics of a progeny. A similar triplet code would have later evolved for DNA.

Each biological species propagates a common set of genetic instructions to its
progeny. These differ from the genetic makeup of any other species. Though indi-
viduals within a species carry a set of slight variants in their genetic makeup —
their genome — they differ from each other far less than does one species from all
others. The genome of different species has been analyzed, and a family tree has
been established that shows the relationship between different species — as judged
by the similarity of, or differences between, their genetic codes (Fig. 14.1). Auto-
mated procedures for tracing the prevalence of different genetic markers among an
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increasing variety of species, are leading to the construction of progressively more
accurate depictions of the tree of life (Ci06).

Fig. 14.1. The tree of life showing the three domains of life and the genetic relation among
species (after Woese et al). Drawing after Otto Kandler (see (Mo97)), reprinted with permis-
sion from Science c©1997 American Association for the Advancement of Science.

Most interesting about this tree is that it shows the common ancestry of three
broad domains of life, the eukarya including fungi, plants, and animals; the bac-
teria; and the archaea which had not even been recognized as a separate domain
until 1977, when biologist Carl Woese announced their discovery. The eukarya split
off from the archae at a very primitive stage, just as their combined branch had
somewhat earlier let bacteria go their separate genetic way. All the species shown
in Fig. 14.1 still exist today. Their common ancestors have yet to be found. The
common feature at the base of the tree, however, is that all of the species are hy-
perthermophiles, heat-loving organisms that live at temperatures of 80 to 110 ◦C
or above. Some hyperthermophiles are known to thrive at temperatures as high as
113 ◦C, which would permit them to live at depths as great as 5 km beneath the sur-
face of Earth. This thermophilic common heritage suggests that primitive life may
have originated deep within the Earth, or in hot springs, or deep in the oceans where
volcanic vents spew forth material. Archaea found in deep terrestrial hot springs
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seem to derive their energy from geothermal hydrogen reacting with carbon dioxide
to produce methane (Ch02):

4H2 + CO2 → CH4 + H2O .

These organisms are of interest because they suggest the search for subsurface
life on Mars that might subsist on the same sources of energy.

Some rocks as old as 3.85 Gyr, are calcium phosphates known to be produced
today as metabolic byproducts. These minerals have recently been claimed as offer-
ing evidence of early life. Many types of rocks are known to have been produced
by micro-organisms over the æons and it is often difficult to decide whether micro-
scopic rock structures are biologically produced or are inclusions that might have a
nonbiological origin.

14:6 Laboratory Syntheses

Most theories of the origins of life assume that rather long molecular chains —
polymers consisting of 30 to 60 monomers — are needed. The simplest organisms
appear to require enclosure in a membrane, or vesicle, to confine and protect the
chemical chains capable of replicating themselves. Some of the simplest vesicles
are made of amphiphiles – long molecules, one end of which is oily and is hy-
drophobic, repelling water, whereas the other end is hydrophilic, bonding well to
water molecules. Such chains can assemble into a closed bubble, the hydrophobic
ends pointing inward and the hydrophilic pointing outward. In the laboratory such
simple membranes have been synthesized. They are stable as long as the ambient
water has no salinity. This has suggested to some workers that life might have orig-
inated in fresh water rather than in the oceans.

The required amphiphiles could have a cometary origin. When a comet is heated
by sunlight it releases its carbon-rich ices to interplanetary space. Solar ultraviolet
irradiation may then convert some of this material into simple hydrocarbons. Ac-
cording to one suggestion, some of these hydrocarbons eventually fall on Earth,
come into contact with water, and coalesce into vesicles (Ir02).

Other experiments suggest that complex molecules that actually are responsible
for replication, possibly primitive RNA, could have formed on the surfaces of clays
(Fe96).

Some preliminary experiments with RNA-catalyzed RNA polymerization have
also been successful (Ek96). Another experiment has shown that at least one amino
acid chain is able to replicate itself in a soup of two shorter amino acid chains. This
autocatalytic process, carried out under plausible prebiotic conditions, is instructive
because self-replication of such proteinlike structures may be a significant step in
providing insight on primitive reproduction. The molecules formed in this way con-
tained 32 amino acids in a helical configuration formed from a mixture of 15- and
17-amino-acid fragments. Especially significant is the particular segment produced
in this fashion; it occurs as a fragment in a yeast enzyme (Le96).
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14:7 Panspermia

Until recently, the chances of terrestrial life springing up unassisted seemed so re-
mote that extraterrestrial origins were considered a distinct possibility. An extrater-
restrial origin would not explain how or where life started, but would obviate the
need for its independent creation in many different places. If microbial life could be
formed once, on some planet where it flourished until an asteroidal impact blasted
some primitive forms out into space, it might then migrate over large distances,
eventually settling down and proliferating elsewhere. Microbes may be no larger
than interstellar dust grains, and many billions of them might possibly survive a
major asteroidal impact and be blown into space. Many primitive forms of life have
shown themselves to be extremely hardy, able to go through long periods of hiberna-
tion before reviving when provided adequate conditions. The panspermia hypothesis
has rested on the credo that propagation of life could have taken place in this way.
Panspermia may well be possible. But as a more productive strategy, we should con-
tinue to investigate whether laboratory experiments of the type described in Section
14:6 might not provide insight into how primitive life could have spontaneously
originated on Earth.

14:8 Higher Organisms and Intelligence

The mutation rates now deduced from the paleontological record suggest that once
primitive life had sprung up on Earth, more complex forms would naturally follow
through a process of mutation and survival of the fittest. Differentiation of cells in
higher organisms, permitting the formation of individual organs such as eyes, ears,
hands, or a brain, all offered genetic advantages that led to the proliferation of suc-
cessful mutations. Intelligence certainly has its advantages, though the aggressive
tendencies of the human race give rise to fear that we might ultimately destroy our-
selves through some catastrophic military invention. Barring that, however, are there
ways of searching for other intelligent species elsewhere in the Universe? This is a
question that has been asked since prehistoric times. We still have no answers but
a Search for Extra-Terrestrial Intelligence, SETI, has started in recent years (Br97).
It searches for radio signals from nearby stars that might reveal complex coded
messages, perhaps somewhat like terrestrial radio broadcasts. Once dismissed as a
science fiction dream, this search for intelligent life elsewhere in the Universe is
now considered a valid investigation to help us understand our place in the Cosmos.

14:9 Communication and Space Travel

If life exists elsewhere in the Universe, perhaps it also shows intelligence. If it is
intelligent, perhaps it has organized into a civilization. How should we exchange
information with it and how would others be likely to get in touch with us (Sh66),
(Dr62)?
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This is a problem in communications. How do we most effectively send mes-
sages over large distances? How does the enormous time lag between sending and
reception of electromagnetic signals affect the problem of exchanging information?
These questions are actively being studied, but no single optimum way has yet been
discovered. Much depends on what we would best like to do.

If you like to travel, perhaps a rocket journey at relativistic speeds would suit
you. But then you must decide how to stay alive during the long trip. Suggestions
have been made for deep-freezing spacemen who would undertake the journey. Thus
far, nothing much bigger than a frog has been successfully frozen and revived, and
it is not clear whether the technique could be developed for large mammals. Un-
manned spaceflights, or flights in which several generations would succeed each
other before reaching their destination, are also possibilities.

An even more speculative alternative would be to travel across the Universe
through worm holes. These are tunnels in hyperspace that provide shortcuts. Kip
Thorne and his students have spent considerable effort on understanding whether
such tunnels could be constructed and whether, once constructed they might be kept
from closing up on themselves (Th94). Deep questions of general relativity and
quantum mechanics are involved and, until a viable theory of quantum gravity is in
hand, we will not know for sure.

If we cannot travel easily to distant parts of the Universe, might we be better off
restricting ourselves to communicating through transmission of signals? If so, are
radio or visible signals, or perhaps infrared or X-ray messages the best choice? Is
there any one electromagnetic frequency that is optimal?

If such a frequency is found, we still must ask ourselves whether its characteris-
tics are optimal only because of our specialized technological resources, or whether
there is some more fundamental reason for choosing one particular means of com-
municating. If we choose the wrong means for transmitting our signals, no one is
likely to receive them. We are also likely to miss messages sent by other civiliza-
tions if we do not know what means they might employ and what kind of receiver
we must build.

What about communication at speeds greater than light? This question has also
received serious attention (Cr95). In Chapter 5 we mentioned tachyons, particles
that might travel faster than light. If they existed they would have many desirable
properties. They might travel at millions of times the speed of light and could make
meaningful two-way conversations a possibility. Moreover, high-speed tachyons
should require only low-transmission energy, as seen from (5–34) and, might there-
fore be economical. Finally, tachyons would apparently free us from the limitations
imposed by cosmic horizons (Section 11:15). The one disadvantage might be that
tachyons seem not to readily interact with normal matter — otherwise they should
probably have been synthesized or detected by now. Construction of suitable trans-
mitters and receivers might therefore be difficult.

There are apparently endless sets of questions to be answered before optimal
means for communicating with other civilizations can be ascertained. To show what
these might be, we may consider two quite different questions in Problems 14–1 and
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14–2 below. They are chosen almost at random, but together they show that space
engineers of the future will need to have a deep understanding, both of naturally
occurring astrophysical phenomena and of fundamental processes, that might permit
them to open new communications links across the Universe, much as we have
managed to build such links here on Earth.

PROBLEM 14–1. A spaceship slowly accelerates on its voyage from Earth to a
distant galaxy. As it accelerates to ever higher speeds, it suffers collisions with in-
terstellar gas and dust, with photons crisscrossing space, with magnetic fields, and
with cosmic-ray particles. Estimate the effects of these and other possible particles
and fields of interstellar and intergalactic space on the momentum of the spaceship,
electric charges deposited on the ship and the effect of these charges, the abrasion
and ablation effects on the hull of the ship, heating effects, and so on. What are the
most serious limitations? Almost everything discussed in Chapters 6 and 9 bears on
this problem.

PROBLEM 14–2. The rate at which messages can be transmitted and received is
normally proportional to the area of the transmitter A and to the solid angle Ω
subtended by the receiver at the point of transmission. Let us now assume that the
transmitted particles or waves have a momentum range ∆p, and that the number of
message bits that can be transmitted per unit time — the bit rate — equals the rate
at which distinct phase cells are transmitted (4–65).

(a) For an electromagnetic wave show that the bit rate is

photon bit rate = AΩ
ν2

c2
∆ν, (14-2)

where ν is the frequency, ∆ν is the bandwidth of the transmitted beam, and the
antenna only transmits photons of one polarization.

(b) For a tachyon system, show that if (4–65) is applicable,

tachyon bit rate =
∣∣∣∣AΩh3

m3c4
∆N

N3

∣∣∣∣ for N � 1, (14-3)

where we have assumed that transmission occurs for tachyon velocities ranging
from V = Nc to V = (N + ∆N)c, where N is a large number. If the tachyon
mass is of the order of the electron mass and the radiation frequency is that of visi-
ble light, show that the tachyon bit rate for N ∼< 107, ∆N ∼ 0.5N is several orders
of magnitude greater than the electromagnetic bit rate. Show that for N ∼ 108,
however, the bit rate and energy expenditure would be comparable to visible light.
Equation (5–34) is useful in tackling this problem.
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Answer to a Selected Problem

This problem is highly speculative, particularly in view of some of the difficulties
cited in Chapter 5.

We assume that phase-space arguments determine the distinguishabilityof tachyons
and that the number of distinguishable tachyons transmitted per unit time determines
the bit rate. For a receiver with area A and reception solid angleΩ, the volume from
which tachyons are received per unit time is ANc, where N is the tachyon speed
measured in units c, the speed of light. The momentum space volume occupied by
these tachyons is Ωp2 dp, per mode of polarization. The number of distinguishable
tachyons incident on the detector in unit time (here referred to as bit rate) therefore
would be ∣∣∣∣ANcΩp2 dp

h3

∣∣∣∣ .
We make use of the relativistic expression

E2 = p2c2 +m2c4 = m2c4(1 −N2)−1

relating energy E and rest–mass m to momentum and velocity. This leads to the
(imaginary) momentum value

p =
N√

1 −N2
mc

and the bit rate obtained for a velocity range c dN reads∣∣∣∣AΩh3
m3c4

dN

N3

∣∣∣∣ for N � 1.

The corresponding expression for electromagnetic radiation is

AΩν2 dν

c2
,

where dν is the frequency of the radiation. If we take the frequency to be that of
visible light, and take m to be an electron mass, the tachyon bit rate is seen to be
many magnitudes greater than the electromagnetic bit rate, as long asN remains less
than about 107 and dN/N ∼ dν/ν . At that speed, the energy per tachyon would
be about 10−7mc2 corresponding to about 0.1 eV, while the visual radiation would
require a transmission energy about an order of magnitude higher.

If N ∼ 108, the bit rate and energy expenditure per message is comparable
to that for visible light, but communication across the Universe can be achieved in
times of the order of 100 years. Even if tachyons exist, it is not clear whether they are
stable (Be71). If they exist but are unstable they would not be suitable information
carriers.

Tachyons are speculative; but they remind us of how much we still need to learn
before we understand the contents of our Universe or the prospects of finding intel-
ligent extraterrestrial life.



Epilogue

At crucial points in this book we have been stopped by unsolved problems. Some of
the most important questions that remain unanswered involve the delicate balance
among the laws of Nature and the contents of the Universe that have made possible
the emergence of stars, planets and life.

Had the primordial density fluctuations in the Universe that gave rise to galaxies
and stars been of the order of δρ/ρ ∼< 10−6, with the current ratio of baryons to
photons nB/nγ ∼10−9 and the current cosmological constant Λ, gas accumulated
in growing condensations would have been so dilute that it could not have cooled
radiatively. No stars would have formed, no planets would exist, and life as we
know it could not have emerged. Had these density fluctuations been as high as
10−3, under the same circumstances, major cosmic structure would have collapsed
to form giant black holes. Stars and planets would then be largely lacking.

If the cosmological constant had been higher by an order of magnitude than ob-
served, other conditions in the Universe remaining unaffected, the cosmic expansion
would have been so rapid that no galaxies could have formed. And if the ratio of the
gravitational to the electromagnetic forces had been vastly different, the evolution
of the Universe would also have taken a quite different course.

If the values of such fundamental physical parameters as the masses of protons
and electrons mp and me , the value of the gravitational constant and the electric
charge G and e, the proton-to-photon ratio nB/nγ , the cosmological constant Λ,
and the amplitude of primordial fluctuations δρ/ρ, were arbitrary, the emergence
of life and astrophysicists capable of studying the Universe would have been quite
improbable (Li06)?

Some cosmologists have argued that an anthropic principle must have been at
work to shape the parameters characterizing our Universe so as to make the ex-
istence of life likely. One way of explaining this is that our universe is just one
among myriad others, each with its own fundamental constants and corresponding
history, each entirely detached from our own Universe. Among these uncountable
numbers of universes, only a minuscule fraction would be capable of supporting
the existence of life, and the emergence of astrophysicists seeking to comprehend
the Cosmos. Our universe, the anthropic principle claims, just happens to be one of
these.
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The anthropic principle does not provide any indication that the means will ever
be found to detect these other universes. Nor is it clear that it has the predictive
virtues demanded of all other scientific principles. Time will tell whether it is useful.

In the meantime, we continue to pursue whatever paths may lead us toward a
deeper understanding of the Cosmos. Among the most important unanswered ques-
tions are:

(1) Do the laws of physics as we know them apply on the largest scales of the
Universe and for all time?

(2) Did the Universe have a beginning, and what exactly is time?
(3) What is the topology of the Cosmos, and how could we detect the existence

of different branes if they exist?
(4) Is there a connection between the structure of the Universe and the structure

of elementary particles?
(5) What is dark energy?
(6) What is dark matter?
(7) Why does the Universe have a basic preference for matter over antimatter?
(8) Why are there so many more photons than baryons ?
(9) How did life originate and do other intelligent civilizations exist?
(10) Are we even asking the right kinds of questions?



A Astronomical Terminology

A:1 Introduction

When we discover a new type of astronomical entity on an optical image of the sky
or in a radio-astronomical record, we refer to it as a new object. It need not be a
star. It might be a galaxy, a planet, or perhaps a cloud of interstellar matter. The
word “object” is convenient because it allows us to discuss the entity before its true
character is established. Astronomy seeks to provide an accurate description of all
natural objects beyond the Earth’s atmosphere.

From time to time the brightness of an object may change, or its color might
become altered, or else it might go through some other kind of transition. We then
talk about the occurrence of an event. Astrophysics attempts to explain the sequence
of events that mark the evolution of astronomical objects.

A great variety of different objects populate the Universe. Three of these concern
us most immediately in everyday life: the Sun that lights our atmosphere during the
day and establishes the moderate temperatures needed for the existence of life, the
Earth that forms our habitat, and the Moon that occasionally lights the night sky.
Fainter, but far more numerous, are the stars that we can only see after the Sun has
set.

The objects nearest to us in space comprise the Solar System. They form a grav-
itationally bound group orbiting a common center of mass. The Sun is the one star
that we can study in great detail and at close range. Ultimately it may reveal pre-
cisely what nuclear processes take place in its center and just how a star derives its
energy. Complementing such observations, the study of planets, comets, and mete-
orites may ultimately reveal the history of the Solar System and the origins of life.
Both of these are fascinating problems.

Beyond the Solar System lies the rest of the Universe, the grand structure of
which we form a minuscule part.

A:2 The Sun

The Sun is a star. Stars are luminous bodies whose masses range from about 1032 to
1035 g. Their luminosity in the visual part of the spectrum normally lies in the range
between 10−4 and 106 times the Sun’s energy outflow. The surface temperatures
of these stars may range from no more than ∼1000 K to about 50,000 K. Later in
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this Appendix, we will see just how we can determine the relative brightness of
stars, and the difference between stars and their lower-mass counterparts, the brown
dwarfs. The determination of temperatures is discussed in Chapter 4.

The Sun, viewed as a star, has the following features.

(a) Its radius is 6.96× 1010 cm. Although occasional prominences jut out from
the solar surface, its basic shape is spherical. The equatorial radius is only a frac-
tional amount larger than the polar radius: [(req − rpol)/r] � 6 × 10−6 (Di86).

(b) The Sun’s radiant luminosity, the rate at which it emits electromagnetic en-
ergy, is 3.85×1033 erg s−1. Nearly half of this radiation is visible, but an appreciable
fraction of the power is emitted in the near ultraviolet and near infrared parts of the
spectrum. Solar X-ray and radio emission make only slight contributions to the total
luminosity.

(c) The Sun’s mass is 1.99× 1033 g.
(d) Three principal layers make up the Sun’s atmosphere. They are the photo-

sphere, chromosphere, and corona.
(i) The photosphere is the layer from which the Sun’s visible light emanates.

It has a temperature of about 6000 K.
(ii) The chromosphere is a layer some ten to fifteen thousand kilometers thick.

It separates the relatively cool photosphere from the far hotter corona.
(iii) The corona, whose temperature is ∼1.5 × 106 K, extends from 1.03R�,

or about 20,000 km above the photosphere, out to at least several solar radii. Its
outer edge merges continuously into the solar wind — interplanetary gas, mainly
protons and electrons — that streams out from the Sun at speeds of several hundred
kilometers per second.

(e) Sunspots and sunspot groups, cool regions on the solar surface, move with
the Sun as it rotates, and allow us to determine a 27-day rotation period. This period
is only an apparent rotation rate as viewed from the Earth which itself orbits the
Sun. The actual rotation period with respect to the fixed stars is only about 25 1

2
days at a latitude of 15 ◦ and varies slightly with latitude; the solar surface does not
rotate as a solid shell. The Sun exhibits an 11 year solar cycle during which the
number of sunspots increases to a maximum and then declines to a minimum. There
are special ways of counting sunspots, and a continuous record is kept through the
collaborative effort of observatories. At maximum the sunspot number can range to
150. At minimum it can be zero.

The 11 year cycle is actually only half of a longer 22 year cycle that takes into
account the polarity and arrangement of magnetic fields in sunspot pairs.

(f) A variety of different events can take place on the Sun. Each type has a name
of its own. One of the most interesting is a flare, a brief burst of light near a sunspot
group. Associated with the visible flare is the emission of solar cosmic-ray particles,
X-rays, ultraviolet radiation, and radio waves. Flares are also associated with the
emission of clouds of electrons and protons that greatly amplify the solar wind. After
a day or two, required for the Sun-to-Earth transit at a speed of ∼103 km s−1, these
particles can impinge on the Earth’s magnetosphere (magnetic field and ionosphere),
giving rise to magnetic storms and aurorae that corrugate the ionosphere, disrupting
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radio communication that depends on smooth ionospheric reflection, sometimes for
as long as a day.

A:3 The Solar System

A variety of different objects orbit the Sun. Together they make up the Solar System.
The Earth is representative of planetary objects. Planets are large bodies orbiting
the Sun. They are seen primarily by reflected sunlight. The majority emit hardly any
radiation themselves. In order of increasing distance from the Sun, the planets are
Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto. All the
planets orbit the Sun in one direction; this direction is called direct. Bodies moving
in the opposite direction are said to have retrograde orbits. Table 1.4 gives some
of the more important data about planets. It shows that the different planets are
characterized by a wide range of size, surface temperature and chemistry, magnetic
field strength, and other properties. One of the aims of astrophysics is to understand
such differences, perhaps in terms of the history of the Solar System.

Besides the nine planets we have listed, there are many more minor planets, or
asteroids, orbiting the Sun. Many of these travel along paths lying between the orbits
of Mars and Jupiter, a region known as the asteroidal belt. The largest asteroid is
Ceres. Its radius is 350 km. Its mass is about one ten-thousandth that of Earth.

Comets are objects that, on approaching the Sun from large distances, disinte-
grate through solar heating: gases that initially were in a frozen state are evaporated
off and dust grains originally held in place by these volatile substances are released.
The dust and gas, respectively, are seen in reflected and re-emitted sunlight. They
make the comet appear diffuse (Fig. A.1). Comet tails are produced when freshly
released dust and gas that becomes ionized are repelled from the Sun, respectively,
by the pressure of sunlight and by the solar wind. The Solar System may contain as
many as 1011 comets, most of them in a giant cloud stretching into interstellar space
but still gravitationally bound to the Sun. This Oort cloud is named after Jan Oort,
the Dutch astronomer who originally proposed its existence. Comets are named after
their discoverers. Many comets and asteroids have aphelion distances near Jupiter’s
orbit, and Jupiter has a controlling influence on the shape of the orbits and may have
“captured” comets from parabolic orbits into short-period orbits.

A number of objects collectively known as Centaurs are intermediate in diame-
ter between typical comets and small icy planets or planetary satellites. They have
short-period orbits intermingled with those of the outer planets. Their diameters are
estimated at 30 to 200 km and they appear to be drawn from the Kuiper belt, a re-
gion beyond the outer planets inhabited by perhaps a hundred thousand objects with
diameters greater than 100 km and orbits between 50 and 100 AU. Discovered as
the first of this group in 1992, is 1992QB1, with a diameter of 180 km and a sta-
ble, nearly circular orbit about the Sun, some 14 AU beyond Neptune. Pluto and its
companion Charon may have originated in the Kuiper Belt. More recently a number
of comets have also been discovered at Kuiper belt distances, and estimates sug-
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gest that the belt may contain several hundred million to a billion smaller cometary
bodies (St96).

Many of the smaller known asteroids, whose orbits lie mainly between Mars
and Jupiter, have diameters of the order of a kilometer. They number in the thou-
sands and there must be many more orbiting masses that are too small to have
been observed. Among these are bodies that might only be a few meters in di-
ameter or smaller. From time to time, some of these approach the Earth and
survive the journey through the atmosphere. Such an object that actually im-
pacts on the Earth’s surface is called a meteorite. Meteorites are studied with
great interest because they are a direct means of learning about the physical and
chemical history of at least a small class of extraterrestrial Solar System ob-
jects.

Even smaller than the meteorites are grains of dust that also circle the Sun along
orbits similar to those of planets. When a dust grain enters the atmosphere, much
of it may burn, through heat generated by friction and its high initial velocity. The
particle becomes luminous through combustion and can be observed as a meteor,
historically called a shooting star. The dust from a comet tail produces a meteor
shower when the Earth passes through the remnants of the tail.

In contrast to meteoritic material, meteoric matter does not generally reach the
Earth’s surface in recognizable form. However, some fragments do appear to sur-
vive and are believed to contribute to a shower of fine dust that continually rains
down on the Earth. Most of this dust has a micrometeoritic origin. Micrometeorites
are micrometer-sized grains of interplanetary origin. They have a large surface-to-
mass ratio and are easily slowed down in the upper atmosphere without becoming
excessively hot. Once they have lost speed they gradually drift down through the air.
Some of these grains may be formed in the burn-up of larger meteors; others may
come in unchanged from interplanetary space. Collections of these grains can be
made from the arctic snows or deep ocean sediments, far from sources of industrial
smoke.

The cloud of dust giving rise to most of these grains permeates the space be-
tween the planets. Some of the grains may be trapped, moving along Earth’s orbit
about the Sun. The dust reflects sunlight and gives rise to a glow known as the zodi-
acal light. The zodiacal light can be seen, on clear nights, as a tongue-shaped glow
jutting up over the western horizon after sunset or the eastern horizon before sun-
rise. The glow is concentrated about the ecliptic, the plane in which the Earth orbits
the Sun.

Direct measurements of the influx rate of micrometeoritic material have been
obtained from grain impact rates on the Long Duration Exposure Facility satellite
and amount to deposition, over the entire surface of Earth, of ∼100 tons of material
per day (Lo93). This mass is largely concentrated in particles ∼100µm in radius,
and is comparable to the amount of mass hitting Earth in rare catastrophic asteroidal
impacts occurring only once every few million years (Ce92). A very small fraction
of the micrometeoritic dust in the ∼1−40µm radius range appears to be impinging
on Earth from interstellar space. These grains could represent ejecta from supernova
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explosions transported through interstellar space at velocities of tens of kilometers
per second (Me02).

We recognize that these planetary and interplanetary objects continually inter-
act. Planets and their satellites have often collided with asteroids. The surfaces of
Mercury, the Moon, and asteroids, are pockmarked by impact craters. Earth too
shows vestiges of such bombardment; but our atmosphere erodes away and destroys
crater outlines in a time of the order of several million years, whereas on the Moon
erosion times are of the order of billions of years. A giant asteroid is believed to
have collided with the Earth about 4.5 billion years ago, tearing out a big chunk
that became the Moon. The impacts of other large asteroids may have led to great
climatic changes and the extinction of wide-ranging forms of life.

We should note that in talking about planets, meteorites, meteors, and micro-
meteoritic dust grains we are enumerating different-sized members of an otherwise
homogeneous group. The major difference between these objects is their size. Other
differences can be directly related to size. For example, it is clear that planets may
have atmospheres whereas micrometeorites do not. But this difference arises be-
cause only massive objects can retain a surrounding blanket of gas. The gravitational
attraction of small grains just is not strong enough to retain gases at temperatures en-
countered in interplanetary space. The different names given to these different-sized
objects have arisen because they were initially discovered by a variety of different
techniques; and although we have known the planets, meteorites, meteors, and other
interplanetary objects for a long time, we have just recently come to understand their
origin and interrelation.

A set of objects similar to the planets are the satellites or moons. A satellite orbits
its parent planet and these two objects together orbit the Sun. In physical makeup
and size, satellites are not markedly different from planets. The planet Mercury is
only four times as massive as our Moon. Ganymede, one of Jupiter’s satellites, Titan,
one of Saturn’s satellites, and Triton, one of Neptune’s satellites, all are nearly twice
as massive as the Moon. Titan even has an atmosphere. Many other satellites are less
massive; they look very much like asteroids. An extreme of the moon phenomenon
is provided by the rings of Saturn, Jupiter, and Uranus, consisting of clouds of fine
dust — micrometeoritic grains, all orbiting the parent planet like minute interacting
moons.

Evidently there are great physical similarities between satellites and planetary
objects of comparable size. The main difference lies in the orbital motion of the two
classes of objects. Some asteroids may have been gravitationally captured by Jupiter
and become Jovian satellites.

A:4 Extrasolar Planetary Systems

Our Solar system is not unique. More than a hundred planets are known, by now, to
orbit nearby stars. Many stars are also known to be orbited by disks that can have
dust densities thousands of times greater than our zodiacal cloud. It is from these
disks that planets are believed to form. The extrasolar planets and planetary systems



638 Appendix A

are of great interest for determining how common planetary systems are, how they
form, how they evolve, and how varied they may be.

A:5 Stars and Brown Dwarfs

The somewhat vague distinction between planets and interplanetary objects is not
unique. Differences between stars and planets are also somewhat vague. We talk
about binaries in which two stars orbit about a common center of gravity. Often one
of these is much less massive than the other, sometimes no more than one thousandth
the mass of the dominant partner. This is similar to the ratio of Jupiter’s mass to that
of the Sun.

Stars and planets, however, do differ from each other. Stars are bodies suffi-
ciently massive to generate high temperatures and pressures in their interior where
nuclear reactions can convert hydrogen into helium. Intermediate between giant
planets, such as Jupiter, and stars somewhat less massive than the Sun are brown
dwarfs which, though not sufficiently massive to convert hydrogen into helium can,
for a short period, release energy through the thermonuclear burning of deuterium,
7Li, and 3He, before settling down and radiating slowly through gravitational con-
traction. The dividing line below which conversion of hydrogen into helium is not
possible lies at masses of 0.08M�. This distinction in mass separates brown dwarfs
from stars. The dividing line between planets and brown dwarfs lies at roughly
0.0075M� ∼ 75MJ , where MJ is the mass of Jupiter. Below this mass, the hy-
drostatic pressure at a body’s center is insufficient to overcome the Coulomb repul-
sion that normally prevent solids from being compressed. Planet-sized bodies are
not sufficiently massive to overcome Coulomb forces. Brown dwarfs do overcome
these forces but are kept from indefinite collapse by electron degeneracy pressures
discussed in Chapter 8 (Ku97a).

A:6 Stellar Systems and Galaxies

Before we turn to a description of individual stars, we should first consider the
groupings in which stars occur.

Stars are often assembled in a number of characteristic configurations, and we
classify these systems primarily according to their size and appearance. Many stars
are single. Others have no more than one companion; such pairs are called binaries.
There exist many ternaries consisting of three stars; and higher multiple systems are
not uncommon. About 30% of all stars are multiple systems. For stars more massive
than the Sun, these fractions are considerably higher.

Depending on their separation and orientation, binary stars can be classified
as visual, spectroscopic, or eclipsing. The limit of visual resolution of a binary is
given by available optical techniques. Refinements are continually being made, and
interferometric techniques now allow us to resolve stars only milliarcseconds apart.
For smaller separations, we cannot use interferometric techniques. The two stars in
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Fig. A.1. (a) The Andromeda Nebula, NGC 224, Messier 31, a spiral with two smaller com-
panion galaxies, one of which, the elliptical galaxy NGC 205, is shown enlarged (d). The
barred spiral galaxy (b) is NGC 1300. Its spiral classification is SBb. These three pictures
were photographed at the Mount Wilson Observatory. The globular cluster (c) is Messier 3
(M3), also known as NGC 5272. The comet (e) is comet Brooks: the photograph was taken
on October 21, 1911. Only the region of the comet around the head is shown. Such heads,
called comas, typically have diameters of ∼104 − 105 km. The portion of M31 apparent in
(a) stretches ∼15 kpc along its major axis. Photographs (c) and (e) were taken at the Lick
Observatory.
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such a close pair constitute a spectroscopic binary and have to be resolved indirectly
by means of their differing spectra. We sometimes encounter a special but very
important type of spectroscopic binary in which the stars orbit about each other
roughly in a plane that contains the observer’s line of sight. One star may then
be seen eclipsing the other and a change in brightness is observed. An eclipse of
this kind becomes probable only when the two companions are very close together,
no more than a few radii apart. We call such systems eclipsing binaries. Binaries
are important because they provide the only means for determining accurate mass
values for stars (other than the Sun). How these masses are determined is shown in
the discussion of orbital motions (Section 3:5).

Close binaries are also important because if one of the two stars begins to expand
as it moves onto the red-giant branch of the Hertzsprung–Russell diagram (see Sec-
tion A:7(g) and Figs. 1.4 and 1.7), its surface material may become more strongly
attracted and flow over to the companion star. Portions of the giant star previously
in its interior are thus revealed. This allows us to check for systematic production of
the heavy elements in the star and also to test the theory of chemical evolution and
energy production in stars (Section 8:12). If the companion to the giant is compact,
the infalling material can radiate X-rays on impact (see Section 5:19).

Sometimes stars form an aggregate of half a dozen or a dozen members. This
is called a stellar group. Stellar associations are larger groupings of some 30 stars
mutually receding from one another. Associations appear to have had a common
origin and to have become separated shortly after formation. By observing the size
of an association and the rate at which it is expanding, we can determine how long
ago the expansion started and how old the stars must be.

Two principal groupings are called clusters: galactic clusters and globular clus-
ters. Galactic clusters usually comprise 50 to several hundred stars loosely and
amorphously distributed but moving with a common velocity through the surround-
ing field of stars. Globular clusters (Fig. A.1(c)) are much larger, contain several
hundred thousand stars, and have a striking spherical (globular) appearance. Stars
in a cluster appear to have had a common origin and common history. Binaries and
higher multiples and groups of stars often form small subsystems in clusters.

Normally stars and clusters are members of galaxies. These are more or less
well-defined, characteristically shaped systems containing between 108 and 1012

stars (Fig. A.1(a,b,d)). Some galaxies appear elongated and are called elliptical or
E galaxies. Highly elongated ellipticals are designated E7. If no elongation can be
detected and the galaxy has a circular appearance, it is called a globular galaxy
and is classified as E0. Other numerals, between 0 and 7, indicate increasing appar-
ent elongation. The observed elongation need not correspond directly to the actual
elongation of the galaxy because the observer on Earth can only see the galaxy in
projection.

Elliptical galaxies show no particular structure except that they are brightest in
the center and appear fainter at the periphery. Spiral galaxies (S) and barred spiral
galaxies (SB) exhibit a spiral structure denoted by a symbol O, a, b, or c following
the spiral designation to indicate increasing openness of the spiral arms. In this
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notation, a compact spiral is designated SO and a barred spiral with far-flung spiral
arms and quite open structure is designated SBc (see Figs. A.1(a,b,d))

Not all galaxies can be described by designations, E, S, or SB. Some are classi-
fied as irregular and designated by the symbol Ir. Peculiar galaxies of one kind or
another are denoted by a letter p following the type designation, for example, E5p.

Galaxies do not contain stars alone. In some spiral galaxies the total mass of
interstellar gas and dust is comparable to the total stellar mass observed. Gas may
be detected in absorption or through emission of radiation. Through spectroscopic
studies in the radio, infrared, visible, ultraviolet, and X-ray domains, the spectra of
many ions, atoms, and molecules can be identified, and their temperature, density,
and radial velocity determined. Dust clouds can be detected through their extinc-
tion, which obscures the view of more distant stars. Dust also absorbs optical and
ultraviolet radiation and re-emits at long infrared wavelengths. This process is so
effective that some galaxies radiate far more strongly in the infrared than in all other
spectral ranges combined.

The major fraction of a galaxy’s mass is normally concentrated in dark matter, a
mysterious form of matter that makes itself known solely through the gravitational
attraction it exerts (see Section 1:12).

Galaxies are not the largest aggregates in the Universe. Galaxies often occur in
pairs and groups. Figures A.1(a) and 1.11 show such groupings. The Sun is one
of billions of stars in the Milky Way, often referred to as the Galaxy, spelled with a
capital “G”. The Galaxy is a member of the Local Group that contains more than two
dozen galaxies of which the Andromeda Nebula and the Galaxy are the dominant
members accounting for most of the mass (Table 1.5).

Larger clusters of galaxies containing up to several thousand galaxies also ex-
ist. Groupings on a larger scale include filamentary structures composed of tenuous
chains of galaxies, enormous voids surrounded by denser concentrations — walls of
galaxies and possibly superclusters — entire groupings of clusters of galaxies. Be-
yond that scale, no further clustering is apparent. On the largest scales, the Universe
can best be described as consisting of randomly grouped aggregates and voids (see
Figs. 1.11, 1.12, and 13.6).

The scheme of classification of galaxies leaves a number of borderline cases
in doubt. Small E0 galaxies are not appreciably different from the largest globular
clusters. Merging galaxies sometimes cannot be distinguished from irregular ones;
and the distinction between a group or a cluster of galaxies may also be a matter of
taste. The classification is useful nevertheless; it gives handy names to frequently
found objects without making any attempt to provide rigorous distinctions.

Crossing the vast spaces between the galaxies are quanta of electromagnetic
radiation and highly energetic cosmic-ray particles that travel at almost the speed of
light. These are the carriers of information that permit us to detect the existence of
the distant objects.

On a photographic plate or charge-coupled device, CCD, we expect images of
nearby galaxies to appear larger than more distant objects. On this assumption, the
angular diameter of a galaxy can be taken to be a rough indicator of its distance.
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When the spectra of such galaxies are correlated with their assumed relative dis-
tances, we find that a few nearby galaxies have blue-shifted spectra, but all dis-
tant galaxies have spectra that are systematically shifted toward the red part of the
spectrum. Galaxies at progressively larger apparent distances exhibit increasing red
shifts. This correlation is so well established that we now take an observation of
a remote galaxy’s red shift as a standard indicator of its distance, and attribute the
red shift to a high recession velocity. The galaxies appear to be flying apart. The
Universe expands!

A:7 Brightness of Stars

(a) The Magnitude Scale

A casual look at the sky reveals that some stars appear brighter than others. The
eye can clearly distinguish the brightness of two objects only if one of them is
approximately 2.5 times as bright as the other. The factor of 2.5 can therefore serve
as a rough indicator of apparent brightness, or apparent visual magnitude mυ of
stars. This has established the magnitude scale.

Stars of first magnitude, mυ = 1, are brighter by a factor of ∼2.5 than stars
of second magnitude, mυ = 2, and so on. The visual magnitude scale extends into
the region of negative values; but the Sun, Moon, Mercury, Venus, Mars, Jupiter,
occasional bright comets, and the three stars, Sirius, Canopus, and α Centauri are
the only objects bright enough to have apparent visual magnitudes less than zero.

Normally it would be cumbersome to use a factor of 2.5 in computing the relative
brightness of stars of different magnitudes. Since this factor has arisen not because
of some feature peculiar to the stars that we study, but is quite arbitrarily dependent
on a property of the eye, we are tempted to discard it altogether in favor of a purely
decimal system; but a brightness ratio of 10 is not useful for visual purposes. As a
result, a compromise that accommodates some of the advantages of each of these
systems is in use. We define a magnitude in such a way that stars whose brightness
differs by precisely five magnitudes have a brightness ratio of exactly 100. Because
1001/5 = 2.512, we still have reasonable agreement with what the eye sees, and for
computational work we can use standard logarithms to the base 10.

(b) Color

The observed brightness of a star depends on whether it is seen by eye, recorded
on a photographic plate, or detected by means of a radio telescope. For differ-
ent astronomical objects the spectral energy distribution, SED, the ratio of en-
ergy emitted, e.g., in the optical domain, the infrared, or radio regime, varies
widely. The color or SED of an object can be roughly described by observ-
ing it through a variety of filters or with different detectors in several differ-
ent spectral regions. The apparent magnitudes obtained in these measurements



A:7 Brightness of Stars 643

can then be compared. Several standard filters and instruments have been de-
veloped for this purpose so that we may compare and contrast data from ob-
servatories all over the world. The resulting brightness indicators are listed be-
low:

mυ denotes visual magnitude.mpg denotes photographic magnitude. Although
photographic plates have now been all but displaced by detector arrays, the need for
standardization to follow long-term trends has required the maintenance of tradi-
tional wavelength bands in modern photometry. A photographic plate is more sen-
sitive to blue light than the eye; photographic brightness is usually labeled B, for
blue. An older designation is mpg .

V or mpυ denotes photovisual magnitude obtained with a photographic plate
and a special filter used to pass yellow light and reject some of the blue light. Modern
usage generally refers to V as visual magnitude.

U denotes the ultraviolet magnitude obtained with a particular ultraviolet trans-
mitting filter.

I denotes infrared magnitude obtained in the photographic part of the infrared.
At longer wavelengths photographic plates are no longer sensitive, but a number of
infrared spectral magnitudes have been defined so that results obtained with indium
antimonide, mercury cadmium telluride, and other infrared detectors might be com-
pared by different observers. These magnitudes are labeled J , K, L, M , N , and
Q.

Table A.1 lists the wavelengths at which these magnitudes are determined.

Table A.1. Effective Wavelength for Standard Brightness Measurements.

Effective Effective
Symbol Wavelength Symbol Wavelength

U 0.36µm K 2.2 µm
B 0.44 L 3.4
V 0.55 M 5.0
R 0.70 N 10.2
I 0.90 Q 21
J 1.25

1µm (pronounced micron or micrometer) = 10−6 m = 10−4 cm = 104 Å (Ångstrøms).

mbol denotes the total apparent magnitude of an object integrated over all wave-
lengths. This bolometric magnitude is the brightness that would be measured by a
bolometer — a detector equally sensitive to energy radiated at any wavelength.

(c) Color Index

The difference in brightness as measured with different filters gives an indication
of a star’s color. The ratio of blue to yellow light received from a star is given by
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the difference in magnitude — log2·5 of the brightness ratio — of the star measured
with blue and visual filters. This quantity is known as the color index:

C = B − V.

Differences such as U–B are also referred to as color indexes.
The comparison of colors involved in producing a reliable color index can only

be achieved if we can standardize detectors and filters used in the measurements.
And even then errors can creep into the comparison. For this reason some standard
stars have been selected to define a point where the color index is zero. These stars
are denoted by the spectral-type symbol A0 (see Section A:8).

(d) Bolometric Correction

Normally the bolometric brightness of a star can only be obtained by means of ob-
servations spanning the entire spectrum. The bolometric correction, BC, is defined
as the difference between the bolometric and visual magnitudes of a star. The bolo-
metric correction is always positive

BC = mυ −mbol .

(e) Absolute Magnitude

For many purposes we need to know the absolute magnitude rather than the apparent
brightness of a star. We define the absolute magnitude of a star as the apparent
magnitude we would measure if the star were placed a distance of 10 pc from an
observer. (1 pc = 3 × 1018 cm. See Section 2:2.)

Suppose the distance of a star is r pc. Its brightness diminishes as the square
of the distance between star and observer. The apparent magnitude of the star will
therefore be greater, by an additive term log2·5 r2/r20, than its absolute magnitude.

m = M + log2·5
r2

r20
= M + 5 log

r

r0
,

where the logarithm is taken to the base 10 when no subscript appears. Because
r0 = 10 pc, we have the further relation for the distance modulus, µ0,

µ0 ≡ m−M = 5 log r − 5. (A–1)

Thus far no attention has been paid to the extinction of light by interstellar dust.
The apparent magnitude is increased through extinction — the star appears fainter
— and a positive factorA has to be subtracted from the right side of equation (A–1)
to restore M to its proper value

M = m+ 5 − 5 log r −A. (A–2)
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Obtaining the star’s distance, r, is often less difficult than assessing the interstel-
lar extinctionA. We discuss this difficulty in Section A:8(a) below.

The detector and filter used in obtaining the apparent magnitude m in equation
(A–2) determines the value of the absolute magnitude M . We can therefore use
subscripts, υ, pg, pυ, and bol for absolute magnitudes in exactly the same way as
for apparent magnitudes.

(f) Luminosity

Once we have obtained the bolometric absolute magnitude of a star, we can obtain
the rate at which it radiates energy, i.e., its luminosity, L, directly in terms of the
solar luminosity,L�:

log
(
L

L�

)
=

1
2.5
[
Mbol� −Mbol

]
. (A–3)

The luminosity of the Sun, L�, is 3.85 × 1033 erg sec−1 and the solar bolometric
magnitude,Mbol�, is 4.6. The luminosity of stars varies widely. For a brief interval
of a few days, a supernova explosion can be as luminous as all the stars in a galaxy.
The brightest stable stars are a million times more luminous than the Sun. At the
other extreme, a white dwarf may be a factor of a thousand times fainter than the
Sun; and brown dwarfs, stars with masses ranging down to ∼M�/60, may have
luminosities 10−7L� ∼< L ∼< 10−4L� as they settle down to contract and slowly
radiate away gravitational potential energy, over billions of years (Ku97a).

(g) Hertzsprung–Russell and Color-Magnitude Diagrams

One of the most useful diagrams in all astronomy is the Hertzsprung–Russell,
H–R diagram (Figs, 1.4 to 1.6). It presents a plot of luminosity and temperature
for detected stars. A related set of diagrams the color-magnitude diagrams (Figs.
1.3 and 1.7) plots the magnitudes of stars against color index. The ordinate on such
a plot can show eitherMυ , orMbol, or luminosity. When only a comparison of stars
all of which are known to be equally distant is needed, it suffices to plot the appar-
ent magnitude. Figure A.2 shows a color-magnitude diagram for the Pleiades star
cluster. The Pleiades are among the most recently born Galactic stars. Figure 1.7
plots the characteristics of M3, an old Galactic globular cluster. The age difference
is reflected in the appearance of the two diagrams.

These figures all show that stars appear only in select areas of the H–R and color-
magnitude diagrams. The largest number of stars cluster about a fairly straight band
called the main sequence. This is particularly clear for the Pleiades cluster. The
main sequence runs from the upper left to the lower right end of the diagram, or
from bright blue down to faint red stars. To the right and above the main sequence
(Fig. 1.4) lie bright red stars along a track called the red-giant branch. There is
also a horizontal branch that joins the far end of the red-giant branch to the main
sequence. These two branches show up particularly in Fig. 1.7. In the horizontal
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Fig. A.2. Color-magnitude diagram of the Pleiades cluster stars, after correction for interstel-
lar extinction effects. The Pleiades cluster contains some of the most recently formed stars in
the Galaxy (after Mitchell and Johnson (Mi57b)).

branch, we find stars whose brightness varies periodically. Finally, some faint white
dwarf stars lie below and to the left of the main sequence. The rest of the diagram
is usually empty.

A:8 Classification of Stars

(a) Classification System

The classification of stars is a complex task, primarily because we find many spe-
cial cases hard to fit into a clean pattern. Currently a “two-dimensional” scheme
is widely accepted. One of these “dimensions” is a star’s spectrum; the other is its
luminosity. Each star is assigned a two-parameter classification code. Although the
object of this section is to describe this code, we should note that the ultimate basis
of the classification scheme is an extensive collection of spectra such as those shown
in Fig. A.3. Each spectrum is representative of a particular type of star.

Stars are classified primarily according to their spectra, which are related to their
color. Although the primary recognition marks are spectral, the sequence of the clas-
sification is largely in terms of decreasing stellar surface temperature — that is, a
shift in the star’s radiation to longer wavelengths. The bluest common stars are la-
beled O, and increasingly red stars are classed according to the sequence (Table A.2)
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Table A.2. Spectral Classification of Stars.a

Type Main Characteristics Subtypes Spectral Criteria Typical Stars

Q Nova: sudden bright- T Pyx
ness increase by 10 Q Cyg
to 12 magnitudes

P Planetary nebula: NGC 6720
hot star with NGC 6853
intensely ionized
gas envelope

W Wolf–Rayet stars: Broad emission of OIII to OVI, NIII to HD 191765
hot stars NV, CII to CIV, and HeI and HeII.

O Hot stars, OII λ 4650 dominates BD +35◦4013
continuum strong
in UV

HeII λ 4686 dominates
Lines narrower

}
emission
lines

BD +35◦4001

BD +36◦3987
(O5 to O9) Absorption lines dominate; only

HeII, CII in emission ζ Pup, λ Cep
SiIV λ4089 at maximum 29 CMa
OII λ 4649, HeII λ 4686 strong τ CMa

B Neutral helium B0 CIII/4650at maximum ε Ori
dominates B1 HeI λ 4472 > OII λ 4649 β CMa, β Cen

B2 HeI lines are maximum δ Ori, α Lup
B3 HeII lines are disappearing π4 Ori, α Pav
B5 Si λ 4128 > He λ 4121 19 Tau, φ Vel
B8 λ 4472 = Mg λ 4481 β Per, δ Gru
B9 HeI λ 4026 just visible λ Aql, λ Cen

A Hydrogen lines A0 Balmer lines at maximum α CMa
decreasing from A2 CaII K = 0.4 Hδ S CMa, ı Cen
maximum at A0 A3 K = 0.8 Hδ α PsA, τ3 Eri

A5 K > Hδ β Tri, α Pic
F Metallic lines F0 K = H + Hδ δ Gem, α Car

becoming F2 G band becoming noticeable π Sgr
noticeable F5 G band becoming continuous α CMi, ρ Pup

F8 Balmer lines slightly stronger β Vir, α For
than in Sun

G Solar-type G0 Ca λ 4227 = Hδ α Aur, β Hya
spectra G5 Fe λ4325 > Hγ on small-scale plates κ Gem, α Ret

K Metallic lines K0 H and K at maximum strength α Boo, α Phe
dominate K2 Continuum becoming weak in blue β Cnc, ν Lib

K5 G band no longer continuous α Tau
M TiO bands TiO bands noticeable α Ori, α Hya

Bands conspicuous ρ Per, γ Cru
Spectrum fluted by the strong bands W Cyg, RX Aqr
Mira variables, Hγ, Hδ χ Cyg, o Cet

R, N CN, CO, C2 bands CN, CO, C2 bands appear instead of TiO.
R stars show pronounced H and K lines.

S ZrO bands ZrO bands R Gem

a Compiled mainly from Keenan in Stars and Stellar Systems, K.A. Strand (ed.), with permission from the University
of Chicago Press (Ke63) (based on Cannon and Pickering (Ca24)) and also from Allen (A
55). This table, which is
based on the Henry Draper classification scheme, is a rough guide to the spectral features of stars. The classification of
stars, however, remains an ongoing process and changes occur. (With the permission of Athlone Press of the University
of London, 2nd ed. c© C. W. Allen, 1955 and 1963, and with the permission of the University of Chicago Press.)
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Fig. A.3. Schematic diagram of spectra of typical stars representing different spectral types.
The number of stars brighter than the eighth magnitude in each class is listed on the right,
next to the star’s spectral type. (With the permission of the Yerkes Observatory, University of
Chicago.)
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Over 99% of all stars belong to the basic series O, B, A, F, G, K, and M. Stars with
designation R, N, and S are comparatively rare. The classes R and N denote stars
containing unusually strong molecular bands of diatomic carbon, C2, and cyanogen,
CN. S stars are characterized by bands of titanium oxide, TiO, and zirconium oxide,
ZrO. Spectral type Q denotes novae — stars that suddenly brighten by many orders
of magnitude becoming far brighter than any nonvariable star. P denotes planetary
nebulae, hot stars with surrounding envelopes of intensely ionized gas. W refers to
Wolf–Rayet stars, intensely hot stars that exhibit broad emission bands of ionized
carbon, nitrogen, and helium. These stars appear to consist of a nuclear-processed
interior exposed by extreme surface mass loss.
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Stars classed as W, O, B are sometimes said to be early types, whereas stars of
class G, K, M, R, N, S are designated late types. Globular cluster stars, and stars
that make up the Galaxy’s spherical halo, are primarily late type stars often referred
to as Population II stars. Early type stars are designated Population I and are largely
found in the Galaxy’s disk — the Milky Way plane.

The transition from one spectral class to another proceeds in ten smaller steps.
Each spectral class is subdivided into ten subclasses denoted by Arabic numerals
after the letter. A5 lies intermediate between spectral types A0 and A9; and F0 is just
slightly redder than A9. A Roman numeral following the spectral type designation
indicates a star’s luminosity class. Each of these has a name:

I — Supergiant
II — Bright Giant

III — Normal Giant
IV — Subgiant
V — Main Sequence

The Sun has spectral type G2 V indicating that it is a yellow main sequence star.

Table A.3. Effective Stellar Temperatures.a

Main-Sequence
Subgiants Giants Supergiants

V IV III II Ib Ia

Types Te (◦ K)

O4 48670 48180 47690
O8 38450 37090 35730
B0 33340 31540 25700
B5 15400 14800 13100
A0 10000 9700 10200
A3 8500
F0 7200
F5 6700 6600 6500 6350 6200 . . . .
G0 6000 5720 5500 5350 5050 . . . .
G5 5520 5150 4800 4650 4500 . . . .
K0 5120 4750 4400 4350 4100 . . . .
K5 4350 . . . . 3700 3600 3500 . . . .
M0 3750 . . . . 3500 3400 3300 . . . .
M2 3350 . . . . 3100 2050 . . . . . . . .

a Adapted from Keenan (Ke63), Böhm-Vitense (Bö81), and Vacca et al. (Va96). See also text.

Sometimes we find classes I, II, and III collected under the heading “giant” while
stars of group V are called “dwarfs.” Letters “g” or “d” are placed in front of the
spectral class symbol to denote these types. Similarly placed letters “sd” and “w”,
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denote subdwarfs and white dwarf stars. Another classification feature concerns su-
pergiants, which are often separated into two luminosity classes Ia and Ib depending
on whether they are bright or faint.

A letter “e” following a spectral classification symbol denotes the presence of
emission lines in the star’s spectrum. There is one exception to this. The combination
Oe5 denotes O stars in the range O5 to O9; it has no further connection to emission.

A letter “p” following the spectral symbol denotes that the star has some form
of peculiarity.

The color designation (stellar spectral type) given here is nearly linear in the
color index B–V . It is not however linear in U–V nor do the U–V values decrease
monotonically with increasingly late spectral type. Small differences in color in-
dexes exist for giants and main sequence stars of the same spectral type. This unfor-
tunate difficulty has arisen for historical reasons.

We might still see how well stellar colors approach those of a blackbody. The
closeness of fit is shown in Fig. A.4, called a color-color diagram. Four factors are
responsible for the rather large deviations from a blackbody. (i) For stars around
spectral type A, where the fit to the blackbody spectrum is poorest, absorption by
hydrogen atoms in their first excited states produces a deviation. We talk about
the Balmer jump in connection with the sharp rise in absorption at wavelengths
corresponding to the Balmer continuum produced by these excited atoms in the
outer atmosphere of a star. (ii) Cool stars have H− ions in the outer atmospheres.
These ions absorb radiation selectively, making the star appear bluer. (iii) The rel-
atively high abundance of metals in Population I stars produces a number of ab-
sorption lines that change the color of a star, moving it toward the lower right
of Fig. A.4. (iv) Finally, no star looks completely black, because its outer layers
are not equally opaque at all wavelengths. Light at different wavelengths therefore
reaches us from different depths within the star, and these levels are at different
temperatures. The resulting spectrum of starlight therefore corresponds to a mixture
of temperatures, rather than to blackbody radiation at one well-defined tempera-
ture.

Determination of the spectral type of a star by means of its color index alone
would be very difficult, because proper account would have to be taken of the
changes in color produced by interstellar dust. Small dust grains tend to absorb
and scatter blue light more strongly than red. Light from a distant star therefore ap-
pears much redder than when emitted. To discover the true color index of the star
a correction has to be introduced for interstellar reddening. However, in order to
make this correction, we have to know how much interstellar dust lies along the line
of sight to the star, and to what extent a given quantity of dust changes the color
balance. None of this information is normally available. Instead, we have to make
use of a circular line of reasoning. We know that nearby stars of any given spec-
tral type exhibit characteristic absorption or emission lines in their spectra. Since
these stars are near, there is little intervening interstellar dust, and their spectra
can be taken to be unreddened. We can therefore draw up tables listing the spec-
tral lines featuring each color class. A distant star can then be classed in terms
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Fig. A.4. The relation between the color systems U–B and B–V for unreddened main-
sequence stars (dots) and little-reddened supergiants and yellow giants (crossed dots). The
line along which blackbody radiators would fall is also shown (after Johnson and Morgan
(Jo53)).

of its spectral lines rather than its color index and the color index can be used to
verify the class assignment. If the color is redder than expected, we have an indi-
cation of reddening by interstellar dust. Whether dust is actually present can then
be checked — in many instances — by seeing whether other stars in the immedi-
ate neighborhood of the given object all are reddened by about the same amount.
If they are, we have completed the analysis. The results give the correct spectral
identification of stars in the chosen region and, in addition, we are given the ex-
tent to which interstellar dust changes the color index. A similar analysis can also
be applied to determine the extent to which the overall brightness of the star is
diminished through extinction by interstellar dust. This analysis allows us to deter-
mine the amount of obscuration in all the spectral ranges for which observations
exist.

As already stated, the color and spectrum of a star depend on its surface temper-
ature. Table A.3 gives the effective temperature for representative stars and Figure
A.5 relates stellar temperatures to color. As discussed in Chapter 4, the effective
temperature is measured in terms of the radiant power emitted by the star over unit
surface area. By analyzing the spectra of stars we can obtain their speed of rotation
from the broadening of stellar spectral lines. If the axis of rotation of a star is in-
clined at an angle i relative to the line of sight we obtain a measure of υe sin i, where
υe is the equatorial velocity of the star. Only those stars whose spin axes are perpen-
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Fig. A.5. Effective temperatures and colors for all stars separated by luminosity class. For
clarity, temperatures of giants, subgiants, and main-sequence stars are lowered by 0.3 in
log Teff with respect to the next more luminous class. The lines are shown to help guide
the eye along the steep portions of the curve (after Flower (F�96)).

dicular to the line of sight exhibit the full Doppler broadening due to the rotation of
the star; but by analyzing the distribution of line widths, we can statistically deter-
mine both the rotational velocity and the distribution function of the angle i (Hu65).
As far as we can tell, rotation axes of stars are randomly oriented with respect to the
Galaxy’s rotation axis. Table A.4 gives some typical values of υe for different types
of stars.



A:8 Classification of Stars 653

Table A.4. Stellar Rotation for Stars of Luminosity Classes V, III, and I (after Cox, Co00).

Mean υe (km s−1)

Spectral Type V III I

O8 200 125
B0 170 100 102
B5 240 130 40

A0 180 100 40
A5 170 38
F0 100 30

F5 30 < 25
G0 10 30 < 25
K, M < 10 < 20 < 25

(b) Variable Stars

Two main types of variable stars can be listed. Extrinsic variables can be: (i) close
binary stars whose combined brightness varies because one star eclipses the other; or
(ii) stars that are eclipsed by, or periodically illuminate, ambient ejecta or remnants.
T Tauri variables, named after the star in which this second type of behavior was
first noted, are young stars orbited by dust clouds from which they were formed.

Intrinsic variables are stars whose luminosity actually changes with time. The
brightness variations may be repetitive as for periodic variables, erratic as for ir-
regular variables, or semiregular. The distinction is not always clear-cut. A brief
summary of some characteristics of periodic or pulsating variables is given in Table
A.5. The brighter of these stars are important in the construction of a reliable cosmic
distance scale.

Other types of intrinsic variables include exploding stars such as novae, recur-
rent novae, supernovae, dwarf novae, and shell stars.

The brightness of a nova rises 10 to 12 magnitudes in a few hours. The return
to the star’s previous low brightness may take no more than a few months, or it
may take a century. Both extremes have been observed. The absolute photographic
brightness at maximum is about −7.

Recurrent novae brighten by about 7.5 magnitudes at periods of several decades.
Their peak brightness is about the same as that of ordinary novae. The brightness
decline usually takes 10 to 100 days but sometimes lies outside this range.

Supernovae are about ten magnitudes brighter than novae. Their luminosities
may rival that of their parent galaxies. Two major types have been recognized.
Supernovae of type II exhibit spectral lines of hydrogen in their optical spectra,
whereas supernovae of type I do not. SNe I occur in all galaxies, where they have the
spatial distribution of older stars; typically their absolute magnitudes areMυ = −16
at maximum. SNe II occur only in the arms of spiral galaxies, are associated with
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Table A.5. Properties of Pulsating Variables.

Type
Range of
Period, P

(days)

Spectral
Type

Mean Brightness
Mυ and

Variation ∆Mυ

Remarks

RR Lyrae <1 A4 to F4 Mυ = 0.6 Found in
(Cluster Variables) ∆Mυ ∼ 1.0 the halo of

the Galaxy
Classical Cepheids 1–50 F to K Mυ = −2.6 to −5.3 Found in the

Mυ , ∆Mυ depend on P disk of the
∆MV ∼ 0.4 to 1.4 Galaxy

W Virginis Stars >10 F, G Mυ = one or two mag. Halo
(Type II Cepheids) less luminous than population

Class. Ceph. of similar
period. ∆Mυ = 1.2

Mira Stars 100–1000 Red giant Mυ ∼ from −2.2 to 0, Intermediate
(Long Period ∆Mυ = from 3 to 5 for between disk
Variables) increasing period and halo

Semiregular 40–150 Red giant Mυ = 0 to −1 Disk
Variables ∆Mυ ∼ 1.6 population

populations of young stars, and have Mυ = −14 at maximum. The two types of
supernovae can be subdivided into several subtypes, but roughly 80% of SNe I are
of a type designated as SN Ia, whose light curves are all remarkably similar. This
makes them useful distance indicators.

On exploding, a supernova can thrust many solar masses of matter into inter-
stellar space at initial speeds of tens of thousands of kilometers per second. Often
these gaseous shells persist as supernova remnants for several thousand years. On
photographic plates they appear as filamentary arcs surrounding the point of initial
explosion.

Dwarf novae brighten by about four magnitudes to a maximum absolute bright-
ness ofMυ+4 to +6. Their spectral type normally is A. Their outbursts are repeated
every few weeks.

Shell stars are B stars having bright spectral lines. The stars seem to shed shells.
A rise in brightness of one magnitude can occur.

Flare stars sporadically brighten by ∼1 magnitude over intervals measured in
tens of minutes. They then relapse. These stars are yellow or red dwarfs of low
luminosity. The flares may well be similar to those seen on the Sun, except that they
occur on a larger scale. In extreme cases the star brightens a hundredfold.

R Coronae Borealis stars are stars that suddenly dim by as much as eight mag-
nitudes and then within weeks return to their initial brightness. At maximum the
spectrum is of class R, rich in carbon.
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The variable stars are not very common, but they are interesting for two rea-
sons. First, some of the variable stars have a well-established brightness pattern that
allows us to use them as distance indicators (see Chapter 2). Second, the intrinsic
variables show symptoms of unstable conditions inside a star or on its surface. In
that sense the variable stars provide important clues to the structure of stars and to
the energy balance or imbalance at different stages of stellar evolution.

Novae, T Tauris, and some stars at the extreme end of the giant branch, the
Asymptotic giant branch stars, AGB, are found to be strong emitters of infrared
radiation. The novae and AGB stars eject material that forms dust on receding from
the parent star, while T Tauris are largely embedded in the dust clouds from which
they formed. Some of the evolved, dust-shrouded giant stars also emit extremely
narrow, luminous, and highly polarized spectral lines in water vapor, OH, and SiO
radio transitions, making them recognizable as cosmic masers (See Section 7:11).

Table A.6. Stellar Velocities Relative to the Sun, and Mean Height Above Galactic Plane.a

Objects
Velocityb, υ

km s−1
Density, ρ

10−3M� pc−3
Height, h

pc

Interstellar clouds
Large clouds 8
Small clouds 25

Early main sequence stars:
O5–B5
B8–B9

10
12

}
0.9

50
60

A0–A9 15 1 115
F0–F5 20 3 190

Late main sequence stars:
F5–G0 23
G0–K6
K8–M5

25
32

12
30

}
350

Red-giant stars:
K0–K9 21 0.1 270
M0–M9 23 0.01

High-velocity stars:
RR Lyrae variables 120 10−5

Subdwarfs 150 1.5
Globular clusters 120–180 10−3

a Stellar velocities collected by Spitzer and Schwarzschild from other sources (Sp51a). Den-
sities ρ, and heights h, after (A�64). (With the permission of the Athlone Press of the Univer-
sity of London, 2nd ed. c© C.W. Allen 1955 and 1964.)
b Root mean square value for component of velocity projected onto the Galactic plane.
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A:9 The Distribution of Stars in Space and Velocity

We judge the radial velocities of stars by their spectral line shifts. Transverse ve-
locities can be obtained for nearby stars from their proper motion — their angular
velocity across the sky — and from their distance, if known. We find that stars of
different spectral type have quite different motions. Stars in the Galactic plane have
low relative velocities, while stars that comprise the Galactic halo have large veloc-
ities relative to the Sun. In practice there is no clear-cut discontinuity between these
populations. This is rather well illustrated by the continuous variation in velocities
given in Table A.6. A star’s velocity is correlated with its mean height above the
Galactic plane. By noting the distribution of stars in the solar neighborhood, we at
least obtain some idea about how many stars of a given kind have been formed in
the Galaxy. If we can compute the life span of a star, as outlined in Chapter 8, then
we can also judge the rate at which stars are born. For short-lived stars such birth

10 5 1 0.5 0.1 0.05

1

10

100

1000

Mass (solar mass)

Fig. A.6. The mass functions of the young open clusters M35 and the Pleiades. This plot
indicates the rates at which stars of different masses are born in the Galaxy today. From such
a plot we can obtain the Salpeter birth rate function ψ giving the rate of star formation in unit
volume of the Galaxy (see Section 8:2). The values of α shown are for a birth rate ψ ∝ M−α,
and show that a single value of α ∼ +2.6 fits stars with masses ∼>0.8M�, but that inclusion
of the birth rates of low-mass stars requires a more complex relation (Ba01).
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rates represent current formation rates; and we can look for observational evidence
to corroborate estimates of longevity once the spatial number density of a given type
of star has been established (Fig. A.6).

Such studies are still in relatively preliminary stages, because we are not quite
sure what the appearance of a star should be at birth, particularly if it is still sur-
rounded by some of the dust from which it has been formed (Section 1:4).

As we look to increasing distances across the Universe and are able to detect
galaxies at large red shifts, their colors and luminosities begin to tell us the numbers
of stars that are shining there and the lengths of their life spans. From such surveys
we are beginning to trace the star formation rates in the Universe from early times
to the present. Figure A.7 provides an estimate for these rates. It shows that current

Fig. A.7. The cosmic star formation rate at different red shifts as determined by means of a
number of complementing observations. The rate of star formation per year is plotted per unit
red-shift interval ∆z = 1 in terms of solar masses formed per comoving cubic megaparsec
per year. The notation on the ordinate, h = 0.71, indicates that the formation rates assume a
Hubble constant of 71 km s−1 Mpc−1 (He04a). Courtesy of Alan Heavens.

star formation rates may be roughly a factor of ten lower than at their peak when the
Universe had attained only one-third its present age.
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A:10 Pulsars and X-Ray Sources

(a) Pulsars

Isolated pulsars are radio sources that emit pulsed radiation with clocklike regu-
larity. Pulsars are identified primarily in the radio wavelength region. The central
star in the Crab Nebula or the powerful gamma-ray emitter Geminga, both of which
emit visible light as well as gamma rays, are notable exceptions. Where pulsars are
companions to giant stars, whose atmosphere they are tidally stripping away, they
can also be strong intermittent X-ray sources. For isolated pulsars the regularity of
the pulses is constant to about one part in 108 per year. Pulses are typically spaced
anywhere between a few milliseconds and a few seconds apart.

The coherence and pulse rates tell us that these sources are small compared to
normal stars. Pulsars are neutron stars, whose cores consist of closely packed, de-
generate neutrons. In such a star, more than a solar mass is packed into a volume
about 10 km in diameter. A pulsar’s rotation period is given by the interval between
the main pulses. The radiation is emitted in a direction tangential to the charged par-
ticles moving with the rotating star and, hence, there is a loss of angular momentum
and a corresponding slowdown of the star’s rotation and of the pulse rate (Go68).
Pulsars also are sources of highly relativistic particles and thus contributors to the
Galactic cosmic-ray component.

A small number of pulsars are associated with known supernova remnants. One
such remnant is in the constellation Vela. Another is the Crab Nebula, remnant of a
supernova seen in 1054 AD. It was identified as the stellar remnant of the supernova,
more than 25 years before the pulsar’s discovery. The Crab pulsar now pulses every
33 ms. Using its present slowdown rate, we can make a rough linear extrapolation
of the pulsar’s period backward in time and see that this is indeed a remnant of the
object that exploded in 1054 AD. Slowly pulsating pulsars are thought to be old.

Within the past three decades a class of binary pulsars has been discovered —
two compact sources orbiting each other. Many are neutron-star / neutron-star bina-
ries. The constancy of their periods can be better than one part in 1010 per year. The
most rapidly spinning pulsar in any kind of binary rotates with a period of 1.4 ms
(He06).

Many hundreds of pulsars are by now known. They are concentrated toward the
plane of the Galaxy (see Fig. 6.6).

(b) X-Ray Stars

The most readily observed X-ray sources are Galactic. Figure A.8 shows a clustering
of the sources about the Galactic plane. These sources are associated with stars and
fall into several groups.

(i) The Crab pulsar emits extremely regular X-ray pulses at its 33 millisecond
radio pulsation rate. Other pulsars also emit a regular stream of pulses, but this is
somewhat of an exception among stellar X-ray sources.
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(ii) Many other X-ray sources are associated with neutron stars (Pa96). Matter
tidally stripped from a companion star crashes onto the neutron star surface releasing
energy re-emitted as X-rays. X-rays are similarly released when tidally captured
matter impinges onto an accretion disk orbiting a black hole, a star in an ultimate
state of collapse (Section 8:16). Matter composing the accretion disk is prevented
by an excess of angular momentum from falling into the black hole. As it sheds the
angular momentum, it gradually spirals inward and disappears in the black hole.

(iii) As the sensitivity of X-ray instrumentation has improved many classes of
ordinary stars have also been detected.

Millions of extragalactic sources also emit X-rays.

A:11 Quasars and Active Galactic Nuclei, AGNs

The central elliptical galaxy in massive clusters is often embedded in a halo of hot,
X-ray emitting gas — possibly ejecta propelled out of the galaxy by powerful su-
pernova explosions. Many quasars, radio galaxies, and galaxies with active galactic
nuclei, AGNs also are powerful X-ray sources. The term “quasar” and “QSO” — for
“quasi-stellar object” — are often used interchangeably.

Quasars have many features in common with some types of radio galaxies; in
particular, their visible spectra bear a strong resemblance to spectra of the nuclei
of Seyfert galaxies, spiral galaxies with compact nuclei that emit strongly in the
infrared and exhibit highly broadened emission lines from ionized gases. In both
the quasars and Seyfert nuclei, we find highly ionized gases with spectra indicat-
ing temperatures of the order of 105 to 106 K and number densities ∼106 cm−3.
The conditions resemble those found in the solar corona. In the quasars and Seyfert
nuclei the spectra of these gases show velocity differences of the order of 1000 or
2000 km s−1, indicating either: (a) that gases are being shot out of these objects at
high velocity; (b) that they are falling in at high speed; (c) that there is fast rotation;
or (d) that there is a great deal of turbulent motion present. Most likely, a combina-
tion of two or three factors is involved.

The quasars and active nuclei of Seyfert galaxies sometimes show brightness
variations on a time scale of hours. These highly luminous nuclei are, therefore,
believed to either radiate into narrowly collimated beams emanating from rotating
sources, or to be less than a few light-hours or days ∼1014 to 1016 cm in diameter.
This argument assumes that the brightness changes are coherent. It would be inval-
idated if the variations were due to independent outbursts in different portions of a
rather larger source.

Quasars have spectra that are highly red-shifted, indicating that they are at ex-
treme distances and hence must be extremely luminous to appear as bright as they
do. Only extreme infrared galaxies, whose peak emission occurs at wavelengths
of ∼100µm, are comparably luminous. Some quasars have luminosities exceed-
ing 1046 erg s−1 — a hundred times higher than the Galaxy. Since these objects
are compact, their surface brightness must be some ten orders of magnitude greater
than that of normal galaxies. Extremely high X-ray luminosity also characterizes
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many quasars and active galactic nuclei. Many quasars, AGNs, and blazars are also
gamma-ray sources. Blazars resemble quasars in most respects, except that their
spectra are largely featureless.

A:12 Gamma-Ray Bursts

Gamma-ray bursts are short outbursts of gamma rays, in the energy range from
50 keV to 1 MeV, generally lasting from a fraction of a second to one hundred sec-
onds. In other energy ranges the bursts have sometimes been observed to last longer.
An outburst that occurred on February 17, 1994, was observed to emit gamma ra-
diation at an energy of 30 GeV, for about an hour and a half. An outburst on May
8, 1997, was observed to brighten at optical wavelengths over the following two
days, before fading over the following three or four days (Dj97). It lies far out in the
Universe, beyond a red shift z = 0.835 (Me97a).

The more than one thousand bursts observed to date, appear to arrive from ran-
dom directions in the sky (Fig. A.9). The most distant gamma-ray burst discovered

Fig. A.9. Distribution on the sky of the 3096 gamma-ray bursts (GRBs) registered by the
Burst and Transient Source Experiment (BATSE) on board the Compton Gamma-Ray Obser-
vatory, CGRO (St01).

to date, GRB 050904, was observed on September 4, 2005 to erupt in a galaxy at red
shift z = 6.295 (Ka06). Powerful gamma-ray bursts thus appear to be observable
out to the most distant galaxy observed so far or the most distant quasar, respec-
tively, at z = 6.578 and z = 6.42 (Ra06). The energy of a burst appears to be
beamed into a relatively narrow solid angle. Bursts lasting longer than 2 s are now
known to arrive from remote galaxies and appear to originate in extremely powerful
supernova explosions. Short bursts sometimes lasting only a tenth of a second are
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also observed in distant galaxies, and believed to be emitted in the final merger of
two compact stars, a neutron star binary or a neutron-star/black-hole binary, as the
stars coalesce as a single black hole (see Section 8:18).

A small handful of GRBs are repeating bursters identified with neutron stars
associated with supernova remnants. The first to be discovered lies in the Large
Magellanic Cloud, only 50 kpc distant. The others have been identified with Galactic
supernova remnants. Their luminosity is far lower than that of ordinary GRBs.

Table A.7. Energy and Number Densities of Photons and Cosmic Rays.

Cosmic-Ray
Particles

Visible
Light

Microwave
Background

Energy density in Galaxy
(ergs cm−3) 10−12 ∼ 2 × 10−13 ∼ 5× 10−13

Extragalactic energy density
(ergs cm−3) ? ∼ 2 × 10−14 ∼ 5× 10−13

Number density in Galaxy
(cm−3) ∼ 10−9 ∼ 10−1 ∼ 103

Extragalactic number density
(cm−3) ? ∼ 10−2 ∼ 103

A:13 Photons and Cosmic-Ray Particles

The Earth, the Solar System, and the Galaxy are all bathed in streams of photons
and highly relativistic particles. Within the Galaxy photon densities are higher than
outside since starlight and infrared emission make a strong local contribution. Out-
side the Galaxy, there is a ubiquitous microwave component that fills the Universe
with the spectrum of a blackbody at 2.73 K (Fi96).

Cosmic-ray particles, highly energetic electrons and nucleons, constitute a denser
energy bath in the Earth’s vicinity than starlight and microwave photons combined.
We do not know how the particles are distributed in extragalactic space, but be-
lieve that lower-energy cosmic rays are trapped in the Galaxy’s magnetic field, and
are locally generated in supernova explosions. The highest-energy cosmic rays with
energies of ∼3 × 1020 eV cannot be constrained by the Galaxy’s magnetic field,
and most probably are generated in violent explosions in distant quasars or active
galaxies.

Table A.7 shows the energy densities of some of these components. X-rays and
gamma rays, highly energetic photons, have far smaller energy densities than visible
and microwave radiation (see also Fig. A.10).
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Fig. A.10. The spectrum of the diffuse cosmic background. The microwave background
(CMB), infrared background (CIB), optical background (COB), and X-ray background
(CXB) are indicated. At highest frequencies, there is also a diffuse gamma-ray background.
At intervening frequencies the background has not yet been measured, largely because fore-
ground sources have hindered detection. The CMB is a relic of the primordial hot universe.
The infrared background is largely due to absorption and re-emission by dust grains heated by
visible light from stars or higher-frequency radiation and cosmic rays. The X-ray background
is mainly contributed by active galactic nuclei (AGN). Spectral frequencies are expressed in
powers of 10. Courtesy of Günther Hasinger (Ha00).

A:14 Background Radiation

The view of the distant Cosmos is marred by several diffuse sources of foreground
radiation. The Earth’s atmosphere emits faintly even at visual wavelengths. In the
far-infrared it emits a bright thermal glow and is totally opaque at many wave-
lengths. X-rays and gamma rays are also largely absorbed. Launching telescopes
above the atmosphere helps, but zodiacal dust grains scatter and absorb sunlight,
re-emitting energy at infrared wavelengths, providing a foreground glow through
which more distant sources must be viewed. Even if we were to launch spacecraft
entirely out of the Solar System we would still have a near-infrared foreground glow
from the Galaxy’s billions of red stars; heated dust clouds emit strongly in the mid-
and far-infrared; and the Galactic plane is aglow with diffuse radio, X-ray, and γ-
radiation.

To reveal the faint isotropic glow from distant portions of the Universe, we must
first come to understand all these nearby sources of diffuse radiation, so we can
compensate for them. This has been an arduous task. We have not yet succeeded at
all frequencies, but what we do know is gathered in Figure A.10.



B Astrophysical Constants

B:1 Physical Constants

Speed of light c = 2.998× 1010 cm s−1

Planck constant h = 6.626× 10−27 erg s
Gravitational constant G = 6.674× 10−8 cm3 g−1 s−2

Electron charge e = 4.803× 10−10 esu
Mass of electron me = 9.1094× 10−28 g
Mass of proton mP = 1.6726× 10−24 g
Mass of hydrogen atom mH = 1.6735× 10−24 g
Mass of neutron mN = 1.6749× 10−24 g
Atomic mass unit amu = (1/12) m12C = 1.6605× 10−24 g
Avogadro’s number 6.0221× 1023

Boltzmann constant k = 1.3807× 10−16 erg K−1

Thomson scattering cross-section σe = 6.652× 10−25 cm2

Radiation density constant a = 7.566× 10−15 erg cm−3 K−4

Stefan–Boltzmann constant σ = 5.670× 10−5 erg cm−2 K−4 s−1

Rydberg constant R∞ = 2.1799× 10−11 erg
Fine structure constant α = 7.29735× 10−3

B:2 Astronomical Constants

Year 3.156× 107 s
Astronomical unit, AU 1.49598× 1013 cm
Parsec, pc 3.086× 1018 cm

3.262 light years
Solar mass, M� 1.989× 1033 g
Solar radius, R� 6.957× 1010 cm
Solar luminosity, L� 3.845× 1033 erg s−1

Luminosity of star with Mbol = 0 2.97× 1035 erg s−1

Cosmic microwave background temperature 2.725 K
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B:3 Units

Æon 109 yr ≡ 1 Gyr
Ångstrøm unit, Å 10−8 cm
Atmosphere, atm 1.013× 106 dyn cm−2 = 760 torr
Calorie 4.184× 107 erg
Electron Volt, eV 1.602× 10−12 erg
Hertz, Hz 1 s−1

Jansky, Jy 10−26 W m−2 Hz−1

Megahertz, MHz 106 Hz
Micron, µm 10−6 m = 10−4 cm
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(Ne97) R. Neuhäuser, “Low-Mass Pre-Main Sequence Stars & Their X-ray Emis-
sion,” Science, 276, 1363 (1997).

(Ne02) V. V. Nesvizhevsky, et al., “Quantum states of neutrons in the Earth’s gravi-
tational field,” Nature, 415, 297 (2002).

(Ni05) D. J. Nice, et al. “A 2.1M� Pulsar Measured by Relativistic Orbital Decay,”
ApJ 634, 1242 (2005).

(Ni95) M. M. Nieto, et al., “Theoretical Motivation for Gravitation Experiments
on Ultra-Low Energy Antiprotons & Antihydrogen,” Third Biennial Conference on
Low-Energy Antiproton Physics, LEAP’94G. Kernel, P. Krizan & M. Mikuz (Eds.),
World Scientific, Singapore (1995), p. 606.

(Ni96) P. D. Nicholson, et al., “Observations of Saturn’s Ring-Plane Crossings in
August and November 1995,” Science, 272, 509 (1996).

(Ni05) F. Nicastro, et al., “The mass of the missing baryons in the X-ray forest of
the warm-hot intergalactic medium,” Nature, 433, 495 (2005).

(No96) K. Nordtvedt, “From Newton’s Moon to Einstein’s Moon,” Physics Today,
49/5, 26 (1996).

(No97) D. Normile, “New Experiments Step up Hunt for Neutrino Mass,” Science,
276, 1795 (1997).

(Nu84) H. Nussbaumer & W. Schmutz, “The hydrogenic 2s → 1s two photon emis-
sion,”A + A, 138, 495 (1984).

(Ny28) H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys.
Rev., 32, 110 (1928).

(Od65) M. Oda, et al., “Angular Sizes of the X-ray Sources in Scorpio and Sagittar-
ius,” Nature, 205, 554 (1965).



686 References

(O’H98) T. O’Halloran, P. Sokolsky & S. Yoshida, “The Highest -Energy Cosmic
Rays,” Physics Today, 51/1 31 (1998).

(Oi97) M. Oishi, “Molecules in Astrophysics: Probes and Processes”, IAU Sympo-
sium 178 E. F. Van Dieshoeck (Ed.), Kluwer, Dordrecht (1997), p.61.

(O�03) C. M. Oliveira, et al., “Interstellar Deuterium, Nitrogen, and Oxygen Abun-
dances toward GD 246, WD 2331-475, HZ 21, and Lanning 23: Results from the
FUSE Mission,” ApJ, 587, 235 (2003).

(Oo27a) J. H. Oort, “Observational Evidence Confirming Lindblad’s Hypothesis of
a Rotation of the Galactic System,” B.A.N., 3, 275 (1927).

(Oo27b) J. H. Oort, “Investigations Concerning the Rotational Motion of the Galac-
tic System, Together with New Determinations of Secular Parallaxes, Precession
and Motion of the Equinox,” B.A.N., 4, 79 (1927).

(Oo65) J. H. Oort, “Stellar Dynamics” in Galactic Structure, A. Blaauw & M.
Schmidt (Eds.), University of Chicago Press, Chicago (1965), p. 455.

(Op39a) J. R. Oppenheimer & G.M. Volkoff, “On Massive Neutron Cores,” Phys.
Rev., 55, 374 (1939).

(Op39b) J. R. Openheimer & H. Snyder, “On Continued Gravitational Contraction,”
Phys. Rev., 56, 455 (1939).

(Op61a) A. I. Oparin, Life, Its Nature, Origin and Development, Academic Press,
New York (1961).

(Op61b) A. I. Oparin & V. G. Fessenkov, Life in the Universe, Foreign Languages
Publishing House, Moscow; also Twayne and Co., New York (1961).

(Pa57) E. N. Parker, “Sweet’s Mechanism for Merging Magnetic Fields in Conduct-
ing Fluids,” Journal of Geophysical Research, 62, 509 (1957).

(Pa68) F. Pacini, “Rotating Neutron Stars, Pulsars and Supernova Remnants,” Na-
ture, 219, 145 (1968).

(Pa96) D. Page & A. Sarmiento, “Surface Temperature of a Magnetized Neutron
Star and Interpretation of the ROSAT Data. II.,” ApJ, 473, 1067 (1996).

(Pa01) V. Pankonin, E. Churchwell, C. Watson, & J.H. Bieging, “A Methyl Cyanide
Search for the Earliest Stages of Massive Protostars,” ApJ, 558, 194 (2001).

(Pa03) L. Page, et al., “First-Year Wilkinson Microwave Anisotropy Probe (WMAP)
Observations: Interpretation of the TT and TE Angular Power Spectrum Peaks,”
ApJS 148, 233 (2003).

(Pe64) P. C. Peters, “Gravitational Radiation and the Motion of Two Point Masses,”
Phys. Rev., 136, B1224 (1964).

(Pe65) A. A. Penzias & R.W. Wilson, “A Measurement of Excess Antenna Temper-
ature at 4080 Mc/s,” ApJ, 142, 420 (1965).

(Pe85) R. C. Peterson, “Radial Velocities of Remote Globular Clusters: Stalking the
Missing Mass,” ApJ, 297, 309 (1985).

(Pe93) P. J. E. Peebles, Principles of Physical Cosmology, Princeton University
Press, Princeton, NJ (1993).



References 687

(Pe95) M. A. C. Perryman, et al., “ Parallaxes and the Hertzsprung-Russell diagram
from the preliminary Hipparcos solution H30,” A + A, 304, 69 (1995).

(Pe98) K. Peach, “Time’s Broken Arrow,” Nature, 396, 407.

(Pe98a) M. A. C. Perryman, et al., “The Hyades: distance, structure, dynamics and
age,” A + A, 331, 81 (1998).

(Pe98b) S. Perlmutter, et al., “Discovery of a supernova explosion at half the age of
the Universe,” Nature, 391, 51 (1998).

(Pe01) M. Pettini & D. V. Bowen, “A New Measurement of the Primordial Abun-
dance of Deuterium toward Convergence with the Baryon Density from the Cosmic
Microwave Background,” ApJ, 560, 41 (2001).

(Pe05) S. Perlmutter, private communication, August 27, 2005.

(Pi54) F. A. E. Pirani, “On the Influence of the Expansion of Space on the Gravi-
tational Field Surrounding an Isolated Body,”Proceedings of the Cambridge Philo-
sophical Society, 50, 637 (1954).

(Pi66) G. C. Pimentel, et al.,“Exotic Biochemistries in Exobiology” in Biology and
the Exploration of Mars, C. S. Pittendrigh, W. Vishniac, & J. P. Pearman (Eds.), Nat.
Acad. Sci., NRC, Washington (1966).

(Po74) A. M. Polyakov, “Particle Spectrum in Quantum Field Theory,” JETP Lett.,
20, 194 (1974).

(Pr61) I. Prigogine, “Thermodynamics of Irreversible Processes,” John Wiley, New
York (1961).

(Pr74) W. H. Press & P. Schechter, “Formation of Galaxies and Clusters of Galaxies
by Self-Similar Gravitational Condensation,” ApJ, 187, 425 (1974).

(Pr95) J. D. Prestage, R. L. Tjoelker & L. Maleki, “Atomic Clocks and Variations
of the Fine Structure Constant,” Phys. Rev. Lett., 74, 3511 (1995).

(Pr04) A. Prestwich, personal communication September 2004.

(Pu79) E. M. Purcell, “Suprathermal Rotation of Interstellar Grains,” ApJ, 231), 404
(1979).

(Qu03) H. R. Quinn, “The Asymmetry Between Matter and Antimatter,” Physics
Today, 56/2, 30 (2003).

(Ra71) D. M. Rank, C. H. Townes & W. J. Welch, “Interstellar Molecules and Dense
Clouds,” Science, 174, 1083 (1971).

(Ra95) R. S. Raghavan, “Solar Neutrinos — From Puzzle to Paradox,” Science, 267,
45 (1995).

(Ra99) L. Randall & R. Sundrum, “ An Alternative to Compactification,” Phys. Rev.
Lett., 83, 4690 (1999).

(Ra05) S. Rainville, et al., “A direct test of E = mc2,” Science, 438, 1096 (2005).

(Ra06) E. Ramirez-Ruiz, “Ancient blast comes to light,” Nature, 440, 154 (2006).

(Re64) S. Refsdal, “The Gravitational Lense Effect,” MNRAS, 128, 295 (1964).



688 References

(Re64a) S. Refsdal, “On the Possibility of Determining Hubble’s Parameter and the
Masses of Galaxies from the Gravitational Lens Effect,” MNRAS, 128, 307 (1964).

(Re67) M. J. Rees, “Studies in Radio Source Structure I. A Relativistically Expand-
ing Model for Variable Quasi-Stellar Radio Sources,” MNRAS, 135, 345 (1967).

(Re68a) M. J. Rees & D.W. Sciama, “Large-Scale Density Inhomogeneities in the
Universe,” Nature, 217, 511 (1968).

(Re68b) M. J. Rees, “Proton Synchrotron Emission from Compact Radio Sources,”
Astrophys. Lett., 2, 1 (1968).

(Re68c) M. J. Rees & W. L. W. Sargent, “Composition and Origin of Cosmic Rays,”
Nature, 219, 1005 (1968).

(Re71) M. J. Rees, “New Interpretation of Extragalactic Radio Sources,” Nature,
229, 312 (1971).

(Re87) N. Reid, “The stellar mass function at low luminosities,” MNRAS, 225, 873
(1987).

(Re88) A. Renzini & F. F. Pecci, “Tests of Evolutionary Sequences using Color-
Magnitude Diagrams of Globular Clusters, Annual Reviews of Astronomy and As-
trophysics 26, 199 (1988).

(Re97) D. Reimers, et al., “Patchy intergalactic He II absorption in HE 2347-4342,”
A & A, 327, 890 (1997).

(Re04) Reid, M. J. & Brunthaler, A. “ The Proper Motion of Sagittarius A*. II. The
mass of Sagittarius A*,” ApJ, 616, 872 (2004).

(Ri56) W. Rindler, “Visual Horizons in World Models,” MNRAS, 116, 662 (1956).

(Ri95) A. G. Riess, W. H. Press, & R. P. Kirshner, “Determining the Motion of the
Local Group Using Type Ia Supernovae Light Curve Shapes,” ApJ, 445, L91 (1995).

(Ri99) C. Ritossa, E. Garcı́a-Berro & I. Iben, Jr., “On the Evolution of Stars that
Form Electron-Degenerate Cores Processed by Carbon-Burning. V. Shell Convec-
tion Sustained by Helium Burning, Transient Neon Burning, Dredge-out, URCA
cooling, and other properties of an 11M� Population I Model Star,” ApJ, 515, 381
(1999).

(Ri01) A. G. Riess, et al., “The Farthest Known Supernova: Support for an Accel-
erating Universe and a Glimpse of the Epoch of Deceleration,” ApJ, 560, 49 (2001).

(Ri04) Riess, A. G., et al., “Type Ia Supernova Discoveries at z > 1 From the
Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark
Energy Evolution,” ApJ, 607, 665 (2004).

(Ro33) H. P. Robertson, “Relativistic Cosmology,” Rev. Mod. Phys., 5, 62 (1933).

(Ro55) H. P. Robertson, “The Theoretical Aspects of the Nebular Red Shift,” PASP,
67, 82 (1955).

(Ro64) P. G. Roll, R. Krotkov, & R. H. Dicke, “The Equivalence of Inertial and
Passive Gravitational Mass,” Annals of Physics (USA), 26, 442 (1964).

(Ro65) F. Rosebury, “Handbook of Electron Tube and Vacuum Techniques,”
Addison-Wesley, Reading, MA (1965).



References 689

(Ro68) H. P. Robertson & T. W. Noonan, Relativity and Cosmology, Sanders,
(1968).

(Ro01) F. Robert, “The Origin of Water on Earth,” Science, 293, 1056 (2001).

(Ru71) M. Ruderman, “Solid Stars,” Scientific American, February (1971), p. 29.

(Ry71) G. R. Rybicki & A. P. Lightman, “Radiative Processes in Astrophysics,”
John Wiley & Sons, New York (1971).

(Ry96) S. G. Ryan, J. E. Norris, & T. C. Beers, “Extremely Metal-Poor Stars. II.
Elemental Abundances and the Early Chemical Enrichment of the Galaxy,” ApJ,
471 254 (1996).

(Sa52) E. E. Salpeter, “Nuclear Reactions in Stars Without Hydrogen,” ApJ, 115,
326 (1952).

(Sa55) E. E. Salpeter, “The Luminosity Function and Stellar Evolution,” ApJ, 121,
161 (1955).

(Sa55a) E. E. Salpeter, “Nuclear Reactions in Stars II. Protons on Light Nuclei,”
Phys. Rev., 97, 1237 (1955).

(Sa57) A. Sandage, “Observational Approach to Evolution–II.A Computed Lumi-
nosity Function for K0-K2 Stars from Mv = +5 to Mv = −4.5,” ApJ, 125, 435
(1957).

(Sa58) A. Sandage, “Current Problems in the Extragalactic Distance Scale,” ApJ,
127, 513 (1958).

(Sa66) A. R. Sandage, et al., “On the Optical Identification of Sco X-1,” ApJ, 146,
316 (1966).

(Sa67) E. E. Salpeter, “Stellar Structure Leading up to White Dwarfs and Neutron
Stars” in “Relativity Theory and Stellar Structure,” Chapter 3 in Lectures in Applied
Mathematics, Vol. 10., American Mathematical Society (1967).

(Sa67a) R. K. Sachs & A. M. Wolfe, “Perturbations of a Cosmological Model and
Angular Variations of the Microwave Background,” ApJ, 147, 73 (1967).

(Sa68) D. H. Sadler, “Astronomical Measures of Time,” Quarterly Journal, Roy.
Astron. Soc., 9, 281 (1968).

(Sa70a) E. E. Salpeter, “Solid State Astrophysics,” in Methods and Problems of
Theoretical Physics J.E. Bowcock, Ed., North-Holland, Amsterdam (1970).

(Sa70b) C. Sagan, “Life,” in Encyclopedia Britannica (1970).

(Sa97) R. W. Sayer, D. J. Nice, & J. H. Taylor, “The Greenbank Northern Sky Sur-
vey for Fast Pulsars,” ApJ, 474, 426 (1997).

(Sa97a) M. Samland, G. Hensler, & Ch. Theis, “Modeling the Evolution of Disk
Galaxies. I. The Chemodynamical Method and the Galaxy Model,” ApJ, 476, 544
(1997).
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pulsar, 232
quasar 0957+561, 190
stars, orbits, 78

Biological systems
thermodynamics, 617

Biotic matter, laboratory syntheses, 626
Birkhoff, George D., 1884–1944, 573
Birkhoff’s theorem, 443, 573, 577
Bit rate, 629
BL Lacertae objects, see also Blazars, 381
Black holes, 8, 24, 42, 181, 187, 199, 358,

365, 660
electrically charged, 195
Kerr, 195
Kerr–Newman, 195
primordial, 437
Reissner– Nordström, 195
Schwarzschild, 195
spinning, 195
supermassive, 78, 607, 608
thermodynamics, 199, 200

Blackbody, 650
Blackbody radiation, 201, 296

spectrum, 131, 379
Blanketing effect, 393
Blast waves, 404
Blazars, see also BL Lacertae objects, 257,

381, 661
Bode’s law, 32
Bode, Johann Elert, 1747–1826, 32
Bohr

atom, 330
magneton, 274
radius, 268

Bolometric correction, BC, 644
Bolometric magnitude, mbol, 643
Boltzmann

constant, k, 119, 665
equation, 136
factor, 122, 145

Boltzmann, Ludwig, 1844–1906, 125
Bondi, Hermann, 505
Bonnor–Ebert spheres, 432
Bose–Einstein statistics, 126, 143, 339
Bosons, 126, 143
Bound–bound transitions, 301, 303
Bound–free
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absorption, 303
interactions, 301

Bow shocks, 402
Brackett spectrum, 271, 393
Bradley, James, 1693–1762, 170
Brahe, Tycho 1546–1601, 67
Branching ratio, 514
Branes, 517
Bremsstrahlung, 180, 411, 435, 599
Bright giants, 649
Brightness, see also Specific intensity, 307
Brightness temperature Tb , 134
Broad emission line regions, BLR, 608
Brown dwarfs, 341, 634, 638
Bulge of a galaxy, 608

C-field, 505
C-shocks, 403
Calorie, 666
Canonical momentum, 99
Carbon dioxide, CO2, 418
Carbon monoxide, CO, see also CO

molecules, 418
Carbon stars, 415
Carbon, photoionization, 455
Carbon–oxygen core, 21
Carbonaceous chondrites, 25, 463, 613, 620
Carrier waves, 218
Casimir effect, 131
Cataclysmic variables, 610
Cavendish, Henry, 1731–1810, 77
Cavendish experiment, 79
Celestial mechanics, 31
Centaurs, 635
Center of charge, 227
Center of mass, 72
Central force, 71
Centrifugal force, 76, 80, 95
Cepheid variables, 21, 56, 368

classical, 654
Ceres, 635
Chandrasekhar limit, 354
Charge conjugation, 516
Charge density, ρ, 206
Charge exchange, 423, 564
Charge-coupled device, CCD, 641
Charge-to-mass ratio, 230
Charged particles, 205
Chemical

bonds, 323
elements

abundance, 25
light, 547

fractionation, 270
Chemistry, primitive Earth, 44
Cherenkov effect, 255
Chondrites, 462

elemental abundances, 464
Chondrules, 34, 462, 463
Chromosphere, 634
Circular polarization, 217

spectral components, 276
Civilizations, extrasolar, 45
Class 0 objects, 16
Class I objects, 18
Class II objects, 18
Class III objects, 18
Clock hypothesis, 186
Clock rates, 186
Close binary stars, 653
Clusters, see also Galactic clusters; Clusters

of galaxies, 640
Clusters of galaxies, 583, 641
CMBR, see also Cosmic microwave

background radiation, 120, 584
CNO bi-cycle, 342
CNO cycle, 342, 601
CO, interstellar

cooling, 597
emission, 280, 383

COBE, see also Cosmic Background
Explorer, 526

Coefficient of variation, 110
Cold dark matter, CDM, 438
Cold interstellar molecular cloud spectra,

417
Collapsars, 365, 404
Collision frequency, νc, 238
Collision, restituting, 123
Collisional

broadening, 287
de-excitation, 455
excitation, 452

Collisionless particle assembly, 136
Collisions and radiation, 452
Color, 642

index, C = B − V , 644, 650
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Color temperature, 132, 313
Color-color diagram, 650
Color-magnitude diagram, 12, 20, 315, 645
Column density, 308, 454
Comets, 34, 387, 438, 635

heads, 388
mother molecules, 34
tails, 278, 296, 388

Communication channels, 3, 50, 627
Comoving radius, 576
Compact dimensions, 518
Compact stars, 351
Composition of velocities, 164
Compton

effect, 250, 411, 412
scattering, 250, 253, 301, 599
wavelength, 252

Compton Gamma-Ray Observatory, CGRO,
661

Condensation
protosolar nebula, 458
sequence

pre-planetary, 465
temperatures

of compounds, 461
of elements, 461

Conductivity, σ, 209, 219
Conformal time, 488
Conic sections, 69, 70
Conservation

laws, 339
of baryons, 339
of leptons, 339
of mass–energy, 83
of particles/antiparticles, 339

Conservative systems, 98
Constants of Nature, 513
Continuity equation, 396, 565
Continuum radiation, 393
Convection, 21, 335
Convective transfer, 321, 333
Convective zones, 345
Cool stars, 277
Cooling

capacities of CO and H2O, 453
of contracting clouds, 457
of the Solar Nebula, 467
processes, 11

rates, 453, 455, 598
time, 457

Coordinate
comoving, 487
length, dr, 186
time, 186

Copernicus, Nicolaus, 1473–1543, 170
Corona, solar, 234, 634
Correspondence principle, 266
Cosmic

abundance, see also Abundances, 21
expansion, 501
gas and dust, see also Interstellar medium,

379
infrared background, 178
structure, hierarchical, 39
structure, origins, 555, 556
variance, 10, 585

Cosmic Background Explorer, COBE, 526
Cosmic microwave background radiation,

CMBR, 49, 120, 175, 179, 379, 512
angular power spectrum, 585
fluctuations, 591
inhomogeneities, 583
temperature, 665

Cosmic rays, 3, 50, 137, 173, 178, 211, 662
acceleration, 211, 214
air showers, 181, 404
electron spectrum, 414
elemental composition, 413
energy losses, 412
Fermi acceleration, 211
heating, 455
interstellar, 410
Li, Be, B, and 3He abundances, 413
primary, 180
proton and α-particle spectrum, 415

Cosmological
constant, Λ, 42, 494, 499, 536
principle, 480

perfect, 480
red shifts, 173

Coulomb
barrier, 336, 338
electrostatic forces, 150
interaction energy, 322

Coulomb’s law, 205
Crab Nebula, 6, 247, 385, 405, 658
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magnetic field, 405
pulsar, 260, 658

Critical density, ρcrit, 497
CRL 2688, 386
Cross product, see also Vector product, 71,

207
Cross-section, differential, 89
Curvature

density parameter, Ωk, 499
fluctuations, 559
of space, 483

Curvature-dominated universe, 580
Curve of growth, 305, 308
Cyanobacteria, 623
Cyclic coordinates, 99
Cyclotron frequency, see also Gyrofre-

quency, 208, 224, 365

D-condition, see also Shock fronts, 402
Dalton’s law, 119, 123
Dalton, John, 17661844, 119
Damped waves, 216
Damping constant γ, 305
Damping force, 288
Dark energy, 42, 51, 479, 500, 503, 505
Dark matter, 41, 51, 94, 114, 435, 571, 641

haloes, 594, 597
de Broglie wavelength, 241, 268
de Sitter universe, 501
de Sitter, Willem, 1872–1934, 501
Debris disks, 458
Debye shielding length, 154, 221
Decay products, radioactive, 33
Deceleration parameter, q, 489, 499
Decoupling era, 551, 561, 562, 568
Deflection of light, gravitational, 187
Degeneracy, 138, 141, 351
Degeneracy parameter, α, 138, 331
Degenerate

electrons, 352
gas, 128, 138
stars, 354
states, 145, 273

Degrees of freedom, 145
Density contrast, δρ/ρ, 558
Density parameter, Ω, 497, 499, 580
Deoxyribonucleic acid, DNA, 624
Detailed balancing, 124
Deuterated ammonia, 270

Deuterium, 638
abundance, 270, 546, 622

Deuterons, 270, 545
Diamagnetic medium, 215
Diatomic molecules, 145
Dicke experiment, 80
Dicke, R. H., 81
Dielectric

constant, ε, 206
complex, 239

displacement, D, 205
Differential

acceleration, 70
rotation, 87
scattering cross-section, 233

Dimensions, compact, 518
Dipole, 228

approximation, 292
moment, 228

Dirac monopoles, 215
Direct orbits, 635
Disks, galactic, 435, 649
Dispersing medium, 222
Dispersion measure, 223
Dispersion relation, 445, 470
Distance, 159, 488

angular–diameter relation, 485
comoving, 488
indicators, 59
modulus, 57, 644
number–count relation, 491
parameter χ, 488
red-shift relation, 58
velocity relation, 482

Distant encounters, 90
Distribution functions, 111
Distribution of stars in space, 656
Divergence operator, ∇·, 206
DNA, 624
Doppler

broadening, 286
effect, 173
peaks, 589
shift, 265, 386
velocities, 93, 385
width, 305

Draco, 37
Dredge-up, 21
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Dust, see also Dust grains, interstellar;
Interstellar medium, 10

Dust grains
interstellar

photoelectric heating, 423
around cool giant stars, 418
interstellar, 4, 10, 285

alignment, 425, 427
formation, 415
frozen gas mantles, 415
graphite, 415
heating and cooling, 424
radiation, 421
silicates, 415

radiative cooling, 11, 455, 597
suprathermal spin-up, 427

Dwarf novae, 653, 654
Dynamics, 67
Dynamo amplification of magnetic fields,

409

E chondrites, 463
e-process, 345, 349, 602, 610
Eötvös experiment, 80
Eötvös, Roland von, 80
Earth

atmosphere, 622
formation, 34
magnetosphere, 387, 634

Eccentricity, 69
Eclipsing binaries, 638, 640
Ecliptic plane, 31, 636
Eddington, Arthur Stanley, 1882–1944, 501
Eddington

limit, 8, 372
luminosity, 8
universe, 501

Effective potential, 193
Effective temperature, Te , 133, 313, 649
Effective wavelength, 643
Einstein, Albert, 1879–1955, 82
Einstein

coefficients, A(ν), B(ν), 298, 453, 454
rings, 189
static universe, 500, 502

Einstein–de Sitter universe, 504
Einstein–Fowler equation, 143
Electric

current, 209

charge, conservation, 266, 339
field, E, 205
quadrupole

moment, 230
radiation, 230
term, 230

Electromagnetic
flux density, 219
processes in space, 205
radiation, 3, 50, 146

spectrum, 48
waves, 217

Electron–positron
annihilation, 545
pair instability, 601
pairs, 178, 201

Electronic excitation, 145
Electrons, 81, 270, 339

charge, e, 665
mass, me, 665
radius, re , 252

Electron Volt, eV, 666
Electrostatics, 93
Ellipsoid, rotating, 232
Elliptical galaxies, 113, 640
Emission

coefficient, 306
line profiles, 288
measure, 242
of radiation, 265
of radiation by a plasma, 237

Endergonic reactions, 344
Energy, 170

density, 218
flux, 134

Energy-level diagram, 272, 274, 278
Enstatites, 463
Enthalpy, 399
Entropy, 147, 617

of a black hole, 200
Ephemeris, 85
Equation of state, 42, 118, 324, 353

cosmic, 499, 533
dark energy, 503

Equilibrium between CO and H2, 466
Equilibrium process, see also e-process, 349
Equipartition of energy, 92
Equipartition principle, 145
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Equivalence principle, 82
strong, 191

Equivalent width Wλ, 305
erf, see also Error function, 594
Error function, erf, 594
Error function integral, 142
Euclidean space, 160
Euclidean universe, see also Flat universe,

482
Eukarya, 625
Euler, Leonhard, 1707-1783, 396
Euler equation, 396, 444, 565
Even–even nuclei, 340
Event, 159, 191, 633
Event horizon, 172, 186, 507, 556
Exact differential, 144
Exergonic processes, 335, 340
Exoplanets, 619, 637
Extinction, 301

by interstellar grains, 236
Extragalactic

medium, 379, 388
objects, 249

Extrinsic variables, 653

False vacuum, 539
Faraday, Michael, 1791–1867, 209
Faraday rotation, 223
Faraday’s law, 210
Fermi

acceleration, 211
energy, EF , 138
function F (E), 139

Fermi–Dirac
assembly, 138
particles, 126
statistics, 138, 143

Fermions, 126, 138, 143, 339
and spin, 282

Field stars, 91
Field theories, local, 516
Filaments, 582, 592
Fine structure constant, α, 295, 665
Fine-structure

line cooling, 455
transitions, 452

Fireball, 404
First law of thermodynamics, 144
Fischer–Tropsch reaction, 466

Flare stars, 654
Flat universe, see also Euclidean universe,

482
Flatness problem, 527
FLRW models, see also Friedmann–

Lemaı̂tre–Robertson–Walker models,
533

Fluctuations, 143, 557
power spectrum of, 558

Flux, 124
Flux density, 61
Foci of an ellipse, 69
Forbidden transitions, 230, 303
Force-free magnetic fields, 211
Formation of condensations, 148
Fornax, 37
Forward shocks, 404
Four-momentum, 168
Four-space, 168
Four-vectors, 167
Fourier theory, 289
Fractal structure, 385
Fraunhofer

lines, 305
spectrum, 387

Free-fall
collapse, 443
time, 453, 457

Free–free absorption, emission, 301, 302,
599

Freely falling observers, 184, 191
Freeze-out density, 541
Frequency space, 127
Frequency, ν, 217
Friedmann, Alexander A., 1888–1925, 503
Friedmann universe, 503
Friedmann–Lemaı̂tre–Robertson–Walker

models, FLRW, 533
Friedmann–Robertson–Walker

metric, FRW, 487, 573
universe, FRW, 580

Frozen-in flow, 208
FRW models, see also FLRW models, 533
Fundamental

constants of Nature, 513
observers, 480, 507, 577
particles, 480

Galactic, see also Galaxy; Galaxies, 15
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Galactic
center, 78, 86
clusters, 13, 640
coordinates, 379
halo, 15, 656
halo stars, 190
magnetic field, 226
plane, 222, 425, 612, 656
radio spectrum, 248
rotation, 86
spiral arms, 222

Galaxies
clusters of, 39
dwarf spheroidal, 36
formation of, 38
haloes, 594
Local Group, 37
mergers, 609
sheets, 39, 592
spiral

rotation curves, 41
voids, 39
walls, 39, 592

Galaxies, see also Barred spiral g.; Elliptical
g.; Irregular g.; Spiral g., 640

Galaxy, 36, 137, 177, 213, 383, 641
bulge, 608
distribution of gas, 272
formation, 611
Local Bubble, 277
magnetic fields, 137, 405, 406, 411
mass, 86
scale height of stars, 436

Galilean relativity, 157
Galileo, 1564–1642, 67
γ-rays, 295, 415
(γ, N ) process, 340
Gamma function, 131, 142
Gamma rays, γ-rays, 177, 178, 256
Gamma-ray bursts, GRBs, 47, 202, 214,

250, 365, 661
afterglow, 405
distribution, 661

Gamma-ray sources, 661
Gamow, George, 504
Gas

dense shocks, 401
density, interstellar, 277

ionized, 391
isotropic, 116
rarefied shocks, 401

Gas constant, R, 118
Gas thermometer, 118
Gaunt factor, 303, 331
Gauss, Karl Friedrich, 1777–1855, 208
Gauss’s theorem, 206
Gauss, unit of flux density, G, 207
Gaussian fluctuations, 557, 584, 594
Gauss’s theorem, 218
General relativity, 42, 158
Generalized coordinates, 96
Generalized momentum conservation, 99
Genetic mutations, 623
Genome, 624
Geodesics, 192
Geometrized units, 194
Geometry, cosmic, 487, 512
Giants, 649
Gibbs free energy, 460
Gibbs, J. Willard, 1839–1903, 460
Globular clusters, 14, 39, 56, 91, 640, 655

chemical abundances, 28
M3, 20
stars, 355, 649

Gold, Thomas, 505
Grains, see also Dust, 427
Gram-atomic-weight, 118
Grand unified theories, GUTs, 536
Gravitational

attraction, universal, 67, 93
capture cross-section, 473
condensation of matter, 443
constant, G, 70, 77, 665
lensing, 39, 189
mass, 231, 373
quantum effect, 308
radiation, 50, 231, 285, 362, 587
red shift, 83
time delay, 187
waves, see also Gravitational radiation, 3,

587
Great Attractor, 60, 177
Greisen–Zatsepin–Kuz’min cutoff, 179
Ground state energy, 268
Group of stars, 640
Group velocity, 217, 218



Index 703

Gunn–Peterson effect, 380, 604, 605
Guth, Alan, 505
GUTs, see also Grand unified theories, 536
Gyrofrequency, see also Cyclotron

frequency, 208, 245
Gyroradius, see also Larmor radius, 207,

212, 213

HI clouds, 119, 388, 393
HII regions, 57, 120, 383, 388, 391, 393
H− ions, 278, 650
H2, 279

photodissociation, 455
H2O

cooling, 597
molecules, 418

Habitable zones, 44, 619
Hadrons, 362, 364, 540, 541
Half-life, 339, 545

radioactive dating, 613
Halley’s comet, 35
Halo, 13

dark matter, 594
Galactic, 600, 649

Hanbury Brown–Twiss interferometer, 129,
133

Hayashi track, 16, 17, 341, 471
Heat

capacities, 144
ratio of, γ, 147, 446

content, 144
radiative transfer, see also Radiative

transfer; Convective transfer, 327
Heating rates, 455
Heisenberg, uncertainty principle, 126, 266,

273
Heliopause, 402
Helioseismology, 368
Heliosheath, 402
Heliosphere, 402
Helium 3He, 638
Helium 4He abundances, 552
Helium core, 19
Helium flash, 20
Helium-burning

pulse, 21
shell, 21

Herbig–Haro objects, 18
Herman, Robert, 504

Hertz, Hz, 666
Hertzsprung–Russell diagram, 12, 14, 56,

315, 358, 640
giant branch, 19
horizontal branch, 20
main sequence, 13, 19
red-giant branch, 13
subgiant branch, 13
turn-off point, 19

Hertzsprung–Russell diagram, see also H–R
diagram, 645

Heterotrophs, 623
Hierarchical structure, 39
Higgs scalar field, φ, 505, 533, 539
High-energy collisions, 179
Higher organisms and intelligence, 627
Hipparcos satellite, 54, 78
Homogeneity, 477
Horizon, see also Absolute h.; Event h.;

Particle h., 506, 507
Horizontal branch, see also Hertzsprung–

Russell diagram, 645
Hot-bottom burning, 22
Hoyle, Fred, 505
Hubble, Edwin, 1889 – 1953, 59
Hubble

constant, H , 58, 59, 190, 489, 537, 550
expansion, 507
flow, 507
radius, 507
sphere, 507

Hydride ion, H−, 277
Hydrocarbons, see also PAHs, 420
Hydrogen

21 cm, 1420 MHz transition, 272
atomic mass, mH , 665
fine structure, 274
ionization potential, 277
molecule, H2, 278, 279, 599

dissociation energy, 280
negative ion, H−, 277

Hydrogen burning, 318, 343
Hydrogen shell burning, 19
Hydrogen–helium conversion, see also

Hydrogen burning, 317
Hydrogenic spectra, 269, 271
Hydrophobic molecules, 626
Hydrophylic molecules, 626
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Hydrostatic equilibrium, 319
Hydrostatics of gaseous clouds, 446
Hyperbolic

space, 484
universe, 505

Hyperfine levels, 84
splitting, 272
transition, 84

Hypernovae, 365
Hyperons, 362, 364
Hypersphere, 482
Hypersurface, 482
Hyperthermophiles, 625

Ideal gas, 144, 146
law, 118

Impact parameter, 89
Inclination, 31
Induced emission, see also Stimulated

emission, 231, 291
Inertial mass, 68, 231
Inertial reference fames, 73, 82, 95, 157

local, 191
Inflation, see also Inflationary universe, 41,

479, 556
Inflationary universe, see also Inflation, 478,

484, 505, 527, 532
Information, 48, 218
Infrared emission from galactic sources, 421
Infrared magnitude, I , 643
Inhomogeneous universe, 555
Initial mass function, IMF, 19, 600
Innermost stable circular orbit, 193
Intelligent life, 627
Intensity

radiation, see also Intensity, specific,
I(ν), 229, 306

Intensity, specific, I(ν), 134
Interarm medium, 388
Intercluster gas, 39
Internal energy, U , 144, 146
Interplanetary

dust, 47, 203
medium, 4

Interstellar
gas clouds, 148, 213, 655
grain extinction, 236
medium, 10

atomic hydrogen, 119

grains, 145
stability, 148

Interval between events, see also Timelike
intervals; Spacelike intervals, 160

Intracluster gas, 39
Invariant magnitude, 170
Invariant, relativistic, 168
Inverse beta decay, 22, 340, 360, 366
Inverse Compton effect, 250, 415
Inverse square law forces, 205
Ionization

cross-section, 439, 562
edge, 562
fraction, x ≡ ne/nH , 562
fronts, 394, 397
losses, 411
rate, 561

Ionized gases, see also Plasma, 150, 220
Ionized hydrogen, see also HII region, 120
Ions, positive, 277
Irregular galaxies, 641
Irreversible processes, 617
Isochrones, 17, 356
Isocurvature fluctuations, 560
Isothermal

distributions, 121
processes, 146

Isotopes, 340
Isotropy, 477

problem, 525

J-shocks, 403
Jansky, Jy, 249, 666
Jeans, James, 1877-1946, 444
Jeans

criterion, 444, 470
length, 444, 568, 570

cosmological, 569
mass, 445, 568, 571

baryonic, 570
Jerk, 489
Johnson noise, 136
Jump conditions, 399, 403
Jupiter, 88, 323, 637

K correction, 62
Kaon, K, 517
Kepler, Johannes 1571–1630, 67
Kepler’s laws, 69
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Kinetic energy, 75
Klein bottle, 511
Klein–Nishina formula, 252
Knock-on particles, 180
Kramer’s Law of Opacity, 330
Kuiper belt, 35, 635

Lagrange equations, 98
Lagrangian, 98, 171, 192
ΛCDM model, 585
Laplacian, ∇2, 216, 257
Larmor frequency, ωL, 274
Larmor radius, RL, see also Gyroradius,

207, 212
Laser, 299
Last stable circular orbit, 193
Legendre polynomial, 258
Legendre, associated functions, 258
Lemaı̂tre, Georges, 1894–1966, 497, 501
Lemaı̂tre universe, 502
Length hypothesis, 186
Lepton, 339, 543

number, 543
Life, 44, 617

origins on Earth, 622
Light

cone, 161, 509
emission, 226
scattering, 232

Line element, 161, 185
Line trapping, 454
Lines of force, 210
Liouville’s theorem, 137
Lithium, 546

7Li, 638
Local Bubble, 277
Local Group of galaxies, 36, 177, 641

motion of, 526
Long Duration Exposure Facility satellite,

LDEF, 636
Lorentz

condition, 227
contraction, 165
factor, γ(υ), Γ (υ), 163, 366
force, 207
profile, 290
transformations, 163

Luminosity, 313, 319, 327, 633, 645
class, 652, 653

distance, 492
Ly-α, see also Lyman-α, 388
Lyman

limit, 277
spectrum, 271

Lyman-α
absorbers, 174, 388

damped, 546
absorption, 381, 422
emission, 174
forest, 174, 381
lines, 287

M31 = NGC 224, 37
M31, see also Andromeda Nebula, 57
Mach, Ernst, 1838–1916, 82
Mach’s principle, 82, 514
Magellanic

Clouds, 38, 56
Stream, 38, 612

Magnetars, 4, 214, 314, 364
Magnetic

acceleration of particles, 209
bottles, 211, 213
confinement, 137
dipole moment, 230
dipole transitions, 296
fields

H, 207
anchored in a rotating star, 458
dust alignment by, 429
energy density, 408
gradients, 449
origins of, 405
seed, 407

flux density, B, 207
induction, B, see also Magnetic flux

density, 12, 207, 389
mirrors, 211, 213
moment, 212
monopoles, 215, 535
permeability, µ, 215
pressure, 219
quantum number, m, 273
reconnection, 447
Reynolds number, RB , 448
rigidity, 213
stars, 275
storms, 634
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Magnetography, 275
Magnetohydrodynamics, 43, 208, 296, 448
Magnetosphere, 209
Magnitude

U , B, V , R, I , J , K , L, M , N , Q, 643
absolute bolometric, Mbol, 665
absolute, M , 644
apparent, m, 54
blue, B, 643
photographic, mpg , 643
scale, 642
ultraviolet, U , 643
visual, V , mυ , 643

Main lobe, see also Antenna lobes, 134
Main sequence, 19, 649

stars, 649
early, 655
late, 655

superposition, 54
zero age, see also Zero age main

sequence, 372
Main sequence, see also Hertzsprung–

Russell diagram, 645
Masers, 299, 655

three-level, 299
Mass, 67, 170

distribution, cosmic, 583
flow, 398
gravitational, 80
inertial, 80

Mass loss, see also Stars, mass loss, 317
Mass spectrum, self-similar, 593
Mass–energy, 172

conservation, 83, 251, 266, 339
Mass–luminosity ratio, 318, 332, 435
Massive Compact Halo Object, (MACHO),

437
Matrix elements, 291
Matter and antimatter, 543
Matter-dominated era, 498
Maxwell, James Clerk, 1831–1879, 125,

158
Maxwell equations, 214, 226
Maxwell–Boltzmann statistics, 126, 141
Mean deviation, 107
Mean square deviation, 110
Mean values, 111, 142
Megahertz, MHz, 666

Mercury, 31, 637
Merger of galaxies, 609
Mesons, 3
Metallicity, 56
Metals, see also Metallicity; Abundances of

chemical elements, 27
Meteorites, 4, 101, 462, 636

chondritic, 463
formation of, 34
iron, 34, 462
matrix, 462
stony, 33, 462

Meteors, 101, 636
Methane, 619
Metric, 185, 487

static, 573
Michelson, Albert A., 1852–1931, 129, 158
Michelson stellar interferometer, 129, 133
Micrometeorites, 636
Micrometer, see also Micron, µm, 453
Micron, see also Micrometer, µm, 453, 666
Microquasars, 9, 181, 182
Mikheyev–Smirnov–Wolfenstein (MSW)

effect, 370
Milky Way, 641

plane, 15, 649
Minkowski diagram, 168
Minkowski space, 160
Minor planets, 635
Mira stars, 654
Mixing length, convective, �, 335
Møbius strip, 511
Modified Newtonian dynamics (MOND),

437
Modulation frequency spectrum, 48
Molar volume, 118
Mole, 118
Molecular clouds, 11, 388, 424

hot core, 388
interstellar, 148

Molecules
formation of, 415
motion of, 115
organic, 420
rotational energy of, 145

Moment of inertia, I , 284, 429
Momentum, 170, 171

canonical, 99
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conservation, 251, 266
space, 127

Moon, 63, 126, 637
rocks, 34

Moons, 32, 637
Multiplicity of terms, 2S + 1, 274
Multipole processes, 230
Murchison meteorite, 621
Mutations, 44

genetic, 623

(N , γ) process, 340
Natural line width, 286, 290
Navarro, Frenk, and White (NFW) profile,

597
Neptune, 637
Neutrinos and antineutrinos, 3, 50, 126, 339,

362, 369, 552
background, 548
decoupling, 551
electron-, muon- or tau-, 370
flavors, 370
mass, 370
oscillations, 370

Neutron stars, 22, 197, 214, 314, 351, 358,
658

kick, 364
mass, 360
structure, 363

Neutron-to-proton ratio, 551
Neutronization, 22, 359
Neutrons, 126, 339, 340, 364

capture, 346
half-life, 177, 545
mass, mN , 665

Newton, Isaac, 1642-1727, 67
Newton’s gravitational attraction, 150
Newton’s laws, 68
Newtonian gravitational constant, see also

Gravitational constant, G, 70
NFW profile, see also Navarro, Frenk and

White profile, 597
NGC 7027, 243
Night sky emission, 46
Noether, Emmy, 1882-1935, 100
Noether’s theorem, 100
Noise, 105
Normal giants, 649
Novae, 57, 368, 419, 610, 647, 648, 653

Nuclear reactions
in stars, 339
rates, 318, 335

Nuclei, relativistic, energy losses, 412
Nucleons, 269, 340, 362, 541
Nucleosynthesis, primordial, 547, 601
Nucleotides, 624
Null geodesics, 487
Number counts, cosmological, 60
Number density, 222
Nyquist noise, 136

O chondrites see Ordinary chondrites, 463
O and B stars, 15
Object, 633
Observations, 48
Occultation of a star, 314
Ohm’s law, 209
Ohmic diffusion, 448
Olbers’s paradox, 485
Olivine, 462
Oort, Jan, 87
Oort cloud, 635
Opacity, κ, 111, 301, 320, 331

Kramer’s law, 330
Rosseland mean, 329
solar, 332
stellar, 328

Optical depth, 241
Orbital angular momentum quantum

number, l, 273
Orbital period, 32
Ordinary chondrites, 463
Organic acids, 620
Organic molecules, 619

large, 415
Origins of life on Earth, 622
Orphans, gamma ray bursts, 405
Orthonormal functions, 259
Oscillator strength, f , 294

(P , γ) process, 340
PAHs, see also Polyaromatic hydrocarbons,

420
Pair instability, 601
Paleochroic haloes, 514
Pancakes, 592
Panspermia, 627
Parallax, p, 54
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Paramagnetic medium, 215
Paramagnetic relaxation, 429
Parity, 516
Parsec, pc, 54, 665
Partial pressure, 119
Particle horizon, 507, 509, 549, 556
Partition function, 128
Partons, 540
Paschen spectrum, 271, 393
Pattern velocity, 88
Pauli exclusion principle, 126, 266, 273
Perfect cosmological principle, 480
Periastron, advance of, 195
Pericenter, 69
Perihelion advance of Mercury, 195
Period, oscillation, 228
Perturbations on superhorizon scales, 572
Phase cell, 127
Phase space, 126, 127
Phase velocity, 217, 218, 221
Photinos, 4
Photoautotrophs, 623
Photochemistry, 618
Photodissociation of H2, 455
Photodissociation region, PDR, 403, 455
Photoelectric heating, 423, 455
Photographic magnitude, mpg, 643
Photographic plate, 641
Photoionization of carbon, 455
Photolysis, 623
Photon drag, 563
Photon-dominated regions, PDR, 403, 433
Photons, 126, 339, 662

absorption of, 291
highly energetic, 49

Photosphere, 634
Photovisual magnitude, V , mpυ , 643
Physical constants, 665
Pions, 126
Pitch angle, 207
Plagioclase feldspar, 462
Planck

constant, h, 126, 266, 665
density, 531
length, 198, 531
mass, 198, 531
time, 531

Plane polarized waves, 217

Planetary nebulae, 21, 243, 372, 383, 388,
647, 648

Planetary systems, 154
extrasolar, 637

Planetesimals, formation of, 469
Planets, 29, 635

characteristics, 30
chemical constituents, 34
extrasolar, 637
formation of, 458
giant, 35
growth of, 471, 473
interior of, 322
terrestrial, 35

Plasma, 153, 221
degenerate, 326
frequency, ωp, 221
nondegenerate, 324

Pleiades cluster, 645, 646
Plerion, 365
Pluto, 31
Poisson equation, 151, 227, 565
Poisson–Boltzmann equation, 151
Polarization field, P, 206
Polarization of starlight, 426
Polarized waves, 224
Polyatomic molecules, 145
Polycyclic aromatic hydrocarbons, PAHs,

420
Polyols, 621
Polytropic index, 433
Polytropic temperature, 433
Population I stars, 13, 56, 317, 649
Population II stars, 13, 56, 649
Population III stars, 28, 598, 600, 601
Population inversion, 299
Positrons, 81, 339, 340

annihilation of, 545
decay, 340

Post-inflationary stage, 536
Potential energy, 75
Power law, 570
Power spectrum, 558, 587
Poynting vector, 218
Poynting–Robertson effect, 174, 408, 458
Pre-planetary nebulae, 36
Pre-stellar phase, 16
Pressure, 117, 218
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due to galaxies, 117
propagation speed, see also Sound speed,

322, 395
scale height, 335

Primitive condensates, Solar Nebula, 469
Primordial black holes, 202
Primordial nucleosynthesis, 547, 601
Principal quantum number, n, 270
Principia Mathematica, 67
Principle of relativity, 157
Probabilities, 111

absolute, 107
Progeny, genetic, 623
Projected lengths, 112
Proper

distance, 507
length, 162
motion, 656
time, 162, 186, 574, 577

Proton–photon collision, 179
Proton–proton reaction, 342
Proton-rich isotopes, 347
Protons, 126, 270, 339

highly energetic, 49
mass, mp, 665

Protoplanetary nebulae, 387
Protosolar nebula, 458
Protostars, 11, 458

triggered collapse, 450
Protostellar

clouds, 11, 458
collapse, energy dissipation, 451
mass, 11

Pseudospherical space, 484
Pulsar, Crab Nebula, 260
Pulsars, 24, 86, 214, 222, 223, 364, 658

X-ray, 365
Pyroxine, 462

QCD, see also Quantum chromodynamics,
540

QSOs, see also Quasars, 381, 660
Quadrature, 109
Quadrupole transitions, 296
Quantization, 266

of angular momentum, 284
Quantum

oscillator, 130
processes, 265

theory of radiation, 230
Quantum chromodynamics, QCD, 540
Quark–gluon plasma, QGP, 540, 544
Quarks, 362, 364

color, 540
flavor, 540

Quasars, 8, 40, 47, 173, 181, 190, 214, 660
3C 273, 46
3C 48, 46

Quasars, see also Quasi-Stellar Objects,
QSOs, 381

Quasi Periodic Oscillations, QPOs, 197
Quasi-Stellar Objects, QSOs, see also

Quasars, 381, 660
Quintessence, 500, 582

R-condition, see also Shock fronts, 402
r-process, 347, 348
R Coronae Borealis stars, 654
Racemic mixture, 621
Radiation

absorption, 231
dipole, 228
emission, 231
kinetics, 120

Radiation density constant, a, 131, 665
Radiation-dominated era, 498
Radiative

transfer, 304
Radiative flux

integrated, 307
net, 307

Radiative transfer, 321, 333
Radio

astronomy, 221
galaxies, 660
spectra, 249

Radioactive dating, 33
Radius of curvature, 484
Random

events, 105
processes, 105
walk, 105

Rayleigh scattering, cross-section, 235
Rayleigh–Jeans limit, 134
Re-entrant topologies, 512
Recession velocity, 507
Recombination coefficients

of hydrogen and helium, 392
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Recombination era, 550, 568
Recombination rate, 562
Recurrent novae, 653
Red-giant branch, see also Hertzsprung–

Russell diagram, 645
Red-giant stars, 13, 655
Red shift, z, 58, 60, 530
Red-shift – distance relation, 60
Red-shift parameter z, 489
Reduced mass, 73
Rees–Sciama effect, 591
Reflection nebulae, 236
Refractive index, complex, 237
Reionization era, 602, 605
Relative probability, 107
Relativistic degenerate electron gas, 352
Relativistic Heavy Ion Collider, RHIC, 541
Relativistic shocks, 404
Relativistic terminology, 158
Relativity principle, 83, 157
Relaxation time, 91, 321
Rest-mass, 171, 339
Retrograde orbits, 635
Reverberation mapping, 608
Reverse shock, 404
Ribonucleic acid, RNA, 624
Riemann curvature constant, k, 483, 487,

572, 573
Riemann zeta function, 131
RNA, 624
Robertson–Walker metric, 487
Rocks as metabolic byproducts, 626
Rømer, Ole, 1644–1710, 157
Röntgen satellite, ROSAT, 8
Root mean square deviation, 108
ROSAT, see also Röntgen satellite, 8
Rosseland mean opacity, 329
Rotating axisymmetric disks, 470
Rotation curves, of spiral galaxies, 436
RR Lyrae variables, 56, 368, 654, 655
Rydberg constant, R∞, 665

s-process, 346, 348
Sachs–Wolfe effect, 584, 587
Saha equation, 141, 329
Salpeter birthrate function, ψ, 317, 656
Satellites of planets, 69, 637
Saturn, 32, 63, 637
Scalar potential, φ, 226

Scalar product, 206
Scale factor, a, 487, 497
Scale height, 122

of galactic stars, 435, 440
Scale invariance, 560, 593
Scattering, by free electrons, 302
Scattering, inverse square law, 88
Schwarzschild, Karl, 1873–1916, 185
Schwarzschild

line element, 185, 572, 577
metric, 577
radius, 186, 351

Sco X-1, 7, 373
Search for Extra-Terrestrial Intelligence,

SETI, 627
Second moment, 110
Seeliger’s theorem, 60, 492
Seismology, see also Helioseismology;

Stars, seismology, 369
Selection rules, 230, 267, 281, 303
Semimajor axis, 69, 78
Semiminor axis, 69
Semiregular variables, 654
SETI, 627
Seyfert galaxies, 382, 425, 660
Sheets, see also Galaxies, sheets, 592
Shell stars, 653, 654
Shock fronts, 397
Shock-compression, 450
Shocks, relativistic, 404
Shooting stars, see also Meteors, 636
Signature of a space, 161
Silk damping, 564
Silk drag, 564
Simultaneity, 159
SNe I, see also Supernovae, 653
SNe II, see also Supernovae, 653
Snowballs, 50
Soft-γ-ray repeaters (SGRs), 364
Solar

composition, 358
constant, 121
cycles, 11 and 22 year, 634
flares, 634
luminosity, L�, 645, 665
mass, M�, 665
radius, R� , 665
wind, 387, 388, 402, 438, 634
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Solar Nebula, 25, 458, 461
primitive condensates, 469

Solar System, 12, 25, 32, 53, 88, 462, 617,
633, 635

angular momentum, 442
formation of, 34, 117
origin of, 29

Sound, speed, 322, 395, 397
Source function, 307
Space

Euclidean, see also Flat universe, 484
flat, 484
hyperbolic, 484

Space travel, 627
Spacelike interval, 161
Spallation products, 414
Spatial frequency domain, 49
Special relativity, 157, 158
Specific intensity, I(ν, θ, φ), 135, 307
Spectral energy distribution, SED, 382, 642
Spectral index, 248
Spectral lines

broadening of, 286
information content, 285
shape of, 286

Spectral series, 271
Spectral type, see also Stars, spectral types

early, 319
late, 319

Spectroscopic
binaries, 77, 638
parallax, 54

Speed of light, c, 157, 207, 665
Spherical harmonics, 259, 584
Spin, 339

angular momentum, quantum number,
272

of fermions, 282
period, 32
states, 330

Spiral density wave, 88
Spiral galaxies (S), 640

arms, 388
rotation curves, 436

Spontaneous emission, 231
Sputtering by energetic protons, 417
Stability, 94
Standard brightness measurements, 643

Standard deviation, 108, 594
Star formation, 10, 148, 441

history, 27, 657
rate, 317

Stark effect, 287
Stars

AGB see also Asymptotic giant branch,
AGB, 21

age, 612
atmospheres, 26
binaries, 638
classification of, 646
compact, 351
contraction to the main sequence, 16
degenerate cores, 351
dwarfs, 649
early types, 649
effective temperatures, 649, 652
elemental abundances, 265, 314
energy-generation, 341
evolved, 386
giants, 649
globular clusters, 355
hydrogen burning, see also Hydrogen

burning, 343
late types, 649
low mass, 15
mass loss, 315
nonrelativistic degeneracy limits, 354
nuclear reactions in, 339
orbital characteristics of, 612
red giants, see also Red giants, 15
relativistic degeneracy limits, 354
relaxation time, 321
rotation of, 367
rotational velocities, 314
runaway, 101
seismology of, 369
spectral types, 648

early, 319
late, 319

surface magnetic fields, 314
surface temperatures, 313
T Tauri, 18
Thorne-Żytkow, 373
velocities, 315, 656
vibration of, 367
winds of, 386, 397
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Static field, 186
Static Universe of Einstein, 500
Stationary field, 186
Stationary nonequilibrium, 618
Statistical thermodynamics, 122
Statistical weights, 141
Steady state universe, 478, 494, 505
Stefan-Boltzmann constant, σ, 131, 456,

665
Stellar

assemblies, 150
associations, 640
atmospheres, chemical composition, 304
drag, 90
energy sources, 316
group, 640
models, 318
rotation, 653
types, masses, 313
velocities, 655
winds, 458

AGB stars, 388
O stars, 388

Stimulated emission, see also Induced
emission, 291, 299

Strömgren spheres, 390, 607
of quasars, 606

Strange particles, 362
Strong gravitational fields, 183
Strong nuclear forces, 85
Subgiants, 13, 649
Substratum, 480
Sun, 63, 234, 633, 645

internal rotation rate, 315
motion, 379
nuclear reactions, 370
surface magnetic fields, 275

Sunspot number, 634
Sunspots, 275, 634
Sunyaev–Zel’dovich effect, 254
Supergiants, 649
Superhorizon scales, condensation, 571
Superluminal velocities, 181, 367
Supermassive black holes, 78
Supernova, Large Magellanic Cloud, 371
Supernovae, 57, 214, 358, 653

core collapse, 365, 404
light curves, 492

remnants, 22, 385, 388, 654, 658
type I (SN I), 22, 653
type II (SN II), 22, 653

Superparamagnetism, 429
Suprathermal particles, 210
Surface brightness, 134
Surface gravity, 122
Surface integral, 206
Surface of last scatter, 510, 551, 586
Surface temperatures, 633
Sweet–Parker recombination rate, 448
Swiss-cheese model, 572, 575
Symmetric dipole molecules, 280
Synchronization of clock rates, 186
Synchrotron radiation, 244, 247

energy losses, 411, 412
spectrum, 246

Synchrotron-self-Compton process, 254

T Tauri stars, 16, 18, 653, 655
Tachyons, 183, 629
Temperature, 118

antenna, see also Antenna temperature,
134

brightness, see also Brightness
temperature, 134

effective, 649
of interplanetary objects, 133
radio-astronomical, 134

Temperature / vapor pressure relation, 472
Tensor component of the CMBR, 587
Terminal shock, 402
Thermal motion, 305
Thermal noise, 135
Thermal radio sources, 241
Thermodynamics of

biological systems, 617
black holes, 199, 200
closed systems, 617
isolated systems, 617
open systems, 617

Thermometer, 118
Thick disks, 611
Thin disks, 611
Thomas–Kuhn sum rule, 296
Thomson scattering, 250, 253, 301, 551, 602

cross-section, σe, 233, 665
Thorium dating, 613
Tidal disruption, 94
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Time, 84, 159
atomic, 85
conformal, 488
dilatation, 165
dilation, 83, 84, 165, 177
ephemeris, 85
flow, 515
nuclear, 85
proper, 488
universal, 85

Time-reversal operation, 516
Timelike interval, 161
Topology of the Universe, 511
Total energy, 75
Total radiated energy, 229
Transfer equation, 307
Transformation equations, 96
Transition amplitudes, 291
Transition probability, 290, 291
Translation, 145
Transport of heat, 323
Transverse waves, 216
Tree of life, 625
Triggered collapse, 450
Trigonometric parallax, 54
Triple-α process, 20, 343, 600
Troilite, 462
True anomaly, 69
Tully–Fisher relation, 57, 58
Turbulence, 43
Turbulent motion, 305, 389
Turn-off point, 355
Two-body problem, 72
Tycho Brahe see also Brahe, Tycho, 67

Ultrarelativistic expansion, 404
Ultraviolet magnitude, U , 643
Units, 666
Universal time, 85
Universe, 39, 477

age of, 498
curvature of, 482
Euclidean, see also Flat universe, 482,

578
evolving, 9, 478
flat, 578
homogeneous isotropic models, 481
inhomogeneous, 555
open, k = −1, 484

radiation dominated, 558
self-regenerating, 478, 505
simply connected, 511
steady state, 478

Uranium dating, 613
Uranium isotopes, 347

Vacuum energy, 130, 505
density, 533

Van Allen belts, 209
van der Waals force, 131
Vapor pressure, 418

of elements, 462
Variable stars, 653
Variance, 110
Vector potential, A, 226
Vector product, see also Cross product, 71
Venus, 63
Vesicles, 626
Vibration, 145
Vibrational energy, 278
Virial theorem, 92, 149
Visual binaries, 77, 638
Visual magnitude, V , mυ , 643
Voids, 39, 582, 592

W Virginis Stars, 654
Walls, see also Galaxies, walls, 592
Warm-to-Hot intergalactic medium, WHIM,

388
Wave equation, 215–217

acoustic, 396
Wave number, k, 217
Wave propagation, 220
Wavelength, λ, 129, 217
Weak nuclear forces, 85
Weakly interacting massive particles,

WIMPS, 5, 438
White dwarfs, 22, 314, 351, 357, 645, 646

central densities, 354
Hertzsprung–Russell diagram, 359
structure of, 363

Wilkinson Microwave Anisotropy Probe,
WMAP, 526, 585, 586

Winds, 123
WMAP, see also Wilkinson Microwave

Anisotropy Probe, 526
Wolf–Rayet stars, 647, 648
Work, 144
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World
diagram, 161, 167
line, 159, 487
map, 481
picture, 481
points, 159
time, 481, 487, 498, 576, 577

Worm holes, 628

X-ray
astronomy, 5
binaries, 8
emission probability, 295
flares, 458
pulsars, binary, 365
sky map, 659

source, Sco X-1, 373
sources, extragalactic, 660
spectrum, diffuse, 416
stars, 658

X-rays, 415

Year, yr, 665
Young stellar objects, YSOs, 18

Z◦ boson decay, 552
Zeeman shift, 276
Zeeman splitting, 273, 275, 276
Zero-age main sequence, ZAMS, 15, 17,

372
Zodiacal dust, 203, 663
Zodiacal light, 234, 636
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